Chem 203
 First Exam-Part A Friday October 5, 1990

Name
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
$=1.98 \mathrm{cal} / \mathrm{K} \mathrm{mol}$ $=0.082 \mathrm{lt} \mathrm{atm} / \mathrm{K} \mathrm{mol}$

Full credit will be given to correct answers only when ALL the necessary steps are shown. DO NOT GUESS THE ANSWER.

This is a closed book exam, and you are responsible to be sure that your exam has no missing pages(5 pages). During the first 5 minutes read all the questions. Once you start answering, you have up to 50 minutes to finish the exam.

If you consider that there is not enough information to solve a problem, you have to specify the missing information and describe the problem solving procedure.

Honor Statement
I have neither give nor received aid in this examination.
Full signature

Problem 1 (20 points) Compute $\Delta \mathrm{H}_{\mathrm{rxn}}$ for $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{KBr}(\mathrm{aq})$ $\varnothing \mathrm{AgBr}(\mathrm{s})+\mathrm{KNO}_{3}(\mathrm{aq})$ Given: 50 ml of $1 \mathrm{~mol} / \mathrm{LAgNO}_{3}(\mathrm{aq})$ is added to 50 ml of $1 \mathrm{~mol} / \mathrm{L} \mathrm{KBr}(\mathrm{aq})$ in a calorimeter(heat capacity $1.42 \mathrm{~kJ} / \mathrm{K}$) and the temperature increases 1.19 K .
a) -1.69 kJ
b) 1.69 kJ
c) -33.8 kJ
d) 33.8 kJ
e) -3.38 kJ

Problem 2 (20 points) The enthalpy change for the combustion of CH_{3}
$\mathrm{NO}_{2}(1)$ is $-638.5 \mathrm{~kJ} / \mathrm{mol}$ (nitrogen gas is a product). If $\Delta \mathrm{H}_{\mathrm{f}}$ of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is -393.5 and $-241.8 \mathrm{kj} / \mathrm{mol}$, calculate $\Delta \mathrm{H}_{\mathrm{f}}$ of $\mathrm{CH}_{3} \mathrm{NO}_{2}(1)$. a). $+3.2 \mathrm{kj} / \mathrm{mol}$
b). $-117.7 \mathrm{kj} / \mathrm{mol}$
c). $-726.2 \mathrm{kj} / \mathrm{mol}$
d). $-638.5 \mathrm{kj} / \mathrm{mol}$
e). $-1394.7 \mathrm{kj} / \mathrm{mol}$

Problem 3 (20 points) Derive an expression for $(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}{ }_{\mathrm{n}}$ for an ideal gas. Evaluate the cubic expansion coefficient

$$
\alpha=\frac{1}{\mathrm{~V}}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{Pn}}
$$

for an idela gas at $0^{\circ} \mathrm{C}$.
a) 0
b) $0.00366 / \mathrm{K}$
c) $3.66 / \mathrm{K}$
d) $273 / \mathrm{K}$
e) ∞

Problem 4 (20 points) Given that the equation of state for a gas is $\mathrm{P}(\mathrm{V}-\mathrm{nb})=\mathrm{nRT}$,
where b is a constant. Obtain an expresion for the work done by the gas in a reversible, isothermal expansion from V_{1} to V_{2}. Given that the internal energy of a fixed mass of the gas depends only on T , obatined expressions for $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ for the gas in the reversible, isothermal expansion. Compare the results to those obtained for an ideal gas.

Problem 5 (30 points) Calculate the change of entropy when 50.0 g of water at $0^{\circ} \mathrm{C}$ is dropped into 50 g of water at $100^{\circ} \mathrm{C}$ in an insulated vessel. The enthalpy of fusion of ice is $6.01 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and the heat capacity of water is $75.4 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

