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Executive Summary

A quantum computer, a computer based upon the manipulation of quantum systems,
could solve many problems considered difficult for conventional computers. However,
a quantum computer large enough to be useful would likely need to contain many
distinct registers. Before such a quantum computer can be built, it must be possi-
ble to efficiently route quantum information (quantum states) from one register of
the quantum computer to another, just as classical information is routed in a con-
ventional computer. In this work we study the efficiency and faithfulness of parallel
entanglement transfer on quantum networks. Once transferred, entanglement can be
distilled and used to teleport arbitrary quantum states.

By “quantum network” we mean a network of coupled quantum systems, and
in particular, either spin-1

2
particles, also known as quantum bits (qubits), or simple

harmonic oscillators. Such a network is conveniently visualized as a graph, as in Figure
1 for the cube. We consider the following situation. At each node of this network
there is a register of the quantum computer (a collection of qubits) and each register
is capable of generating pairs of qubits in the Bell state |Φ+〉 = (|0〉|0〉+ |1〉|1〉)/

√
2.

Some subset of the nodes {s1 . . . sM} act as senders, and some subset {r1 . . . rM} act
as receivers. The goal of sender sj is to faithfully transfer half of her entangled pair
to receiver rj, so that these two nodes can then communicate via teleportation. The
senders and receivers use the following protocol to attempt to transfer entanglement.

Parallel Entanglement Transfer on a Quantum Network by Dynamical
Evolution

Step 1: Each sender sj is in possession of a qubit-node pair in a Bell state |Φ+〉. Every
node (oscillator or qubit) not associated with a sender is in the state |0〉.

Step 2: The quantum network is allowed to evolve according the the natural time evo-
lution of its Hamiltonian for some time T (the transfer time). Each sender’s
qubit is kept isolated, so that it does not evolve in time.

Step 3: Each receiver rj transfers the state of his node to a qubit in his possession.

Step 4: The sender and receiver each perform predetermined local operations on their
qubits. The state of the qubit pair is now denoted by ρ̃j(T ).

The faithfulness of the entanglement transfer from sender sj to receiver rj is
quantified by the fidelity

Fsj→rj(T ) = 〈Φ+|ρ̃j(T )|Φ+〉. (1)
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Executive Summary

The fidelity of the transfer ranges from 0 to 1, with Fsj→rj(T ) = 1 indicating that
perfect transfer has been achieved in a time T . The transfer time T is chosen so as
to maximize the fidelity.

Quantum state transfer and entanglement transfer for a single user via this and
other protocols on spin networks has been well-studied in the literature [1]. It would,
of course, be much more efficient if multiple nodes could faithfully send entanglement
through the network at the same time—in other words, if multiple senders could use
the quantum network in parallel. It is the goal of this thesis to, for the first time,
study the new errors that arise from such parallel quantum entanglement transfer.

The general Hamiltonian H that we consider for an oscillator network with net-
work graph G = (V,E) is

H = ~
∑
v∈V

Ωvva
†
vav + ~Ω0

∑
{u,v}∈E

(
a†uav + a†vau

)
. (2)

where a†v and av are the creation and annihilation operators for the oscillator at vertex
v. The corresponding spin-network Hamiltonian that we consider is

H = −1

2
~
∑
v∈V

Ωvvσ
(v)
z +

1

2
~Ω0

∑
{u,v}∈E

(
σ(u)
x σ(v)

x + σ(u)
y σ(v)

y

)
, (3)

where σ
(v)
x , σ

(v)
y , and σ

(v)
z are the Pauli spin operators for the qubit at vertex v. While

our results hold for any network of qubits coupled by an XY interaction, our research
is inspired especially by networks of superconducting quantum bits.

We limit our attention to the case when the couplings between nodes are all equal,
although we do allow that the on-site energies be programmable. By “programmable”,
we have in mind that the users of the quantum network have complete control over
the on-site energies and that they can be changed quickly, from one use of the network
to another (but not during any given use of the network). Programmable qubits in
this sense have been synthesized, [2, 3, 4], but to our knowledge dynamically tunable
couplings have not been demonstrated.

It is well known that a single user can transfer entanglement from corner-to-corner
of a d-dimensional hypercube in constant time T = π

2Ω0
[5], depicted in Figure 1(a).

In this sense a d-dimensional hypercube is a great channel of quantum information
between antipodal nodes. A d-dimensional hypercube can be broken up into 2m

subcubes of dimension d−m. These subcubes can be made to act as good channels
between their antipodal nodes by detuning the on-site energies for the entire channel
from the on-site energies from adjacent channels, shown in Figures 1(b) and 1(c) for
a d = 3 oscillator network.

A main result of this thesis, derived in Chapter 2, is that it is possible to split
a d-dimensional hypercube oscillator network into 2m subcube channels, and that
one sender-receiver pair can use each subcube channel to transfer entanglement with
fidelity F bounded from below by

F & 1− 3

2
m η2 sin2 ξT , (4)

viii



(a) (b) (c)

= = =

Figure 1: Arrows denote the transfer of entanglement. (a): Perfect state transfer is
possible from corner to corner of a symmetric d-dimensional hypercube. (b): A 3-
cube can be split up into two effectively decoupled 2-cube channels (opposing faces).
(c): A 3-cube can also be split into four effectively decoupled 1-cube channels (pairs).

where η = 2Ω0

∆ω
, ξT =

√
1 + η−2, and ∆ω is the detuning between adjacent channels.

Here “&” means that this lower bound is correct to second order in η. If η � 1, then
each sender transfers entanglement to her corresponding receiver with high fidelity.
Notice that the error in the fidelity is proportional to sin2 ξT—by picking η just right,
one can make sin2 ξT , the error term, vanish. The fidelity thus exhibits resonances.
We stress that, for oscillators, when the fidelity is on resonance it is truly perfect (to
all orders in η).

Equation (4) was derived as a lower bound for entanglement transfer on oscillator
networks. However, as long as only one sender-receiver pair uses each channel at
a time, as in Figure 1, there is numerical evidence to suggest that qubit networks
behave similarly. For this reason we call the parallel state transfer protocol discussed
so far the “qubit-compatible” (QC) protocol. Figure 2 compares the fidelity of en-
tanglement transfer on hypercubes of spins to a lower bound on the corresponding
fidelity for hypercubes of oscillators. The behaviors are qualitatively similar, with
a few important differences. Most notably, qubits do better on average, but cannot
achieve perfect state transfer. Also, for oscillators the fidelity of the entanglement
transfer is independent of the dimension of the hypercube network d (depending only
on the number of channels 2m into which it is split); for qubits, though, there is some
d dependence when η is not small.

Besides the ability to perform truly perfect parallel state transfer, oscillator net-
works have another, highly desirable feature that qubit networks lack: the capacity for
massively-parallel (MP) entanglement transfer. Because excitations on an oscillator
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Figure 2: The fidelity of entanglement transfer for a d-dimensional hypercube net-
work of spins split into two channels with one sender and receiver per channel, with
entanglement being sent in the same direction on each channel for d = 2 through 6.
Shown also is an exact lower bound on the entanglement fidelity for transfer via a
hypercube oscillator network split into two subcube channels in the same manner;
the oscillator fidelity is the same for all dimensional hypercubes.

network pass through each other without interacting, every node on an oscillator hy-
percube network can act as a sender at once without decreasing the fidelity bounded
by (4).

Parallel entanglement transfer is thus theoretically possible. In Chapter 3, we
ask: how much more efficient is it than single-user (serial) protocols? Suppose that
at each node of the quantum network there is a register of the quantum computer,
and that the goal is for each pair of registers to share a large number of Bell states.
We define the distribution time TD as the time it takes for each pair of nodes to share
an approximate Bell pair, and the rate as the number of pairs shared, weighted by
their fidelities, divided by the distribution time:

R =
1

TD

∑
pairs {u, v}

Fu→v. (5)

We show that for a hypercube with N = 2d nodes, the rates of the qubit-compatible
(QC) protocol and the massively-parallel protocol (MP) are bounded from below by

R (QC) &
1

T
N0.415

(
1− 3

4

(
Ω0

ωmax − ωmin

)2

d2(d+ 3)

)
, (6)

R (MP) &
1

T
N

(
1− 3

4

(
Ω0

ωmax − ωmin

)2

d2(d+ 3)

)
, (7)
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Figure 3: A comparison of the qubit-compatible and massively-parallel entanglement
distribution rates on hypercube networks with 2Ω0

ωmax−ωmin
= 0.01, 0.02, 0.03.

where ωmax−ωmin is the bandwidth within which all the on-site energies must lie. The
rate of any serial protocol is bounded from below by unity, so both parallel protocols
do better, even for modest network sizes, as long as Ω0

ωmax−ωmin
� 1. We stress that

(6) and (7) are lower bounds on the rates: if the senders fully utilize the resonances
exhibited in the fidelity, it may be possible to achieve better rates even for small
bandwidths ωmax − ωmin.

The bounds (6) and (7) are plotted as a function of d = log2N for various band-
widths in Figure 3. The massively-parallel protocol is more than quadratically better,
though there are significant technical challenges to any transfer protocol that relies
on oscillators. Most notably, such methods require an interface between the qubit
register and the network itself. Still, such an interface has been recently achieved in
the laboratory [6].

We show, then, that high-fidelity parallel entanglement transfer is achievable on
hypercube quantum networks with equal couplings and programmable on-site en-
ergies. Considering two entanglement distribution schemes on oscillator networks,
qubit-compatiable and massively-parallel distribution, we show that both of these of-
fer a speedup over the serial protocols, but that the oscillator-dependent, massively-
parallel scheme is vastly more efficient.
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Chapter 1

Introduction

A large-scale quantum computer, if realized, would outperform classical computers
on certain key problems. Most famously, Shor’s algorithm, if implemented, would
allow a quantum computer to rapidly factor large numbers and thereby defeat many
current cryptosystems [7]. Quantum computers are usually envisioned as collections
of qubits—quantum bits, or generic two-state quantum systems—on which arbitrary
unitary transformations can be performed. In other words, a quantum computer is a
quantum system over which the operator has complete control.

A quantum computer large enough to be useful would probably need to contain
several distinct registers of qubits. In order to perform arbitrary operations on the
qubits, it would be necessary to route quantum information (i.e. the states of qubits)
from one register to another. Because of the (hopefully) short physical distances
between registers, photons, while ideal for long-range communication (quantum or
otherwise), would be an inconvenient way to transmit quantum information in quan-
tum computers. The use of photons for communication would also require a special
interface to transfer the state of a qubit (perhaps a spin-1

2
particle or an element of a

superconducting quantum circuit) to a photon. These difficulties have inspired many
researchers to look for alternative, non-photonic methods of quantum information
routing.

In this thesis we study two alternatives to quantum communication via photons:
spin networks and oscillator networks, with an emphasis on hypercube architectures.
While most of our analytic results are specific to oscillator networks, we argue that
many of our findings are qualitatively similar to the (harder to compute) correspond-
ing results for spin networks. In Chapter 1 we review some basics of single-state
quantum transfer. In Chapters 2 and 3 we present original research on parallel quan-
tum state transfer.

1.1 Spin Chains

One attractive alternative to photonic quantum communication is to transfer quan-
tum states using a “wire” of qubits, as in Figure 1.1. A qubit, or quantum bit, is
any two-state quantum system whose levels are usually labelled by |0〉 and |1〉. For
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Chapter 1 Introduction

ease of exposition, and because chains of coupled spin-1
2

particles are well-studied
in the condensed matter literature, such wires are often referred to as spin chains.
Spin chains are an appealing possibility for quantum state transfer inside quantum
computers because the chain could be made out of the same type of qubits as the
registers, eliminating (or at least reducing) the need for any interface between the
information channel and the register.

In the absence of external magnetic fields, the Hamiltonian for a length N spin
chain with nearest-neighbor XY interactions is

H =
1

2
~
N−1∑
j=1

Ωjj+1

(
σ(j)
x σ(j+1)

x + σ(j)
y σ(j+1)

y

)
, (1.1)

where σ
(j)
x and σ

(j)
y (along with σ

(j)
z ) are the usual Pauli spin operators1 for qubit

j, and Ωj is the strength of the coupling between spins j and j + 1. The ground
state of this Hamiltonian has every qubit in the state |0〉. There are, of course,
other possible couplings. One alternative, the Heisenberg model, has couplings of
the form ~σ(j) · ~σ(j+1) where ~σ(j) = (σ

(j)
x , σ

(j)
y , σ

(j)
z ). In this work, however, we focus

exclusively on XY coupling interaction, as this is the type of coupling that arises in
superconducting qubits [8].

Now suppose that there is a sender s at one end of the spin-chain who is in
possession of an arbitrary, possibly unknown qubit state |ψ〉 = α|0〉 + β|1〉 that she
wishes to transfer to a receiver, r, at the other end of the chain. Because the state |ψ〉
is potentially unknown, the sender cannot simply use classical communcation to tell
the receiver to prepare a qubit in the state |ψ〉. Similarly, a single measurement on a
quantum state reveals only partial information, and since arbitrary quantum states
cannot be cloned [9], she is prevented from determining her qubit’s state.

The sender could, however, attempt to use the spin-chain to transfer the state |ψ〉
over to the receiver. One scheme that the sender and receiver might try is as follows.

Spin Chain State Transfer Protocol

Step 1: Initialize the transfer by preparing each spin in the state |0〉, except prepare the
sender’s spin in the state |ψ〉 (Figure 1.1(a)).

Step 2: Wait for some time T (the transfer time), letting the chain evolve naturally
according to its Hamiltonian.

Step 3: The receiver removes his qubit from the spin chain, and performs some prede-
termined local unitary operation U on his qubit.

The transfer is said to be perfect if, after Step 3, the receiver possesses a qubit
in exactly the state |ψ〉 (Figure 1.1(b)); the transfer is considered successful if the
receiver’s qubit is in a state close to |ψ〉 (this will be made rigorous shortly). It is
also desirable that the transfer time T be short. The receiver is allowed to perform

1Our convention is that |0〉 is the +1 eigenstate of σz, and |1〉 is the −1 eigenstate of σz.
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1.1 Spin Chains

(a)

(b)

Figure 1.1: (a): The initialized spin chain. (b): The ideal state of the chain at
the transfer time T , in which the sender’s qubit state has faithfully travelled to the
receiver.

a predetermined local unitary operation on his qubit at the end of the protocol to
undo some of the effects of the spin chain on |ψ〉. For example, it may be known
that as a state traverses the chain it merely picks up a constant relative phase eiϕ.
The receiver’s spin before he operates with any unitary would then be in the state
α|0〉 + eiϕβ|1〉. In this case the unitary would be chosen so as to undo that relative
phase shift.

Spin chains have been well-studied in the literature. It is, for example, known
that perfect state transfer is impossible on a chain of length N ≥ 4 if the couplings
Ωj are all equal, but if the couplings are tunable and allowed to be arbitrarily large,
then perfect state transfer can be achieved on a spin chain of arbitrary length in
constant time [5]. It is also important to note that there are many generalizations
and variations of the protocol described above. First, one can replace a spin chain
by a more general network of spins, to be described in the following section. Second,
the qubits (two-level quantum systems) can be replaced by qudits (d-level quantum
systems), or even oscillators. In Chapter 2 we will consider such oscillator networks.
Third, one can modify the state initialization step to prepare the non-sender spins
in another initial state, which could even be a mixed state (e.g. a thermal state). It
is, of course, necessary that the sender’s spin begins in the state |ψ〉 that she wishes
to transfer2. We will use such a modification in Chapter 2. Finally, while we will
focus on transfer through natural dynamical evolution in this thesis, there are other
schemes which incorporate measurements [10] to achieve perfect state transfer. These
and other generalizations are reviewed by Bose [1]

2This is a bit of an overstatement. If the sender wishes to transfer the state |ψ〉, it’s fine if her spin
is in the state |φ〉, as long as she knows how |ψ〉 and |φ〉 are related, and can tell the receiver—but
let’s assume that her spin must be in the state |ψ〉.

3



Chapter 1 Introduction

1.2 Spin Networks

As a generalization of spin chains, we consider the situation in which the sender and
receiver are connected by a network of coupled spins with arbitrary geometry. We will
see that perfect quantum state transfer can be achieved on certain arbitrarily large
networks whose couplings are equal [5]. Such a network is conveniently visualized as
a graph, as in Figure 1.2.

A graph G = (V,E) is a set V of vertices (or nodes) together with an edge set E.
One of the vertices s ∈ V is the sender vertex, one vertex r ∈ V is the receiver vertex.
The elements of the edge set are two-element subsets of V . If u, v ∈ V are vertices
of the graph, we say that u is connected3 to v if {u, v} ∈ E. The order of a graph
is |V |, the number of vertices. A convenient representation of the graph G, which is
extraordinarily important in the study of spin networks, is its adjacency matrix A.
An element Auv of the adjacency matrix is 1 if {u, v} ∈ E, and zero otherwise. The
adjacency matrix is real and symmetric.

Graphs are often used to study information routing in classical computers. Nodes
connected by edges can represent individual registers connected by classical commu-
nication channels. Finding a network that can efficiently route information between
all nodes is a well-studied problem in computer science. The corresponding problem
in quantum information science is to find a network of coupled quantum systems
(such as qubits) in which quantum information can be efficiently routed.

Given a graph G = (V,E) of order N one can define corresponding Hamiltonians
by

H =
1

2
~
∑
{u,v}∈E

Ωuv

(
σ(u)
x σ(v)

x + σ(u)
y σ(v)

y

)
. (1.2)

Of particular interest are Hamiltonians in which the couplings Ωu−v are all equal,
because such systems are easier to manufacture in practice [1]. We shall focus ex-
clusively on such spin networks. We will, however, allow for a programmable energy
difference ~Ωvv (the “on-site” energy) between the two qubit states (if the qubits are
literal spins, this could be achieved with local, tunable magnetic fields). In this case,
the oscillator networks corresponding to G has a Hamiltonian of the form,

H = −1

2
~
∑
v∈V

Ωvvσ
(v)
z +

1

2
~Ω0

∑
{u,v}∈E

(
σ(u)
x σ(v)

x + σ(u)
y σ(v)

y

)
+ V0I, (1.3)

where I is the identity operator on the state-space of the spins, and V0 is some
constant. In saying that the Ωvv’s are programmable, we have in mind that the
operators of the spin network can choose the Ωvv’s to be whatever they like, and
that they can be changed from one use of the network to another. Programmable

3Sets are inherently unordered, so if u is connected to v, then v is connected to u. Graphs as
defined here are sometimes called undirected graphs; if the edge set is a set of order pairs (instead
of subsets) of V , the graph is called directed. Also, we’ve specified that the edge set is a set of
two-element subsets of V , and so no edges connect a node to itself—in other words, our graphs are
simple.

4



1.2 Spin Networks

Sender

Receiver

Figure 1.2: An initialized spin network. Note that, although each non-sender qubit
starts in the state |0〉 in this figure, this is not necessary.

qubits in this sense have been demonstrated [11, 6, 2, 3, 4], but to our knowledge
programmable couplings have not.

The state |vac〉 = |00 . . . 00〉, in which every qubit is in the state |0〉, is an eigen-
state of (1.3) (it’s name, |vac〉, is inspired by the vacuum state of quantum field
theory). Without loss of generality, we can assume that V0 is chosen so that |vac〉 has
zero energy, and that the Ωvv’s are always chosen so that |vac〉 is the ground state of
the Hamiltonian (1.3).

The general protocol for using a spin network to transfer quantum states via
dynamical evolution is the same as the protocol described in Section 1.1 for spin
chains. However, we again stress that the non-sender qubits need not start in the |0〉
state, although this is the situation depicted in Figure 1.2.

How faithfully does a spin network transfer quantum states between the sender
and receiver (when used with a particular protocol)? Suppose that a sender, wishing
to transfer a qubit state |ψ〉 to some receiver, initializes the quantum network. We
denote the quantum state of the entire network at time t by |network(t)〉, and take
t = 0 at initialization. At time t, the receiver’s qubit may not have a state vector
of its own—it may be in a mixed state, entangled with the other network qubits.
Entanglement will be discussed further in Section 1.3, but this essentially means that
the results of measurements on the receiver’s qubit could be correlated with the results
of measurements on other qubits. The proper way to describe such a state is via its
reduced density matrix ρR(t). To calculate the reduced density matrix ρR(t) for the
receiver’s qubit, one imagines that some observer measures every other component
of the spin network, but doesn’t tell us the answer. Because we don’t know the
measurement results, we must average over all possible outcomes. Mathematically,

5



Chapter 1 Introduction

this is achieved by

ρR(t) = Trv 6=r|network(t)〉〈network(t)|, (1.4)

where Trv 6=r denotes a partial trace over all qubits except the receiver’s qubit. For
more on the reduced density matrix, see [7].

At the transfer time T , the receiver removes his qubit from the network and then
performs some predetermined unitary operation on his qubit. The state of his qubit
after he performs this operation is

ρ̃R(T ) = U †ρR(T )U. (1.5)

The faithfulness of the state transfer from the sender (at vertex s) to the receiver (at
vertex r) is quantified by the fidelity, Fs→r, of the state ρ̃R(T ) with the state |ψ〉 that
the sender was trying to transfer:

Fs→r(T ) = 〈ψ|ρ̃R(T )|ψ〉. (1.6)

The fidelity has the following simple interpretation: if someone makes a projective
measurement on the receiver’s qubit, asking whether it is in the state |ψ〉 or not,
the fidelity is the probability of a positive result. For more on fidelity as a distance
measure between quantum states, see [7]. The transfer time T and the receiver’s
unitary U are picked so as to maximize the fidelity; the state transfer is said to be
perfect if F (T ) = 1. Again, the receiver’s unitary U is predetermined: it cannot
depend on the state |ψ〉 being sent, which is generally unknown. A common way to
characterize the quality of a network is to a calculate the fidelity averaged over all
possible input states.

1.2.1 Time Evolution and the Graph Space

Because the spin network Hamiltonian (1.3) is time-independent, the time evolution
operator Ut is given by

Ut = e−iHt/~. (1.7)

Now, consider the total number operator N (tot) =
∑

v
I−σ(v)

z

2
, which just counts

the number of qubits in the |1〉 state. The state-space of the spin network splits up
into subspaces corresponding to different eigenvalues of N (tot). The eigenvalues for an
N -node network are 0, 1, . . . , 2N . The eigenspace corresponding to eigenvalue ` has

dimension
(

2N

`

)
, and consists of all the states which have ` nodes in the |1〉 state and

the rest in the |0〉 state.
The total number operator N (tot) commutes with the Hamiltonian—in fact, it

commutes with each term4 of the Hamiltonian. The identity commutes with every-
thing, so we need only check that S

(tot)
z =

∑
v σ

(v)
z commutes with each term. Since

4The fact that [H, N (tot)] = 0 is thus true even if the couplings Ωuv are not all equal.
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1.2 Spin Networks

Pauli operators for different qubits commute we need not worry about the coupling
term:[
σ(u)
x σvx + σ(u)

y σ(v)
y , S(tot)

z

]
=

[
σ(u)
x σvx,

∑
w

σ(w)
z

]
+

[
σ(u)
y σ(v)

y ,
∑
w

σ(w)
z

]
=[σ(u)

x , σ(u)
z ]σ(v)

x + [σ(u)
y , σ(u)

z ]σ(v)
y + σ(u)

x [σ(v)
x , σ(v)

z ] + σ(u)
y [σ(v)

y , σ(v)
z ]

=i
(
−σ(u)

y σ(v)
x + σ(u)

x σ(v)
y − σ(u)

x σ(v)
y + σ(u)

y σ(v)
x

)
= 0. (1.8)

The total number of excitations, then, is conserved. The time evolution operator Ut
maps states in the `-excitation subspace to states within the `-excitation subspace.
In other words, the Hamiltonian H of (1.3) and the time evolution operator Ut are
block-diagonal: the dynamics of the `-excitation subspace is determined completely
by the `-excitation block of H (and, more directly, Ut).

In particular, the off-diagonal portion of the single-excitation block of the Hamil-
tonian is proportional to the adjacency matrix A of the network graph and its diagonal
elements are just the on-site energies ~Ωvv. Before showing this, we clarify a bit of
terminology and notation.

Associated with the order-N graph G = (V,E) is an N -dimensional vector space,
the graph-space. For each vertex v ∈ V there is a corresponding basis vector |v〉G of
the graph-space. We will use Dirac notation for vectors in both the graph-space and
the state-space of the quantum network, but graph-space kets will receive a subscript
G to distinguish them from vectors in the much larger, 2N -dimensional state-space5.
Expressed in this notation, the adjacency matrix, an operator on graph-space, has
matrix elements

〈u|A|v〉G =

{
1 if {u, v} ∈ E
0 otherwise

(1.9)

There is a natural correspondence between the basis vector |v〉G for a node in the

graph-space and the quantum state |v〉 = σ
(v)
x |vac〉 which has every qubit in the state

|0〉, except the qubit at vertex v which is in the state |1〉.
To prove the claim made above about the form of the single-excitation block of the

spin network’s Hamiltonian, one calculates that 〈u|σ(u′)
x σ

(v′)
x +σ

(u′)
y σ

(v′)
y |v〉 = 2δu,u′δvv′ .

Then, since the constant V0 is chosen so that |vac〉 is the zero-energy state, we have

〈u|H|v〉 = ~Ωvvδuv + ~Ω0〈u|A|v〉G.

The adjacency matrix of the network graph thus largely determines the dynamics of
the single excitation subspace: the single-excitation block of the Hamiltonian is ~Ω,
where Ω is an N × N matrix whose elements 〈u|Ω|v〉 are the coefficients Ωuv that
appear in the definition (1.3) of the Hamiltonian. The time evolution of the state |v〉
can be written explicitly in terms of Ω:

Ut|v〉 =
∑
u

〈u|Ut|v〉|u〉 =
∑
u

〈u|e−iΩt|v〉G|u〉. (1.10)

5Graph space bras receiver no subscript; it should be clear from context that they are in the
graph space. Thus, the matrix element in (1.9) is written as 〈u|A|v〉G , not 〈u|G A|v〉G .
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Figure 1.3: Hypercubes of dimension 1-3.

1.2.2 Perfect State Transfer: Hypercube Networks

Hypercube networks have a rich history. Among the earliest studied networks in
computer science [12, 13], hypercube networks are appealing from a theoretical view-
point because they are highly symmetric and possess a hierarchical structure. On
the practical side, hypercubes also offer an efficient way to connect a large number of
vertices: connecting the N vertices of a hypercube requires only N log2N

1/2 edges.
For this reason, the builders of the Connection Machine, an early, massively-parallel
supercomputer constructed in the 1980’s (and famous as a favorite summer project of
Feynman’s) chose to connect the computer’s processors with a hypercube geometry
[14]. It is only natural to study the quantum mechanical properties of network with
so high a pedigree.

The hypercube graph of dimension d is defined as follows. Each element of the
vertex set V is a bitstring of length d,

V = {z|z = zd . . . z1, zj ∈ {0, 1}} = Zd2. (1.11)

The Hamming distance dH(z, z′) is defined as the number of bits in which z and z′

differ. A pair of vertices {z, z′} is in the edge set E if and only if the Hamming
distance between them is exactly 1. The first three hypercubes are shown in Figure
1.3.

To calculate the dynamics of the single-excitation subspace of a d-dimensional
hypercube quantum spin network, we utilize the tensor product structure of the hy-
percube graph-space [5]. The vector |z〉G associated with vertex z can be written as
a d-fold tensor product of the two-dimensional vectors |0〉 = ( 1

0 ) and |1〉 = ( 0
1 ):

|z〉G = (|zd〉 ⊗ · · · ⊗ |z1〉)G = |zd . . . z1〉G. (1.12)

Because the elements 〈z|A|z′〉 are all either 0 or 1, and are nonzero if and only if the
bitstrings zd . . . z1 and zd . . . z1 differ in exactly one place, the adjacency matrix is a
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1.2 Spin Networks

sum of tensor products of the 2 × 2 identity matrix I with the 2 × 2 Pauli matrix6

σx = ( 0 1
1 0 ),

A =
d∑
j=1

X(j), (1.13)

with

X(j) =

(
d⊗

k=j+1

I

)
⊗ σx ⊗

(
j−1⊗
k=1

I

)
. (1.14)

The action of X(j) on |z〉 is to flip the bit zj: X
(j)|zd . . . zj . . . z1〉G = |zd . . . zj . . . z1〉G,

where zj denotes the bit-flip of zj.
We now consider the problem of quantum state transfer on a symmetric hypercube

spin network—a hypercube network in which all of the on-site energies, ~Ωzz are equal
(and, as always, the couplings are separately). Taking ~Ωzz = 0 for definiteness, the
Ω matrix is just Ω0A. Suppose that the sender is at vertex z and the receiver at
vertex z = |zd . . . z1〉, and that they initialize the network so each node’s qubit is in
the state |0〉, except the sender’s qubit is in the state |ψ〉 = α|0〉+β|1〉 that she wishes
to transfer. Using (1.10) for the evolution of single-excitation states, the quantum
state of the network at time t is

|network(t)〉 = α|vac〉+ βe−iΩ0At|z〉. (1.15)

Because the adjacency matrix A is the sum of commuting matrices X(j), the matrix
exponential of the sum is the product of the matrix exponentials:

e−iΩ0At = e−iΩ0t
∑d

j=1X
(j)

=
d∏
j=1

e−iΩ0tX(j)

. (1.16)

This can be evaluated using the identity e−i(n̂·~σ)φ = cosφ− i(n̂ ·~σ) sinφ. The result is

e−iΩ0At =
d∏
j=1

(
cos (Ω0t)I − i sin (Ω0t)X

(j)
)
. (1.17)

An immediate consequence is that at the time T = π
2Ω0

the quantum state of the
network is

|network(T )〉 = α|vac〉+ (−i)dβ|z〉. (1.18)

The sender’s state |ψ〉 has perfectly transferred to the receiver. The state |ψ〉 picked
up a relative phase of (−i)d, but this is no problem at all—the receiver can undo this
relative phase shift by picking his unitary to be U =

(
1 0
0 id

)
, independent of α and β.

6Our notation for Pauli matrices is as follows: σx is the 2 × 2 Pauli matrix; σ
(j)
x is the Pauli

operator on the state space of the quantum network; X(j) is the 2d × 2d matrix operator on the
graph space of the d-dimensional hypercube.
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Sender

Receiver

Figure 1.4: Perfect state transfer is also possible from corner to corner of a hypercube
network that has three spins per edge (edge in the colloquial sense). The transfer
time on such a network is T = π

Ω0

√
2
.

Symmetric hypercube networks thus achieve perfect quantum state transfer in a
time T independent of the dimension d, a result first reported by Christandl et. al.
in [5], who also showed that perfect state transfer is achieved on hypercubes if each
edge7 of the cube has three vertices instead of two, as in Figure 1.4. The fidelity F
as a function of time, though, is F (t) = sin2d (Ω0t), so the width of the peak in the
fidelity gets narrower and as d increases.

Note that for intermediate times, the sender’s excitation is delocalized over the
entire hypercube: it traverses every path from sender to receiver. This fact makes
hypercubes useful in other areas of quantum computation, such as quantum search al-
gorithms [15]. Furthermore, while we will not explicitly consider the effects of network
imperfections in this thesis, state transfer on hypercube networks has been shown to
be unusually resistant to decoherence if each node’s spin decoheres independently
[16].

1.3 State Transfer via Quantum Teleportation

Another attractive alternative to photonic quantum communication uses entangle-
ment to perform quantum teleportation. However, these schemes require that the
sender and receiver already share maximally entangled pairs. This distribution of en-
tangled pairs is nontrivial, but can be achieved using a well designed spin networks.

7“Edge” is used here in the colloquial sense.
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1.3 State Transfer via Quantum Teleportation

1.3.1 Entanglement and Quantum Teleportation

Entanglement is a property of multi-particle quantum systems; if two qubits A and
B are entangled, neither qubit has a full description (i.e. a state vector) of its own.
The quintessential example of an entangled pair is the singlet spin state. Using the
standard notation for spins, the singlet state is

|Ψ−〉 =
1√
2

(| ↑〉A| ↓〉B − | ↓〉A| ↑〉B) . (1.19)

If the spin of particle A is measured along an axis n̂ and the spin of particle B is
subsequently measured along the same axis, the two measurement results will always
be opposite, no matter what axis was chosen. This correlation in the results of any
measurement of the entangled variables (spins, in this case) is the mark of entangle-
ment. Because the measurement results are perfectly (anti-)correlated for the singlet
state, it is maximally entangled. These maximally entangled states are also called
Bell pairs, or Bell states, after John Bell who used them to demonstrate that quantum
mechanic violates the principles of local realism [7].

Quantum entanglement is a physical resource. Entangled pairs are extremely
useful, making possible superdense coding, quantum algorithms, and quantum tele-
portation [7]. Quantum teleportation, first reported in [17], is a process by which two
parties, Alice and Bob, who share a maximally entangled pair can achieve perfect
quantum communication. Suppose that Alice and Bob do share a Bell pair, and that
Alice possess an arbitrary qubit state |ψ〉 that she wishes to transfer to Bob. By
allowing her qubit to interact with her member of the entangled pair, performing
measurements on her two qubits, and reporting the results to Bob, Bob can then
perform local operations on his qubit to coerce it into the state |ψ〉 with perfect fi-
delity. This process does note violate the No-Cloning Theorem [9]: afterwards, Bob
possesses a qubit in the state |ψ〉, but Alice no longer does (hence “teleportation”).

1.3.2 Sharing Entangled Pairs

There is a cost to the teleportation process: it consumes the entangled pair originally
shared by Alice and Bob. Teleportation does not remove the problem of quantum
state transfer, but it does reduce it to one of distributing maximally entangled pairs.

Just as a spin network can be used to send states from one node to another
(with some fidelity), it can be used to share entanglement. Suppose the sender is in
possession of a maximally entangled pair of qubits A and A′ in the state |Ψ〉. She
can transfer one-half of this pair—say, qubit A′—to the receiver (with some fidelity)
by keeping the first particle, A, decoupled from the spin network while placing the
second particle, A′, at her node at time t = 0. In other words, she keeps A separate
from the network while arranging for particle A′ to be her node qubit. State transfer
then proceeds as before: sender and receiver allow the network to evolve for some time
T , then the receiver decouples his qubit, which we will call B, from the network. Let
ρAB(T ) be the density matrix for the (potentially mixed) state of the sender’s qubit A
and the receiver’s qubit B. The sender can then perform a local unitary operation UA
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Chapter 1 Introduction

on her qubit A, and the receiver can perform a local unitary operation UB on his qubit.
The state of their shared pair after this procedure is ρ̃AB(T ) = U †A⊗U

†
BρAB(T )UA⊗UB.

The fidelity of the entanglement transfer is just the fidelity of ρ̃AB(T ) with the Bell
state |Ψ〉:

Fs→r(T ) = 〈Ψ|ρ̃AB(T )|Ψ〉, (1.20)

Again, UA, UB and T are chosen to maximize the fidelity. If the fidelity is high,
then the entanglement shared between the sender and receiver is also large. Any spin
network that transfers entanglement with high fidelity can also be used to transfer
single-qubit quantum states efficiently. Indeed, the fidelity for transferring entangle-
ment is an upper bound for the average fidelity fidelity of single-qubit state transfer
[18].

For example, entangled pairs can be perfectly transferred from corner to corner
of the hypercube network discussed above in a time T . The time evolution operator
U (tot)
t for the entire system—sender’s qubit A, and the spin network—is U tott = IA⊗Ut,

where Ut is the time evolution operator for the network. If the sender’s initial pair is
in the state |Φ+〉 = (|0〉A|0〉A′ + |1〉A|1〉A′)/

√
2, then the system’s state at time T is

|A, network(T )〉 = (IA ⊗ UT )

(
|0〉A|vac〉+ |1〉A|z〉√

2

)
=
|0〉A|vac〉+ (−i)d|1〉A|z〉√

2
,

(1.21)

so the sender-receiver qubit pair AB is in the state (|0〉A|0〉B + (−i)d|1〉A|1〉B)/
√

2.
To recover the state |Φ+〉, each party would apply the operation U =

(
1 0
0
√
id

)
to their

qubit.

1.3.3 Entanglement Distillation

If sender s and receiver r are to achieve quantum communication by teleporta-
tion, then they need to share maximally entangled Bell states. After using the
entanglement-sharing protocol described in the previous section, sender s and re-
ceiver r do not generally share a Bell state, but rather they share an approximate
Bell state whose fidelity is given by (1.20).

If the sender and receiver first use the spin network to share n copies of the
approximate Bell state ρ̃AB, they can then employ classical communication and local
operations (including local measurements) to turn their collection of n approximate
Bell pairs into a smaller collection of m perfect8 Bell pairs. Such procedures, now
known as entanglement distillation, were first proposed in [19]. The yield Y (ρ̃AB) of
the distillation procedure is the ratio m/n as n→∞.

For example, in the original paper on entanglement distillation of mixed states,
Bennett et al. [19] outline several (not necessarily optimal) protocols for distilling

8Really, if they are to achieve quantum communication with arbitrarily high fidelity, then they
need to share states that are arbitrarily close to Bell states. Distillation processes turn non-maximally
entangled states into states arbitrarily close to a Bell state.
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Figure 1.5: A plot of the yield Y0(F ) of most efficient entanglement distillation proce-
dure outlined in [19]; the procedure takes a large number of approximate Bell states
and transforms them, via local operations and classical communication, into perfect
Bell states.

mixed states ρ into perfect Bell states. The best of these has a yield Y0 which can be
written as a function of the Bell state fidelity F defined in (1.20) as

Y0(F ) = 1 + F log2 F + (1− F ) log2

1− F
3

, (1.22)

The function Y0(F ) is shown in Figure 1.5. It is nonnegative only for values of
F greater than a critical value Fcrit ≈ 0.81; if the starting materials (approximate
singlet states) have a singlet fidelity smaller than Fcrit, distillation by this procedure
cannot be performed.

The most meaningful characterization of the entanglement shared between sender
S and receiver R in this situation is the distillable entanglement, D(ρ̃AB). The distill-
able entanglement is the maximum possible yield Y (ρ̃AB), i.e. it is the yield when an
optimal distillation procedure is used. Roughly speaking, the distillable entanglement
is the number of Bell pairs that the state ρ̃AB can be turned into.

The distillable entanglement is the proper way to quantify the entanglement
shared between the sender and receiver, however it is notoriously hard to calcu-
late. In fact, the distillable entanglement D(ρ) of an arbitrary two-qubit density
matrix ρ is not known9. Because of this, we will use the fidelity (1.20) to quantify

9In the special case that the two-qubit density matrix is a pure state, ρ = |Ψ〉〈Ψ|, the distillable
entanglement is known to be equal to the entanglement of formation. The entanglement of formation
of a state ρ is defined opposite the distillable entanglement: roughly, it’s the number of Bell states
needed to create the state ρ [7] . For more on measures of entanglement, see [20].
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the entanglement transferred via the spin network. It is not quite as meaningful
as the distillable entanglement shared between sender and receiver, but calculating
the fidelity is tractable. Moreover, from the fidelity a lower bound on the distillable
entanglement can be calculated by picking an entanglement distillation process and
calculating the yield.
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Chapter 2

Parallel State Transfer

2.1 Introduction

In the previous chapter quantum state transfer via spin networks was presented as a
means for achieving quantum communication in a quantum computer. We considered
how effectively a single quantum state could be transferred from one node of the
network (the sender register) to another (the receiver register). That is, we focused
on single quantum state transfer: transferring only a single qubit state along the
quantum network. It would, of course, be much more efficient if many quantum states
could be faithfully transmitted along the same network in parallel. In this chapter we
ask: how effectively can multiple senders and receivers use the same quantum network
at the same time? In other words, we consider the problem of parallel quantum state
transfer.

As an example, consider a 3-dimensional cube network with equal couplings Ω0.
It was shown in Section 1.2.2 that if a d-cube is symmetric, that is, if all of the on-site
energies Ωvv are equal, then perfect state transfer is achievable from corner-to-corner
in a time T = π

2Ω0
(Figure 2.1(a).). A 3-cube, though, is just two connected 2-cubes

(squares). Can the 3-cube be broken up, split into two effectively decoupled 2-cube
channels, so that faithful state transfer can be performed along each of these two
channels at the same time? This situation is depicted in Figure 2.1(b). Alternatively,
can the 3-cube be split into four effectively decoupled 1-cube channels (pairs), so that
states can be transferred along each of these four channels at the same time, as in
Figure 2.1(c)?

Unsurprisingly, the answer to both of these questions is an unequivocal “yes”.
The most important question, though, is this: for a given network, how do the errors
scale as more and more users try to transfer states along the network in parallel?

In this chapter we address such questions, although we focus on the problem of
parallel entanglement transfer instead of parallel state transfer. We first develop the
language and tools necessary to study parallel entanglement transfer on oscillator
networks. We then apply these methods to obtain analytical results for the fidelity of
parallel entanglement transfer on hypercube networks of oscillators. In Section 2.4 we
compare the analytical results for oscillator networks to numerical results for qubit
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Figure 2.1: (a): Perfect state transfer is possible from corner to corner of a symmetric
d-dimensional hypercube. (b): A 3-cube can be split up into two effectively decoupled
2-cube channels (opposing faces). (c): A 3-cube can also be split into four effectively
decoupled 1-cube channels (pairs).

networks.

As in Chapter 1, we will restrict our attention to the case in which all of the
network couplings are equal, but the on-site energies are programmable. We do not,
therefore, allow that the couplings between the opposing faces of the cube in Figure
2.1(b) be literally turned off. If they could, the state transfer on each face would be
perfect. The coupling can be made effectively weak, though, by detuning the on-site
energies of the opposing faces: i.e., by making the energy difference between |0〉 and
|1〉 on the left face much smaller than the energy difference between |0〉 and |1〉 on
the right face.

2.2 Oscillator Networks

2.2.1 Motivation

In studying parallel quantum state transfer we shift our attention from spin networks,
which have a qubit at each node, to oscillator networks with an harmonic oscillator
at each node. The dynamics of oscillators networks are vastly simpler than the dy-
namics of spin networks. While it is natural to study single state transfer entirely
in the network’s single excitation subpsace, parallel state transfer is necessarily stud-
ied in this and higher excitation subspaces. As we shall see, the dynamics of the
single-excitation subspace directly control the dynamics of every other state for os-
cillator networks. Spin networks, however, are still of great interest, and in Section
2.4 we present numerical evidence that the fidelity of parallel entanglement transfer
on oscillator networks is, under some circumstances, qualitatively similar to parallel
entanglement transfer on spin networks. To some extent, then, this shift of focus is
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for computational convenience, partially justified by the numerical evidence presented
in Section 2.4.

Still, if realized, oscillator networks would have some distinct theoretical advan-
tages over spin networks. In particular, we will show that truly perfect parallel en-
tanglement transfer is possible on oscillator networks, while we believe that it is not
on spin networks. Furthermore, as will be discussed in Section 2.4.2, entanglement
can be distributed on hypercube oscillator networks in a massively parallel sense not
achievable on the corresponding spin networks.

On the other hand, there are challenges to physically realizing oscillator networks.
A main motivation for studying spin networks was to find a non-photonic means
of achieving quantum state transfer in a quantum computer. By using networks of
qubits, the connections between registers could be built from the same components
as the registers themselves, eliminating the need for an interface between the network
and the registers. Oscillators networks abandon this principal, so implementation is
more difficult, and does require an interface between the oscillators that make up
the network and the qubits within the register. Recently, such an interface between
superconducting Josephson junction qubits and a microwave resonator was demon-
strated by the Martinis group to prepare the resonator in arbitrary superpositions of
Fock states [6]. A protocol based on this work has also been designed for synthesizing
arbitrary entangled states of two oscillators [21].

2.2.2 The Parallel State Transfer Protocol

Suppose that the registers of a quantum computer are connected by an oscillator
network with network graph G = (V,E) that is to be used for quantum state transfer.
Consider first the situation in which, during a given “use” of the network, there is
only a single pair of users, sender and receiver. Just as in Section 1.3, the sender
wishes to use the network to transfer half of a Bell state to the receiver (with some
fidelity), repeat the process many times, distill the shared approximate Bell pairs into
perfect Bell pairs, and then communicate via teleportation. For simplicity, we will
assume that the entangled pair that the sender starts with is a qubit, A, entangled
with her oscillator, s. The joint state of the qubit-oscillator pair is some Bell state
|Ψ〉. The sender and receiver could use the following protocol in order to (attempt
to) achieve entanglement transfer.

Single User Entanglement Transfer on an Oscillator Network

Step 1: The sender is in possession of a qubit-oscillator pair in a Bell state |Ψ〉. The
rest of the network is in some initial state |not s〉.

Step 2: The oscillator network is allowed to evolve according to the natural time evolu-
tion of its Hamiltonian for some time T (the transfer time). The sender’s qubit
A is kept isolated, so that it does not evolve in time.

Step 3: The receiver transfers the state of his oscillator to a qubit B in his possession.
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Sender 1

Receiver 1

Sender 2

Receiver 2

Figure 2.2: An oscillator network being used by two senders and two receivers.

Step 4: The sender and receiver each perform local operations UA and UB on their
qubits A and B. The state of the qubit pair AB is now denoted by ρ̃AB(T ).

The fidelity of the entanglement transfer is, as before, given by 〈Ψ|ρ̃AB(T )|Ψ〉. An
obvious choice for the initial state of the non-sender oscillators is to have them all in
the ground state: |not s〉 = |00 . . . 00〉. However, we stress that this is not necessary—
the state |not s〉 could be anything.

Now consider the same network being used for parallel entanglement transfer.
In a given use of the network, some vertices act as senders and some as receivers,
as in Figure 2.2. Let S = {s1, . . . , sM} be the set of vertices with senders, and
R = {r1, . . . , rM} be the set of vertices with corresponding receivers1. The protocol
that we will study for parallel entanglement transfer is as follows.

Parallel Entanglement Transfer on an Oscillator Network

Step 1: Each sender sj is in possession of a qubit-oscillator pair in a Bell state |ψ〉.
Every oscillator not associated with a sender is in the state |0〉.

Step 2: The oscillator network is allowed to evolve according the the natural time evo-
lution of its Hamiltonian for some time T (the transfer time). Each sender’s
qubit Aj is kept isolated, so that it does not evolve in time.

Step 3: Each receiver rj transfers the state of his oscillator to a qubit Bj in his posses-
sion.

Step 4: The sender sj and receiver rj each perform local operations UAj
and UBj

on
their qubits Aj and Bj. The state of the qubit pair AjBj after these unitary
operations have been performed is denoted by ρ̃AjBj

(T ).

1There is, in general, no reason why there must be the same number of senders as receivers.
However, we will only consider casesin which there are.
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As perceived by a single pair of users (sender sj and receiver rj), the parallel state
transfer protocol is exactly the same as the single state transfer protocol, but with
the quantum state of the rest of the network, |not sj〉, determined by the states
that the other senders are trying to transfer. In this sense there is not much of a
conceptual difference between single state transfer and parallel state transfer. Thus
we can quantify the faithfulness of the transfer, as far as a particular pair sender
sj and receiver rj is concerned, in exactly the same way as for the spin networks
discussed in Section 1.2: by the fidelity Fsj→rj(T ) of ρ̃AjBj

(T ) with |Ψ〉,

Fsj→rj(T ) = 〈Ψ|ρ̃AjBj
(T )|Ψ〉. (2.1)

Step 4 of our state transfer protocols for oscillator networks involve the receiver(s)
“unloading” an oscillator state from the network to a qubit. To achieve this, the
receiver can use the unitary operation USWAP,

USWAP =
∞∑
n=0

|1, n〉〈0, n+ 1|+
∞∑
n=0

|0, n+ 1〉〈1, n|+ |0, 0〉〈0, 0|, (2.2)

on his qubit-oscillator pair. Here |q, n〉 = |q〉qubit ⊗ |n〉oscillator. The operation USWAP

is indeed unitary since

U†SWAPUSWAP = |0, 0〉〈0, 0|+
∞∑
n=0

|0, n+ 1〉〈0, n+ 1|+
∞∑
n=0

|1, n〉〈1, n| = I, (2.3)

and is thus an allowed quantum mechanical transformation. In fact, as mentioned
above, similar transformations have been realized experimentally using superconduct-
ing qubits and microwave resonators [6].

2.2.3 The Hamiltonian and Time Evolution

Just as we consider only spin networks with equal couplings and programmable on-site
energies, we only consider oscillator networks with equal couplings and programmable
energy level spacings. The Hamiltonian for such an equal coupling oscillator network
with network graph G = (V,E) can be written terms of the creation and annihilation
operators a†v and av for the oscillator at node v as

H = ~
∑
v∈V

Ωvva
†
vav + ~Ω0

∑
{u,v}∈E

(
a†uav + a†vau

)
. (2.4)

Again, Ω0 is the constant coupling strength and the Ωvv’s are the energy level spac-
ings, which we consider programmable: the senders and receivers using the oscillator
network can control them, and can change them from one use of the network to an-
other. The Hamiltonian, then, is completely specified by the Ω matrix. The term
a†uav +a†vau in the Hamiltonian couples the oscillators at nodes u and v together, and
is the natural analog of the XY coupling for spin networks that was considered in
Chapter 1. Indeed, the XY coupling for spins can, equivalently, be written as

1

2

(
σ(u)
x σ(v)

x + σ(u)
y σ(v)

y

)
= σ

(u)
+ σ

(v)
− + σ

(u)
− σ

(v)
+ , (2.5)
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where σ
(v)
± is the usual ladder operator σ

(v)
± = 1

2
(σ

(v)
x ∓ iσ(v)

y ) for the qubit at site v in
the corresponding spin network.

Matrix Elements of the Time Evolution Operator U t

The Hamiltonian (2.4) is again time independent so the time evolution operator Ut
is given by

Ut = e−iHt/~. (2.6)

Calculating the time evolution operator might seem hopelessly difficult. However,
by examining things in the Heisenberg picture, we can reduce the task of exponenti-
ating the full Hamiltonian H (an infinite dimensional operator on the network space)
to exponentiating only the matrix Ω (a finite dimensional operator on graph space).

The Heisenberg equation of motion for the annihilation operator av is:

d

dt
av(t) =

i

~
[H, av(t)]

= iΩvv[a
†
vav, av(t)] + i

∑
v′ 6=v

Ωvv′ [a
†
vav′ + a†v′av, av(t)]

= − i
∑
v′

Ωvv′av′ . (2.7)

This is a set of N coupled differential equations, one for each oscillator, which can be
written in matrix form as:

d

dt


av1
av2
...
avN

 (t) = −i


Ωv1v1 Ωv1v2 · · · Ωv1vN

Ωv2v1 Ωv2v2 · · · Ωv2vN
...

...
. . .

...
ΩvNv1 ΩvNv2 · · · ΩvNvN


︸ ︷︷ ︸

The Ω matrix!


av1
av2
...
avN

 (t). (2.8)

These have the formal solution
av1
av2
...
avN

 (t) =


Kv1v1 Kv1v2 · · · Kv1vN

Kv2v1 Kv2v2 · · · Kv2vN
...

...
. . .

...
KvNv1 KvMv2 · · · KvNvN



av1
av2
...
avN

 (t = 0), (2.9)

where K = e−iΩt is the mode evolution operator, an operator on graph-space. Since
any state in the network space can be written in terms of creation operators, we can
use (2.9) to write matrix elements of Ut in terms of matrix elements of K. We will
denote the `-excitation subspace state χa†v1a

†
v2
. . . a†v` |vac〉 by |v1v2 . . . v`〉 (here χ is a

normalization constant, necessary if any of the vj’s are repeated). In particular, if all
of the vj’s and v′j’s are distinct, then

〈v′1 · · ·+ v′`|Ut|v1 · · ·+ v`〉 =〈vac|av′1 . . . av′`Utav1 . . . av`|vac〉
=〈vac|av′1 . . . av′`(Utav1U

†
t ) . . . (Utav`U

†
t )Ut|vac〉

=〈vac|av′1av′2 . . . av′`av1(t)
† . . . av`(t)

†|vac〉 (2.10)
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Since av(t)
† =

∑
w〈w|K†|v〉Ga†w there are many nonzero terms hiding in the right-

hand-side of (2.10). The most obvious term occurs when a†v1 “turns into” a†v1′ , and

a†v2 “turns into” a†v2′ , etc. However, every permutation of the operators a†v1 . . . a
†
v`

turning into the operators a†v′1
. . . a†v′`

contributes; for example, if a†v1 turns into a†v′2
,

a†v2 turns into a†v′1
, and a†vj turns into a†v′j

for all other j. Thus, we can write the matrix

element of Ut from (2.10) as

〈v′1 + v′2 . . . v
′
`|Ut|v1 + v2 . . . v`〉 =

∑
permutations

π

∏̀
i=1

〈v′i|K†|vπ(i)〉G. (2.11)

We mention that the right-hand-side (2.11) is the definition of the permanent of the
`× ` matrix whose elements are 〈v′j|K†|vj〉. If all the vj’s are distinct, and all of the
v′j’s are distinct except for p of them, then the matrix element is

〈v′1 + v′2 . . . v
′
`|Ut|v1 + v2 . . . v`〉 =

√
p!

∑
permutations

π

∏̀
i=1

〈v′i|K†|vπ(i)〉G. (2.12)

This is the beauty of oscillator networks: a matrix element of Ut in the `-excitation
subspace can be expanded as a sum of products of matrix elements of K, with `!
terms in the sum. The dynamics of an arbitrary state in the infinite dimensional
network space are governed by a finite dimensional operator on graph-space. If all
the diagonal entries of the Ω matrix are zero, then the dynamics of the oscillator
network are controlled by the adjacency matrix of the network graph G.

In contrast, the situation for spin networks is much more complicated. If the di-
agonal entries of the Ω matrix are zero, then, as shown in Section 1.2.1, the adjacency
matrix of G directly controls the single-excitation subspace. This adjacency matrix,
however, does not directly control the dynamics of higher excitation subspaces. It
turns out that the `-excitation dynamics are governed by the adjacency matrix of
∧`G, the `th wedge product of G with itself. The spectral properties of ∧`G, however,
are not generally known to be related to those of G in any simple manner [22].

2.3 Parallel Entanglement Transfer on Hypercubes

Networks

2.3.1 Channels, Senders, and Receivers

We now analyze the hypercube network’s capacity for parallel entanglement transfer.
The d-dimensional hypercube graph has as its vertex set the set of bitstrings of
length d, and two vertices are connected if their bitstrings differ in exactly on place
(see Section 1.2.2).

As depicted in Figure 2.1 for the 3-cube, a d-dimensional hypercube can be natu-
rally broken apart into subcube channels: the d-cube can be divided into two (d−1)-
cubes; each (d− 1)-cube can be divided into two (d− 2)-cubes; each of these can be
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divided into two (d − 3)-cubes, and so on. We are thus led to consider the question
of dividing the d-dimensional hypercube into M = 2m channels, with each channel a
(d−m)-dimensional subcube.

Given a bitstring2 x of length m, we define the channel Cx to be the set of vertices
on the d-cube that end in x:

Cx = {yx|y = yd . . . ym+1 ∈ Z(d−m)
2 }. (2.13)

(Remember: our convention is to label the bits of a bitstring from right to left.)
Channels, as defined in this way, really are subcubes of dimension (d−m). For any
vertex z of the d-cube, the right-most m bits label which channel the vertex is on and
the left-most (d−m) bits of z label position on the channel:

z = zd . . . zm+1︸ ︷︷ ︸
position on

channel

zm . . . z1︸ ︷︷ ︸
channel

. (2.14)

Finally, note that the channels themselves have the structure of an m-cube. Defin-
ing two channels Cx and Cx′ to be adjacent if they are distinct and if Cx contains a
vertex adjacent to some vertex of Cx′ , we see that the two channels are adjacent if
and only if x and x′ differ, as bitstrings, in exactly one place. In other words, the
two channels are adjacent if and only if x and x′ are adjacent vertices on an m-cube.
Thus, the channels are subcubes of the d-dimensional network cube, and the channels
are also connected in a cubelike manner.

Can one sender per channel—M = 2m senders in total—use the oscillator network
to transfer entanglement with a receiver at the opposite end of that channel via the
parallel transfer protocol discussed in Section 2.2.2? In particular, let s = 00 . . . 00
be a bitstring of (d −m) 0’s and r = 11 . . . 11 be a bitstring of (d −m) 1’s. Define
the sender set S as

S = {sx|x ∈ Zm2 } (2.15)

and the receiver set R as

R = {rx|x ∈ Zm2 }. (2.16)

Then our question becomes: can entanglement be transferred with a high fidelity
Fsx→rx for each x? Note, by the way, that the senders and receivers defined here are
all transferring entanglement in the same direction along their channels, as in Figure
2.1. This means that the sets S and R are also subcubes of dimension m. We will
sometimes refer to these as the Senders’ Cube and the Receivers’ Cube. The channel
C000, the Senders’ Cube S and the Receivers’ Cube R are shown in Figure 2.3 for a
d = 5 network intended for M = 23 senders and M = 23 receivers.

2Bitstrings abound. Generally, we use z as a bitstring of length d, y as a bistring of length
(d−m), and x as the (soon to be ubiquitous) bitstring of length m.
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2.3 Parallel Entanglement Transfer on Hypercubes Networks

Figure 2.3: A hypercube oscillator network with d = 5 and m = 3 ( N = 23 ). Only
the Senders’ Cube, Receivers’ Cube, and channel C000 are shown. Seven channels are
missing, as are links between channels.

2.3.2 Decoupling Adjacent Channels

In order for sender sx to faithfully transfer entanglement with the corresponding
receiver rx, we expect that channel Cx must be effectively decoupled from adjacent
channels. This effective decoupling can be achieved by detuning the oscillator energies
for channel Cx far from the energies for adjacent channels. There are many ways to
achieve this. One particularly simple method is to pick the diagonal portion of the Ω
matrix in (2.4) to be

Ω(diag) = ω0I +
1

2
∆ω

m∑
j=1

Z(j). (2.17)

Here Z(j) denote the Pauli z-spin matrix on bit j— it’s action on a vector in graph-
space is:

Z(j)|zdzd−1 . . . zj . . . z2z1〉G =

{
+|zdzd−1 . . . zj . . . z2z1〉G if zj = 0
−|zdzd−1 . . . zj . . . z2z1〉G if zj = 1

. (2.18)

Again, the off-diagonal portion of the Ω-matrix is just a multiple of the adjacency
matrix for the network graph, so we have

Ω = ω0I +
1

2
∆ω

m∑
j=1

Z(j) + Ω0

d∑
j=1

X(j). (2.19)
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Figure 2.4: The splitting scheme of (2.17) depicted for m = 2 (M = 22 senders) on a
d = 3 cube.

The splitting scheme of (2.17) is the scheme we will study. Using this scheme,
the spacing Ωxx for channel Cx differs by an amount ±∆ω from adjacent channels,
and a channel’s energy spacing depends only on the Hamming weight of the bitstring
labelling the channel (the Hamming weight wH(x) of a bitstring x is its distance from
the zero bitstring: wH(x) = dH(x, 0 . . . 0)). Note that under this splitting, not all
channels are equivalent. In particular, there is only one channel that has energy level
spacings ω0 + 1

2
m∆ω (the channel C0...0), and each of the m channels adjacent to it

has smaller energy level spacings. This decoupling scheme is depicted for m = 2 and
d = 3 in Figure 2.4.

2.3.3 Calculating the Mode Evolution Operator K

Since the Ω matrix in (2.19) for the hypercube network is a sum of commuting ma-
trices, the exponential of this sum is just the product of the exponentials of each
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term:

K = exp

[
−i(ω0I +

m∑
j=1

(
Ω0X

(j) +
1

2
∆ωZ(j)

)
+ Ω0

d∑
j=m+1

X(j))t

]

= e−iω0t

m∏
j=1

exp

[
−i(Ω0X

(j) +
1

2
∆ωZ(j))t

] d∏
j=m+1

exp
[
−iΩ0X

(j)t
]
. (2.20)

Using the identity e−in̂·~σθ = I cos θ − (n̂ · ~σ) sin θ, one can show that:

exp
[
−iΩ0X

(j)t
]

= cos (Ω0t)I − i sin (Ω0t)X
(j) (2.21)

exp

[
−iΩ0X

(j)t− i1
2

∆ωZ(j)t

]
= cos (ξt)I − i sin (ξt)

(
nxX

(j) + nzZ
(j)
)
, (2.22)

where nx = η√
1+η2

, nz = 1√
1+η2

, ξt = 1
2
∆ωt

√
1 + η2, and η = 2Ω0

∆ω
is a parameter that

controls the strength of the effective coupling between channels: small η corresponds
to weak channel coupling. The mode evolution operator K can then be written as:

K =e−iω0t

m∏
j=1

(
cos (ξt)I − i sin (ξt)

(
nxX

(j) + nzZ
(j)
))

×
d∏

j=m+1

(
cos (Ω0t)I − i sin (Ω0t)X

(j)
)

(2.23)

Together with (2.12), the expression for matrix elements of Ut in terms of elements
of K, we now know how to determine the dynamics of any state. Observe the time
evolution of |sx〉, a state in the single excitation subspace of the network space:

Ut|sx〉 =
∑
y∈Zd

2

〈y|K†|sx〉G|y〉. (2.24)

An excitation that starts at sender sx will travel towards receiver rx, as the sin Ω0t
grows in K. If η, and hence nx, is nonzero, some of the excitation leaks from sender
sx’s channel over to other channels. Each time the excitation “hops” from one channel
to another, it picks up an extra factor of nx ≈ η. As long as the coupling parameter
η is small, excitations more or less stay confined to channel on which they started3.
The probability that receiver rx’s oscillator is in the state |1〉 is, as a function of time
is and to second order in η,

|〈rx|Ut|sx〉|2 = |〈rx|K†|sx〉G|2 = (1−mη2 sin2 ξt) sin2(d−m) Ω0t (2.25)

This probability is maximized at t = π
2Ω0

, so we pick this as the transfer time T . In
fact, the excitation is entirely localized on the Receivers’ Cube at the transfer time
T , as the cos Ω0t in K has vanished.

3This is why we call the subcube Cx the channel between sender sx and receiver rx. However,
“channel” also has a much more technical meaning in quantum communications as any completely
positive map between density matrices. We stress that we are not using channel in that sense.
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Moreover, because every `-excitation subspace matrix element is a product of
single excitation subspace elements, if an `-excitation subspace starts out localized
on the Senders’ Cube at time t = 0, it will be localized at the Receivers’ Cube at
t = T , for all `. In this sense, the oscillator network can be thought of as a non-
dispersive medium, and this fact allows for perfect parallel state transfer on the cube.
The undesirable hopping terms can be eliminated if sin2 ξT = 0, which amounts to
picking

η =
1√

(2n)2 − 1
n = 1, 2, 3, . . . (perfect parallel transfer condition) (2.26)

If this condition is met, then the creation operator a†sx evolves into only the creation
operator a†rx at time T , and excitations do not hop at all from one cube to the other.

While perfect parallel state transfer (and entanglement transfer) is achievable if
the network builders have perfect control over the effective coupling parameter η, we
would like to know how much error there is if η is off by just a bit, and in particular,
how the error scales as a function of the number of users.

2.3.4 Fidelity: A Lower Bound

We now turn to calculating a lower bound on the fidelities of the parallel entanglement
transfer for M = 2m senders using the protocol of Section 2.2.2 on the d-dimensional
hypercube network with Hamiltonian specified by (2.19). We will focus on the weak
coupling (η � 1) regime, and derive results correct to second order in η. For simplic-
ity, we will assume that all the senders are attempting to transfer the triplet state
|Φ+〉 = 1√

2
(|00〉+ |11〉).

Still, the notation is about to get rather unwieldy—but bear with us, it’s worth
the effort! To calculate the fidelity for the pair sender sx and receiver rx, we need
to keep track of the states of the 2m sender qubits, the entire oscillator network, and
receiver rx’s qubit, too. We don’t need to worry about the other receivers’ qubits—
each receiver unloads his oscillator onto a qubit (with USWAP—(2.2)), but we can
imagine that receiver rx unloads his oscillator first and calculate the fidelity Fsx→rx

at that instant. This fidelity won’t change when the other receivers perform local
operations on their qubit-oscillator pairs.

We will call the collection of sender qubits, the oscillator network, and receiver
rx’s qubit “the system”, and we will denote the quantum state of the system at time t
as |system(t)〉. We will write states in the system’s state-space as the tensor product
of three kets. The first ket refers to the spin state of the qubit pair AxBx shared
between sender sx and receiver rx. The second ket refers to the state of the other
sender qubits, and the third ket refers to oscillator network. For example:

|01〉︸︷︷︸
AxBx

|sx1 + sx2 + sx3〉︸ ︷︷ ︸
other

sender qubits

|rx1 + rx2 + rx4〉︸ ︷︷ ︸
oscillator
network

. (2.27)

But remember: sx and rx are the special pair, the sender and receiver whose entan-
glement transfer fidelity we are calculating.

26



2.3 Parallel Entanglement Transfer on Hypercubes Networks

The Vectors |ψjk〉

We can write the initial state of the system in terms of creation operators (for oscil-
lators) and ladder operators (for spins) as

|system(0)〉 =

(
1√
2

)M∏
x

(
1 + a†sx σ

sx
+

)
|vac〉, (2.28)

where the product is over all bitstrings x of length m; i.e. over all the sender vertices.
At the transfer time T , all excitations on oscillator network have travelled over to the
Receivers’ Cube. After receiver rx has unloaded his oscillator (but before the sender
and receiver have applied any other local unitaries), we can write the state of the
system as

|system(T )〉 =
1√
2

(
|00〉|ψ00〉+ |11〉|ψ11〉

)
+ |01〉|ψ01〉+ |10〉|ψ10〉, (2.29)

where the |ψ〉’s are non-normalized states of the collection of senders’ qubits and the
oscillator network. The vector |ψjk〉 corresponds to all the ways that |system(0)〉
could evolve into into a state that leaves the qubit pair shared by sender sx and
receiver rx in the state |jk〉 as Figure 2.5 illustrates.

For example, half of the terms in |system(0)〉 represent system configurations in
which sender sx’s qubit is in the |0〉 state. The non-normalized vector |ψ00〉 includes
terms for all possible ways that these configurations can evolve into configurations
which leave receiver rx’s oscillator, and hence his qubit after application of USWAP, in
the state |0〉. Because at time T all excitations are localized on the Receivers’ Cube,
we can write |ψ00〉 as

|ψ00〉 =
1√

2M−1

M−1∑
`=0

∑′

{x1...x`}

∑′

{x′1...x′`}

〈rx′1 . . . rx′`|UT |sx1 . . . sx`〉|sx1 . . . sx`〉|rx′1 . . . rx′`〉.

(2.30)

The first sum is over excitation number. The second sum is over senders, `-element
sets of bitstrings, and the prime denotes that the bitstring x, corresponding to sender
sx, is to be left out. The third sum is over receivers, `-element multisets of bitstrings.
A multiset is a set in which elements can be repeated. That the third sum is over
multisets merely reflects that a single oscillator can hold multiple excitations. The
overbar denotes that the sum is over multisets instead of sets, and the prime again
denotes that the bitstring x is to be left out.

The vector |ψ11〉 can be written very similarly:

|ψ11〉 =
1√

2M−1

M−1∑
`=0

∑′

{x1...x`}

∑
{x′1...x′`}

〈rx + rx′1 . . . rx
′
`|UT |sx + sx1 . . . sx`〉

× |sx1 . . . sx`〉|rx′1 . . . rx′`〉. (2.31)
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Receivers
rx  rx1  rx2  rx3

sx  sx1  sx2  sx3

Senders

(a) A term in |ψ00〉

Receivers
rx  rx1  rx2  rx3

sx  sx1  sx2  sx3

Senders

(b) A term in |ψ01〉

Receivers
rx  rx1  rx2  rx3

sx  sx1  sx2  sx3

Senders

(c) A term in |ψ10〉

Receivers
rx  rx1  rx2  rx3

sx  sx1  sx2  sx3

Senders

(d) A term in |ψ11〉

Figure 2.5: Schematic representations of terms that contribute to the various |ψjk〉
vectors. The special pair, the pair we are focusing on, is sx and rx.
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Note a subtle but important difference: this time there is no prime on the third
sum. For a term to be included in |ψ11〉, an excitation must have started at sender
sx, and one excitation must travel to receiver rx, but it’s perfectly fine if several
excitations travel there also. If it weren’t for this fact, there would be a one-to-one
correspondence between terms in |ψ00〉 and terms in |ψ11〉. Still, we’d like to take
advantage of this near correspondence, so let’s write |ψ11〉 = |ψ00

11〉+ |ψ01
11〉, with

|ψ00
11〉 =

1√
2M−1

M−1∑
`=0

∑′

{x1...x`}

∑′

{x′1...x′`}

〈rx + rx′1 . . . rx
′
`|UT |sx + sx1 . . . sx`〉

× |sx1 . . . sx`〉|rx′1 . . . rx′`〉 (2.32)

and

|ψ01
11〉 =

1√
2M−1

M−2∑
`=0

∑′

{x1...x`+1}

∑
{x′1...x′`}

〈rx + rx + rx′1 . . . rx
′
`|UT |sx + sx1 . . . sx`+1〉

× |sx1 . . . sx`〉|rx + rx′1 . . . rx
′
`〉. (2.33)

Notice that |ψ00
11〉 and |ψ01

11〉 are orthogonal: 〈ψ00
11|ψ01

11〉 = 0, and that there really is
a one-to-one correspondence between terms in |ψ00〉 and terms |ψ00

11〉. Moreover, in
the weak coupling regime (η � 1) the two vectors are very nearly parallel. From the
form of K in (2.23), one finds that at the transfer time T ,

|〈rx|K†|sx〉G| = 1− 1

2
η2m sin2 ξT +O(η3) (2.34)

and

|〈rx|K†|sx′〉G| = η| sin ξT |+O(η2). (2.35)

Now, consider the matrix elements 〈rx + rx1 . . . rx`|UT |sx + sx1 . . . ss`〉 which appear
in (2.32). Because all of the rxj’s are distinct from rx, we can use the permanent
formula (2.12) for `-excitation subspace matrix elements of Ut together with (2.34)
and (2.35) to conclude that

〈rx + rx′1 . . . rx
′
`|UT |sx + sx1 . . . sx`〉 = 〈rx|UT |sx〉〈rx′1 . . . rx′`|UT |sx1 . . . sx`〉+O(η2).

(2.36)

Hence,

|ψ00
11〉 = 〈rx|UT |sx〉|ψ00〉+ |ε′〉, (2.37)

with 〈ε′|ε′〉 = O(η4). Since |〈rx|U |sx〉| = 1−O(η2), we can absorb its deviation from
unity into |ε′〉,

|ψ00
11〉 =

〈rx|UT |sx〉
|〈rx|UT |sx〉|

|ψ00〉+ |ε〉, (2.38)
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Chapter 2 Parallel State Transfer

and 〈ε|ε〉 = O(η4) is still satisfied.
Finally, we can write the vectors |ψ01〉 and |ψ10〉 as

|ψ01〉 =
1√
2M

M−2∑
`=0

∑′

{x1...x`+1}

∑
{x′1...x′`}

〈rx + rx′1 . . . rx
′
`|UT |sx1 . . . sx`+1〉

× |sx1 . . . sx`+1〉|rx′1 . . . rx′`〉 (2.39)

and

|ψ10〉 =
1√
2M

M−1∑
`=0

∑′

{x1...x`}

∑′

{x′1...x′`+1}

〈rx′1 . . . rx′`+1|UT |sx + sx1 . . . sx`〉

× |sx + sx1 . . . sx`〉|rx′1 . . . rx′`+1〉. (2.40)

Notice the one-to-one correspondence between terms in |ψ01〉 and the terms in |ψ01
11〉

(hence our choice for its name). In fact, these two vectors are also very nearly parallel.
Finally, we point out a fact that will be very helpful in just a moment, when we

need to calculate 〈ψjk|ψjk〉: in a given |ψjk〉 vector, all terms are orthogonal. This is
because excitations on the Receivers’ Cube, which would usually be indistinguishable,
are distinguished by the state of the senders’ auxiliary qubits.

Bounding the Fidelity

The state of the system at time T can be written as

|system(T )〉 =
1√
2

(
|00〉|ψ00〉+ e2iϕ|11〉|ψ00〉

)
+

1√
2

(
|11〉|ψ01

11〉+ |11〉|ε〉
)

+ |01〉|ψ01〉+ |10〉|ψ10〉, (2.41)

with e2iϕ = 〈rx|U |sx〉
|〈rx|U |sx〉| . By each applying the local unitary Uϕ =

(
1 0
0 e−iϕ

)
to their

qubits, sender sx and receiver rx can transform the system into the state

|sỹstem(T )〉 =
1√
2

(
|00〉|ψ00〉+ |11〉|ψ00〉

)
+
e−2iϕ

√
2

(
|11〉|ψ01

11〉+ |11〉|ε〉
)

+ e−iϕ|01〉|ψ01〉+ e−iϕ|10〉|ψ10〉. (2.42)

Now, the fidelity of the transfer is given by Fsx→rx = 〈Φ+|ρ̃AxBx(T )|Φ+〉, where
ρ̃AxBx is the reduced density matrix for the pair of qubits possessed by sender sx
and receiver rx. However, we can put a lower bound on the fidelity by taking
|〈Φ+|〈ψ|sỹstem(T )〉|2, where |ψ〉 is some state of the oscillator network and the other

senders’ qubits. In particular, using |ψ〉 = |ψ00〉√
〈ψ00|ψ00〉

,

F 00
sx→rx =

1

〈ψ00|ψ00〉
|〈Φ+|〈ψ00|sỹstem(T )〉|2 (2.43)
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2.3 Parallel Entanglement Transfer on Hypercubes Networks

is guaranteed to be a lower bound on the fidelity Fsx→rx, and in light of the form of
|sỹstem(T )〉 in (2.42), we expect this lower bound to be rather good. We now turn
to calculating F 00

sx→rx to second order in the coupling parameter η.

Exploiting the orthogonality of |ψ01
11〉 and |ψ00

11〉, and the fact that |〈ψ00|ε〉|2 ≤
〈ψ00|ψ00〉〈ε|ε〉 = O(η4) (Cauchy-Schwarz inequality), one finds that

F 00
sx→rx = 〈ψ00|ψ00〉+

1

2

(
e−2iϕ〈ψ00|ε〉+ e2iϕ〈ε|ψ00〉

)
. (2.44)

Using the normalization condition on |system(T )〉, (2.44) can be recast as

F 00
sx→rx = 1−

(
〈ψ01|ψ01〉+ 〈ψ10|ψ10〉+

1

2
〈ψ01

11|ψ01
11〉
)
, (2.45)

which is much easier to deal with: each of these terms represents an error, each vector
is small, and the corresponding inner product is even smaller. If we want F 00

sx→rx to
second order in η, we need only keep track of the vectors that appear in (2.45) to first
order in η.

We begin by calculating 〈ψ10|ψ10〉. Consider that only terms which represent a
single error (a single “hop” from one channel to another) will contribute to |ψ10〉 to
first order in η. Further, because this is |ψ10〉, an excitation must start at sender sx,
and it must hop to another channel. Thus, every other excitation must make it to
its corresponding receiver in order for a term to contribute to 〈ψ10|ψ10〉. Moreover,
because every term is orthogonal to every other term (since they are distinguished by
the senders’ qubits), we have that

〈ψ10|ψ10〉 =
1

2M

M−1∑
`=0

∑′

{x1...x`}

∑
x′

dH(x,x′)=1

|〈rx′ + rx1 . . . rx`|UT |sx + sx1 . . . sx`〉|2, (2.46)

where the third sum is over bitstrings x′ a Hamming distance 1 from x, i.e. over
channels adjacent to Cx. Using (2.12), the matrix element 〈rx′ + rx1 . . . rx`|UT |sx +
sx1 . . . sx`〉 can be written as a sum of products of matrix elements of the mode
evolution operator K . Of these, only the main term, in which sxj is paired with rxj
for all j, contributes. Since |〈rxj|K†|sxj〉G| = 1 and |〈rx′|UT |sx〉| = η| sin ξT | to first
order in η, we have

|〈rx′ + rx1 . . . rx`|UT |sx + sx1 . . . sx`〉|2 =

{
η2 sin2 ξT if x′ /∈ {x1 . . .x`}
2η2 sin2 ξT if x′ ∈ {x1 . . .x`}

.

(2.47)

(Because the xj’s are all distinct, x′ can be the same as only one of them. Hence the
p! in (2.12) can be only 1 or 2.)
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The sum for 〈ψ10|ψ10〉, then, is:

〈ψ10|ψ10〉 =
1

2M

M−1∑
`=0

∑′

{x1...x`}

∑
x′ /∈{x1...x`}
dH(x,x′)=1

η2 sin2 ξT + 2
1

2M

M−1∑
`=0

∑′

{x1...x`}

∑
x′∈{x1...x`}
dH(x,x′)=1

η2 sin2 ξT

=
1

2M

M−1∑
`=0

∑′

{x1...x`}

∑
x′

dH(x,x′)=1

η2 sin2 ξT +
1

2M

M−1∑
`=0

∑′

{x1...x`}

∑
x′∈{x1...x`}
dH(x,x′)=1

η2 sin2 ξT

(2.48)

Calculating 〈ψ10|ψ10〉 is now only a matter of counting the number of terms. To deal
with the first sum in (2.48), first note that there are m channels adjacent to channel
x, and hence m possibilities for x′. There are then M − 1 remaining senders, from
which we choose ` to start in the |1〉 state. Thus:

1

2M

M−1∑
`=0

∑′

{x1...x`}

∑
x′

dH(x,x′)=1

=
m

2M

M−1∑
`=0

(
M − 1

`

)
=
m

2
. (2.49)

In the second sum there are again m possibilities for x′, but this bitstring must be
a member of the set {x1 . . .x`}. Thus, when choosing the set {x1 . . .x`}, we do not
choose ` bitstrings, we choose only ` − 1, and the set we’re choosing from is all the
senders, except x and x′—a set of size M − 2. Thus:

1

2M

M−1∑
`=0

∑′

{x1...x`}

∑
x′∈{x1...x`}
dH(x,x′)=1

=
m

2M

M−2∑
`=0

(
M − 2

`

)
=
m

4
. (2.50)

Thus, we finally have that

〈ψ10|ψ10〉 = 1− 3

4
mη2 sin2 ξT . (2.51)

Now consider 〈ψ01|ψ01〉, which represent terms in which sender sx starts in the
|0〉 state, but an excitation leaks onto channel x:

〈ψ01|ψ01〉 =
1

2M

M−2∑
`=0

∑′

{x1...x`+1}

∑
{x′1...x′`}

|〈rx + rx′1 . . . rx
′
`|UT |sx1 . . . sx`+1〉|2 (2.52)

Again, the excitation that leaks onto channel x must come from an adjacent channel,
and every other sender’s excitation must go to the corresponding receiver. Thus:

〈ψ01|ψ01〉 =
1

2M

M−1∑
`=0

∑′

{x1...x`}

∑
x′ /∈{x1...x`}
dH(x,x′)=1

|〈rx + rx1 . . . rx`|UT |sx′ + sx1 . . . sx`〉|2, (2.53)
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Figure 2.6: The fidelity of the entanglement transfer is bounded from below by F 00
sx

(solid), which is plotted, along with its approximation (dashed) for m = 1.

here sx′ is the sender adjacent to sx whose excitation ends up at rx. Because x1

through x` are all different, and none of them is x, the matrix elements in (2.53) are
always η2 sin2 ξT . There are m choices for sx′, and then there are ` remaining other
senders to pick from a set of M − 2, so

〈ψ01|ψ01〉 =
m

2M

M−2∑
`=0

(
M − 2

`

)
η2 sin2 ξT =

m

4
η2 sin2 ξT . (2.54)

The arguments are all the same for 〈ψ01
11|ψ01

11〉, except it has a factor of 1
2M−1 out front,

and the matrix elements are always 2η2 sin2 ξT because when an excitation leaks onto
channel x, there was already an excitation there already. Thus:

〈ψ01
11|ψ01

11〉 = 2
m

2M−1

M−2∑
`=0

(
M − 2

`

)
η2 sin2 ξT = mη2 sin2 ξT . (2.55)

Writing m = log2M , we finally have as our lower bound

F 00
sx→rx = 1− (log2M) η2 sin2 ξT (Second order in η) (2.56)

which is independent of the sender sx. Thus, each and every sender can achieve
entanglement transfer with a fidelity bounded from below by (2.56): the error in the
transfer scales no quicker than as the logarithm of the number of senders using the
network. Figure 2.6 shows F 00

sx→rx and the approximation (2.56) for m = 1. We can
identify two types of errors that cause the fidelity to deviate from unity: excitations
leaking off of channel sx (represented by 〈ψ10|ψ10〉), and excitations leaking onto
channel sx (represented by 〈ψ01|ψ01 and 1

2
〈ψ01

11|ψ01
11〉). In the case discussed here, these

two types of errors contribute equally, each reducing the fidelity by 3
4
mη2 sin2 ξT .
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Chapter 2 Parallel State Transfer

While the results of this section are specific to hypercube networks split according
to the Ω(diag) of (2.17), the methods used to derive (2.56) seem general. We thus
conjecture that the error in the fidelity of parallel entanglement distribution on a
network split into weakly coupled channels will, for a particular channel Cx, scale as
mη2 where η is the coupling constant and m is the number of channels adjacent to
Cx.

2.4 Oscillator vs. Spins: A Hypercube Compari-

son

2.4.1 A Qubit-Compatible Protocol

We have seen that parallel entanglement transfer works remarkably well on oscillator
networks. As noted in Section 2.2.3, the many-excitation subspace dynamics of spin
networks are considerably more complicated, thwarting our attempts at significant
analytical results. However, numerical evidence suggests that parallel entanglement
distribution on hypercube spin networks is similar to distribution on hypercube os-
cillator networks, with some important differences.

Consider trying to transfer entanglement in parallel on a hypercube spin network
in exactly the same manner as described in Section 2.3: again, the cube is split into
2m channels effectively decoupled by the same Ω(diag) matrix; again there is only one
sender and one receiver per channel; and again the senders and receivers each form a
Senders’ Cube and a Receivers’ Cube, so that all entanglement is being sent “in the
same direction”.

Figure 2.7 shows the entanglement fidelity for one of the two sender-receiver pairs
in this situation, for m = 1 (two channels) and d = 2 through 6, as well as the
lower bound F 00

sx for the oscillator case (exact, not approximate). To be clear: what
is plotted for the spin network is the actual fidelity of the transfer, not some lower
bound; this is a minor point, and does not affect the comparisons we make.

While the curves are qualitatively similar, there are several striking differences.
First and foremost: for m = 1, the spin networks seem to do better on average, but
they fail to achieve perfect state transfer. They do exhibit the same oscillations that
the oscillator curve does, but they fail to reach unity. However, analytic investigations
for d = 2 and d = 3 show that if η makes the error in the oscillator fidelity vanish,
it also makes the second order error in the fidelity for qubit networks vanish. That
qubit networks do better on average can be explained qualitatively as follows: while
on oscillator networks an excitation could always leak to an adjacent channel, the
presence of an excitation on an adjacent channel in the qubit network prevents the
hopping in this case4. The qubits behave somewhat like hard-core bosons.

4If we were to consider two senders and two receivers using a hypercube of spins but transfer-
ring entanglement in opposite directions, we would observe that the fidelity is lower because there
wouldn’t be an excitation on the adjacent channel to act as a “plug”. In contrast, performing the
transfer in opposing directions actually increases the fidelity on oscillator networks, because then,
while sender sx’s excitation can leak out of her channel, other excitations won’t leak in.
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Figure 2.7: The fidelity of entanglement transfer for a d-dimensional hypercube net-
work of spins split into two channels with one sender and receiver per channel, with
entanglement being sent in the same direction on each channel for d = 2 through 6.
Shown also is the lower bound F 00

sx for the corresponding entanglement transfer on
the d-dimensional hypercube oscillator network of arbitrary dimension.

Secondly, note that while the spin network fidelities behave in the same way for
all d if η � 1, they do not for large η. In contrast, the oscillator fidelity does not
depend on d at all, only on m. This follows from the fact that on oscillator networks,
the bosonic excitations are all localized on the Receivers’ Cube at time T . This isn’t
so for the spin networks, though, which means that the fidelity is sensitive to the
structure of the channels themselves, in addition to how the channels are arranged.

2.4.2 A Massively Parallel Protocol

If only a single sender is transferring entanglement per channel, we have some evidence
that qubit networks and oscillator networks behave qualitatively similarly. Hypercube
oscillator networks, however, have a capability for routing quantum information that
no qubit network could hope mimic: the capacity for what we shall call massively
parallel entanglement distribution.

In Section (2.3) we broke the d-dimensional cube into subcube channels Cx =

{yx|y ∈ Z(d−m)
2 }, and calculated the fidelity for 00 . . . 00x to transfer half a Bell state

|Φ+〉 to the antipodal vertex on that channel, 11 . . . 11x. There was only a single
sender and receiver per channel. What if every vertex on the entire network acted
as a sender, with vertex yx trying to transfer half a Bell pair to vertex yx? If done
faithfully, this would be true massively parallel entanglement transfer, as illustrated
in Fig. 2.8. However, we already have a lower bound on the fidelity for this massively
parallel transfer for sender yx—F 00

sx→rx! Because the excitations due to all the senders
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Chapter 2 Parallel State Transfer

Figure 2.8: Massively-parallel entanglement transfer for d = 3, here with M = 2
channels.

in the set

Sy = {yx|x ∈ Zm2 } (2.57)

are localized on the vertices in the set Sy, our earlier analysis applies. The excitations
within the oscillator network just “pass through” other, behaving as noninteracting
phonons.

No qubit network could ever hope to exhibit this capacity for massively parallel
entanglement transfer because it requires the excitations to pass through each other
by exploring oscillator levels beyond |0〉 and |1〉.

In the next chapter, we’ll see that both the qubit-compatible protocol and the
massively parallel protocol can distribute entanglement much more efficiently than
single-user (serial) protocols.
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Chapter 3

Entanglement Distribution
Schemes

3.1 Efficiency

Imagine building a quantum computer in which quantum communication between
registers is based upon teleportation, and entangled pairs are distributed by an oscil-
lator network with network graph G. Let us assume that every register needs to be
capable of sending quantum information to every other register. One possible way
to achieve this is to have every register share entangled qubit pairs with every other
register1.

In this chapter we assess the effectiveness of d-dimensional hypercube networks
at distributing entanglement between each pair of nodes. We assume the following
three “rules”:

1. All network couplings are equal to Ω0.

2. The oscillator that make up the network have programmable energy levels: the
operators of the quantum computer have complete control over them, and they
can be changed from one use of the network to another.

3. Each node can generate maximally entangled pairs of qubits.

For a particular entanglement distribution scheme we define the distribution time
TD to be the time required to distribute an approximate Bell pair between every pair
of nodes. We quantify the efficiency of the distribution scheme by the distribution
rate R , given by

R =
1

TD

∑
pairs {u, v}

Fu→v, (3.1)

1This isn’t the only way, or necessarily the best. Every register could, for example, share entangled
pairs with a hub. Then if register u wanted to send a state to register v, it could first send the state
to the hub, and then the hub could send the state to register v.

37



Chapter 3 Entanglement Distribution Schemes

where Fu→v is the fidelity of the entanglement transfer when vertex u acts as sender
and vertex v acts as receiver. The rate R is the number of approximate Bell pairs
distributed per unit time, weighted by their fidelities.

Consider the case depicted in Figure 3.1: distributing entangled pairs in a quan-
tum computer with four registers connected by a square oscillator network. The
distribution could be achieved by using the qubit-compatible entanglement transfer
protocol of Section 2.3 several times. State transfer is performed twice on the sym-
metric square (1-channel square), and once on each of the two possible 2-channel
squares. Figure 3.1 shows the necessary decompositions of the square into channels.
The network is used four times, and in each use the transfer time is T . The oscillator
energies are reprogrammed twice, but we will always assume that this takes a time
small in comparison with the transfer time T . The distribution time, then, is 4T .
Entanglement transfer is achieved twice with perfect fidelity, and four times with a
fidelity of 1− 3

2
η2 sin2 ξT . The efficiency of the square network using qubit-compatible

distribution, then, is:

R =
1 + 1 + 4(1− 3

2
η2 sin2 ξT )

4T

=
1

T

3

2

(
1− η2 sin2 ξT

)
(3.2)

3.1.1 Distillable Entanglement Revisited

Just as the proper way to quantify the entanglement transferred from sender to re-
ceiver is not by the fidelity of the transfer, but by the bits of distillable entanglement
transferred, a better way to quantify the efficiency of an entanglement distribution
scheme would be by the rate of distillable entanglement transferred:

R (better)
=

bits of distillable entanglement transferred between all nodes

distribution time
. (3.3)

After n rounds of the entanglement distribution scheme have been performed, there
would really be nR (better)

perfect Bell states shared between the nodes (with n large).

Hence, R (better)
would be a truly great way to quantify the the efficiency of a distri-

bution scheme—if only it could be calculated. As noted in Section 1.3, the distillable
entanglement of an arbitrary two-qubit mixed state is not even known.

As a practical matter, then, we will use R as defined in (3.1) to quantify efficiency.
However, it is some consolation that the distillation method proposed by Bennett et.
al. (Section 1.3.3, or [19]) is a convex2 function of the fidelity. Thus, a lower bound

on the R can be used to put a lower bound on R (better)
via their distillation method.

2A function f : X → R is said to be convex if f(ρ+σ2 ) < f(ρ)+f(σ)
2 for all ρ, σ ∈ X. It should

be mentioned that the distillable entanglement itself is thought not to be a convex function of the
density matrix [23].
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Figure 3.1: Entanglement distribution on a quantum computer with four registers
connected in a square network. (a): The network is used twice to by a single user.
(b): Two 2-channel configurations are used. Each configuration is used once by two
senders simultaneously.

3.2 Efficiency of Hypercube Networks

We now turn to calculating the efficiency of the d-dimensional hypercube networks.
We compare three schemes for distributing entanglement. First, we briefly consider
the efficiency of distribution if only one vertex is allowed to send entanglement at a
time: this is the single-user, or serial, distribution scheme. Second, we consider the
qubit-compatible scheme that we focused on in Section 2.3. Finally, we analyze the
dream-scheme: the massively-parallel protocol mentioned in Section 2.4.2.
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3.2.1 Single-User Distribution

In single-user (SU) distribution, the oscillators of the d-dimensional hypercube are
split into two categories: channel and non-channel. If the sender and receiver are
on vertices a Hamming distance m apart, they define an m-dimensional subcube,
with themselves as antipodal vertices of the subcube. We have seen that faithful
state transfer is possible from corner to corner of such a channel in time T = π

2Ω0
,

independent of channel size. This case is more interesting as a comparison with other
cases than in its own right. It is sufficient for this purpose to say that the fidelity
cannot be greater than unity, and since only one sender uses the network at a time,
the transfer rate is bounded from above by:

R (SU) ≤ 1

T
. (3.4)

3.2.2 Qubit-Compatible Distribution

Qubit-compatible (QC) distribution was extensively discussed in Section 2.3 and al-
lows 2m senders to transfer entanglement simultaneously. In this scheme the hyper-
cube is split into the 2m channels,

Cx = {yx|y ∈ Z(d−m)
2 }. (3.5)

This splitting is achieved by detuning the oscillator energies of adjacent channels from
one another. In particular, oscillators on channel Cx have energy level splittings given
by

Ωyx,yx =
∆ω

2
(1− 2wH(x)). (3.6)

(C.f. (2.17)—this is equivalent). The dimensionless parameter η = 2Ω0

∆ω
quantifies the

coupling between adjacent channels.

The main result of Chapter 2 was that every sender in the set

Sy = {yx|x ∈ Zm
2 } (3.7)

can transfer half of the bell state |Φ+〉 = 1√
2
(|00〉+ |11〉) to the corresponding member

of the set Sy in a time T = π
2Ω0

with fidelity

Fyx→yx & 1− 3

2
mη2 sin ξT , (3.8)

with ξT = π
2

√
1 + η−2. We use the symbol “&” here to mean that the right-hand-side

is correct as a lower bound of the left to second order in η (at least for m = 1 it is a
true lower bound; see Figure 2.6).
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Bandwidth Considerations

The qubit-compatible parallel entanglement transfer scheme allows 2m senders to
transfer entanglement to receivers who are a Hamming distance (d − m) away—
at the other end of their respective subcube channels. To distribute approximate
Bell states between every pair of nodes on a d-cube, then, requires using the qubit-
compatible transfer protocol with m = 0, 1, 2, 3 . . . , d− 1. Generally, the operators of
the quantum network can choose η to be different for each use of the network, i.e. for
each value of m. In fact, we argue that if bandwidth is limited, they must do this.

Consider that when the d-cube is split into 2m subcube channels, the oscillators
that have the most closely spaced energy levels are the oscillators on channel C1...1,
and the oscillators that have the farthest apart energy levels are on the channel C0...0

(see (3.6)). The difference between the energy level spacings on channel C1...1 and
channel C0...0 is

Ω1...1x,1...1x − Ω0...0x,0...0x = m∆ω. (3.9)

In a real-life situation, it would probably be necessary that all of the oscillator
energy level spacings Ωyx,yx lie within some bandwidth ωmax−ωmin. The operators of
the quantum computer wish to pick the coupling η so as to make the fidelity of every
transfer close to unity. A clever, but perhaps too difficult, way to achieve high fidelity
transfer would be to pick η to be on resonance each time, so that the condition (2.26)
for perfect state transfer is always met.

A reasonable strategy that the senders could use is to always use the maximum
possible bandwidth, so that

Ω1...1x,1...1x − Ω0...0x,0...0x = ωmax − ωmin. (3.10)

This amounts to choosing the detuning between channels, ∆ω, to be

∆ω =
ωmax − ωmin

m
. (3.11)

This is the strategy for choosing η that we will analyze. The fidelity of the parallel
entanglement transfer for 2m senders can then be written as

Fyx→yx & 1− 3

2
m3η̃2 sin2 ξT , (3.12)

where η̃ = 2Ω0

ωmax−ωmin
is a truly m-independent coupling constant. Note that ξT =√

1 +m−2η̃−2, though, still carries m-dependence.

Calculating the Efficiency

Figure 3.2(a) shows the decomposition of the 3-cube into the two 2-cube channels
specified by equations (3.5) and (3.6). If one’s goal is to distribute entanglement
between nodes that are a distance 2 apart on the 3-cube, this decomposition will
help, but it won’t be enough. There are two other decompositions needed, shown in
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Figure 3.2: The three decompositions of the 3-cube into two 2-cube channels. We
call each of these a 1-configuration, because the decompositions split the cube into
21 channels of dimension 2=3-1.

Figure 3.2(b) and 3.2(c). Entanglement transfer by these decompositions proceeds
with the same fidelity as the first.

In general, we call each of the decompositions of the d-cube into 2m (d − m)-
dimensional subcube channels an m-configuration of the d-cube. Formally, the con-
figuration can be thought of as the set of channels. When the operators of network set
the oscillator energies Ωvv to particular values, they specify a particular configuration.
We have seen that the 3-cube has three 2-configurations.

A vertex is a bitstring. A channel is a set of bitstrings, which have m bits—
the “fixed-bits”—all the same. A configuration is the choice of which m bits are
all of the same. In Chapter 2 we dealt always with a particular configuration—the
configuration in which the fixed bits were the last m bits of the bitstring. The other
(d −m) bits of the bitstring are “free-bits”; these label position on the channel (in
Chapter 2, these always occured at the front of the bitstring). Because there are

(
d
m

)
choices for the fixed-bits, there are

(
d
m

)
m-configurations of the d-cube.

If z and z′ are antipodal vertices of a channel in one configuration, they can’t
be antipodal vertices of a channel in another configuration. It follows that each
configuration must be used at least once. A channel is a subcube of dimension (d−m),
so it has 2d−m−1 antipodal pairs. Each configuration must thus be used 2d−m−1 times.
This is illustrated for each configuration of the 3-cube in Figure 3.3. Thus, the
distribution time is

T
(QC)
D =

d−1∑
m=0

(
d

m

)
2d−m−1 =

1

2

(
3d − 1

)
T. (3.13)
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(a)

(b)

(c)

Figure 3.3: To distribute entanglement between every pair of vertices, the 3-cube
network is used 13 times. (a): First, no splitting is done. There is a single 3-
dimensional channel that must be used four times (m = 0). (b): Next, is the m = 1
case. The cube is split into 21 subcube channels. There are three 1-cconfigurations,
each of which is used twice. (c): In the final, m = 2 case, the cube is split into 22

subcube channels. There are three 2-configurations, and each configuration is once
only once.
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During a given use, 2m approximate Bell pair halves are transferred with fidelity
bounded by (3.12). We can then write an approximate lower bound on the efficiency:

R (QC) &
1

T
(QC)
D

d−1∑
m=0

(
d

m

)
2d−1(1− 3

2
η̃2m3 sin2 ξT ). (3.14)

There is no hope of doing this sum exactly because of the m dependence of ξT .
However, we can use the fact that sin2 ξT ≤ 1 to write

R (QC) &
1

T
(QC)
D

d−1∑
m=0

(
d

m

)
2d−1(1− 3

2
η̃2m3). (3.15)

This crude approximation amounts to saying that the worst case scenario is if the
senders and receivers are always as far from a resonance as possible. However, the
sum in (3.15) can be done. The large d behavior is:

R (QC) &
1

T
N0.415

(
1− 3

16
η̃2d2(d+ 3)

)
, (3.16)

where N = 2d is the number of nodes. (The prefactor is (4/3)d = N log2
4
3 ≈ N0.415).

3.2.3 Massively-Parallel Distribution

The calculation of the massively-parallel distribution time on hypercube oscillator
networks mirrors the qubit-compatible calculate. Again there are

(
d
m

)
configurations.

In this massively-parallel scheme, though, every vertex on the entire d-cube acts as a
sender, as shown in Fig. 2.8 . Thus, each configuration needs to be used only once.
The distribution time, then, is

T
(MP)
D =

d−1∑
m=0

(
d

m

)
=
(
2d − 1

)
T. (3.17)

The numerator of the efficiency is almost the same, but the massively-parallel scheme
gets an extra factor of 2: as vertex z sends entanglement to vertex z′, vertex z′ sends
entanglement to z, too. The effiency, then, is

R (MP) &
1

T
(MP)
D

d−1∑
m=0

(
d

m

)
2d(1− 3

2
m3η̃2 sin2 ξT ). (3.18)

Again, we crudely approximate sin2 ξT = 1. The large d behavior is, in terms of the
number of nodes,

R (MP) &
1

T
N

(
1− 3

16
η̃2d2(d+ 3)

)
, (3.19)

The massively-parallel scheme is more than quadratically better than the qubit-
compatible scheme.
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Figure 3.4: A comparison of the qubit-compatible and massively-parallel entangle-
ment distribution rates on hypercube networks with η̃ = 0.01, η̃ = 0.02, and η̃ = 0.03.

3.2.4 Comparing the Schemes

Figure 3.4 shows a plot of the efficiency R for the qubit-compatible scheme and
massively-parallel schemes as a function of of the dimension of the hypercube network
for η̃ = 0.03, a small coupling factor. Assuming this value of η̃, a quantum computer
with 210 registers connected by an oscillator network in an hypercube architecture (a
Quantum Connection Machine!) could distribute entanglement 14 times faster by the
qubit-compatible method than by the single-user method. If the massively-parallel
method could be implemented, it would be over 800 times more efficient than the
single user method.
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Conclusions

Efficiently routing quantum information on short distance scales is one of many key
challenges that must be met before any useful quantum computer is realized.

Our results show that oscillator networks with equal couplings but programmable
on-site energies can be designed to effectively and faithfully achieve parallel entangle-
ment transfer. We considered two schemes for parallel entanglement transfer on oscil-
lator hypercube networks: qubit-compatible transfer and massively-parallel transfer.
In both schemes the hypercube is split into M = 2m effectively decoupled channels by
detuning the oscillators on adjacent one channel from the oscillators on all adjacent
channels. In the qubit-compatible scheme, only one sender-receiver pair uses each
channel at a given time. In the massively-parallel scheme, every node of the network
acts as a sender. In both cases the transfer has fidelity bounded from below by

F & 1− 3

2
mη2 sin2 ξT , (4.1)

where η is the effective coupling parameter and ξT = π
2

√
1 + η−2. Truly perfect state

entanglement transfer occurs (for each sender) if η satisfies

η =
1√

4n2 − 1
(4.2)

for some integer n. We presented limited numerical evidence that, if the the qubit-
compatible protocol were performed on a network of qubits (a spin network), the
fidelity would behave qualitatively similar. Qubit networks exhibit the same reso-
nances in the fidelity, however the fidelity is only approximately perfect when the
condition (4.2) is met: for qubits, there are still fourth order deviations from unity.
Massively-parallel protocols, though, cannot be achieved with qubits: they require
network excitations to “pass through” each other.

Not only is faithful parallel entanglement transfer possible, but entanglement dis-
tribution schemes based upon the qubit-compaitble and massively-parallel protocols
are vastly more efficient than entanglement distribution schemes in which only a single
user can send entanglement at a time. In the limited case when coupling is negligible,
the rate of entanglement distribution on a d-dimensional hypercube network in which
the qubit-compatible protocol is used is given by R (QC)

= 1
T
N0.415, where N = 2d
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is the number of nodes. The corresponding limiting rate for the massively-parallel
protocol is R (MP)

= 1
T
N , which is essentially optimal.

These distribution rates are both much faster than the best rate R (SU)
= 1

T
pos-

sible for any single-user protocol. The efficiency of the massively-parallel distribution
scheme, in particular, is breathtaking. However, it has a serious drawback: it relies on
oscillators. We argued that the qubit-compatible protocol could work similarly with
a qubit network; the massively-parallel protocol has no hope of working with qubit
network. In practice, it may be harder to build an oscillator network because us-
ing an oscillator network to distribute entangled pairs within a qubit-based quantum
computer requires a special interface between the registers of the quantum computer
and the network itself. Experimental work with oscillators, though, is advancing. For
several years, microwave resonators (whose modes are oscillators) have been used to
couple superconducting qubits together [3, 4]. More recently, an interface between
superconducting qubits and microwave resonators of the type that would be neces-
sary in a quantum computer with an oscillator network for entanglement distribution
has been demonstrated: superconducting qubits have been used to prepare arbitrary
Fock states of a single microwave resonator [11, 6], and a method has been designed
to prepare arbitrary entangled states of two resonators [21].

Future Work

Our planned future work on parallel entanglement transfer falls into three categories.
First, we hope to verify the conjecture made about parallel entanglement transfer on
hypercube spin networks: that if parallel entanglement transfer is performed as in the
qubit-compatible protocol, then the fidelity really follows a function form similar to
(4.1) (we suspect it is actually given by F & 1 − 1

2
mη2 sin2 ξT ). In essence, we hope

to justify the name we’ve given to the qubit-compatible protocol.
Our second goal is to characterize the capacity of other networks—besides the

hypercubes—for parallel quantum state transfer. We are especially interested in the
completely connected networks, which arise naturally when superconducting qubits
are coupled via a microwave resonator.

Finally, we plan to numerically study the effects of disorder and decoherence
on parallel quantum state transfer. Parallel quantum state transfer, especially in
oscillator networks, inevitably involves higher energy subspaces than single quantum
state transfer. Because higher energy states decohere more quickly, this could limit
the number states than can be sent at once across a network.
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