PARTICLE IN A FINITE BOX $$V(x) = \begin{cases} V_0 & x \le 0 & (I) \\ V(x) = V_0 & 0 < x < L & (II) \\ V_0 & L \le x & (III) \end{cases}$$ WE DIVIDE THE PHYSICAL SPACE IN 3 REGIONS: I, II. FROM THE TISE AND EXVO WE GET $$\frac{3\Psi}{3\chi^2} = + \frac{2M}{4\chi^2}(V_0 - E)\Psi$$ IN RESCOUL I AND W $$\frac{dx^2}{dx^2} = \kappa^2 \Phi,$$ WHERE $$K^{2} = \sqrt{\frac{2m}{\kappa^{2}}}(V_{0} - E) =$$ BUT IN REGION II $$\frac{\partial X_5}{\partial_s \partial_s} = -k_s \partial_s$$ M14 H $$R = \sqrt{\frac{2mE}{\kappa^2}}$$ $$\Psi_{\underline{\Pi}}(x) = C \mathcal{Q} + D \mathcal{Q}$$ $$\mathcal{F}(x) = \underline{F} \mathcal{C}^{kx} + F \hat{\mathcal{C}}^{kx}$$ BUT AT X->D AND X-D-D, WE SHOULD NOT FIND THE PARTICE, THUS B = 0 = E. NEXT, WE CONSIDER CONTIDUITY OF THE FUNCTIONS & AND ITS FIRST DERIVATIVE $$\vec{\mathcal{L}}(r) = \vec{\mathcal{L}}(r)$$ $$\vec{\mathcal{L}}(r) = \vec{\mathcal{L}}(r)$$ $$\frac{\partial x}{\partial \hat{\tau}}\Big|_{x=0} = \frac{\partial x}{\partial \hat{T}^{H}}\Big|_{x=0}$$ | Table 6-2. A | | systems Studied in Ch | | | |---|---|--|---|--| | Name of System | Physical
Example | Potential and
Total Energies | Probability
Density | Significant
Feature | | Zero
potential | Proton in beam from cyclotron | EV(x) | Ψ*Ψx | Results used for other systems | | Step potential (energy below top) | Conduction
electron near
surface of
metal | | √ у *Ψ х | Penetration
of excluded
region | | Step potential (energy above top) | Neutron
trying to
escape
nucleus | | Ψ*Ψ | Partial reflec-
tion at
potential
discontinuity | | Barrier
potential
(energy
below top) | α particle
trying to
escape
Coloumb
barrier | | $ \int_{0}^{\psi*\psi} x $ | Tunneling | | Barrier
potential
(energy
above top) | Electron scat-
tering from
negatively
ionized atom | | $\int_{0}^{\sqrt{\psi*\psi}} \frac{1}{a} x$ | No reflection
at certain
energies | | Finite
square
well
potential | Neutron
bound in
nucleus | $ \begin{array}{c c} V(x) \\ E \end{array} $ | $\bigcup_{0}^{\psi * \psi} \int_{a}^{w} dx$ | Energy
quantization | | Infinite
square
well
potential | Molecule
strictly
confined
to box | V(x) C | | Approximation
to finite
square well | | Simple
harmonic
oscillator
potential | Atom of
vibrating
diatomic
molecule | V(x) x'' E | <u></u> | Zero-point
energy | ## QUESTIONS - 1. Can there be solutions with E < 0 to the time-independent Schroedinger equation for the zero potential? - 2. Why is it never possible in classical mechanics to have E < V(x)? Why is it possible in quantum mechanics, providing there is some region in which E > V(x)? - 3. Explain why the general solution to a one-dimensional time-independent Schroedinger equation contains two different functions, while the general solution to the corresponding Schroedinger equation contains many different functions. - 4. Consider a particle in a long beam of very accurately known momentum. Does a wave function in the form of a group provide a more or a less realistic description of the particle than a single complex exponential wavefunction like (6-9)? - 5. Under what c mation to an - 6. If a potential discontinuities - 7. By combining ing wave. Wh. - 8. Just what is a - 9. How can it be associated par - ior of an unb can be followed apparatus? W - 11. Exactly what incident on a by the statement than the step - 12. Since a real e oscillatory fur - 13. What do you 6-8 as it reflect - 14. What is the faturneling three - 15. A particle is i and it is refle direction of ii changed into - 16. In the sun, to the Coulomb than the sum is responsible on earth if it - 17. Are there any which is of ir - 18. Show from a always has or the eigenfunc - 19. Why do finit the character - 20. What would well look like - 21. Why do the best approximately? - 22. In the n = 3 positions bet positions? - 23. Explain in si principle. - 24. Would you matter at ver - 25. If the eigenfu has even par