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1 Introduction

The classical random walk is a model with a substantial pedigree, and has
provided insights to many problems in physics, including Brownian motion
and diffusion. Its usefulness extends to numerous other fields of study. Ex-
amples thereof include ecology, in which random walks have been used to
study foraging behavior [Zal07] and computer science, where random walks
form the basis of various algorithms. Of particular interest is Papadim-
itriou’s demonstration that a simple random walk model can solve the SAT
problem with 2 variables with probability arbitrarily close to 1 in quadratic
time, O(n2); much faster than a brute-force search, which is exponentially
slow, O(2n) [Pap91]. The 3-SAT problem is NP -complete, and therefore
it is of great interest to computer scientists that random walk algorithms
accelerate the solution of SAT problems in general.

Like any good classical system, the random walk can be expressed in a
quantum mechanical form, and the resulting ‘quantum walk’ exhibits novel
and sometimes counterintuitive behavior. A thorough introduction to the
subject is provided by Julia Kempe [Kem03]. Motivation for studying the
quantum walk stems not only from the subject’s intrinsic interest, but also
from potential applications in quantum computation [Amb03]. Like the clas-
sical walk, the quantum walk has been found useful in the field of algorithms,
and frequently demonstrates a speedup over the classical variety. A case in
point is the field of quantum searches, such as those devised by Childs and
Goldstone [CG04] and Shenvi et al. [SKW03]. The Shenvi algorithm is re-
lated to the Grover search [Gro96], which already demonstrates a quadratic
quantum speedup.

A particularly striking case of the quantum speedup was demonstrated
by Childs et al [CCD+03]. They found that on a variant of the ‘glued bi-
nary trees’ graph, a quantum walker beginning at one of the roots could find
the opposite root exponentially faster than any classical algorithm. How-
ever, the feasibility of exploiting this exponential speedup has been chal-
lenged. A recent paper [KLMW07] suggests that the imprecisions that an
implementation of the computation would introduce might have devastat-
ing consequences on the evolution of the walk. Specifically, they claim that
the phenomenon of Anderson localization [And58] leads to exponential sup-
pression in the distance travelled by a quantum walk, a major hindrance to
experimental realization.

In this thesis, we have undertaken a new analysis of the Glued Trees
quantum walk. Using perturbation theory, we have devised a new model
for the disordered walk, which agrees well with numerical simulations of the
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exact case. These findings indicate that the effects of disorder are more
complex than the simple localization effects found by Keating et al.

1.1 The Classical Walk and Markov Chains

The lesson of Lord Rayleigh’s solution is that in open country the
most probable place to find a drunken man who is at all capable
of keeping on his feet is somewhere near his starting point!

Karl Pearson, 1905

The term ‘random walk’ first appears in a Nature letter from 1905, in
which Karl Pearson requested a solution to the so-called ‘drunkard’s walk’
in 2D: [Pea05]

A man starts from a point O and walks l yards in a straight line;
he then turns through any angle whatever and walks another l
yards in a second straight line. He repeats this process n times.
I require the probability that after these n stretches he is at a
distance between r and r + dr from his starting point, O.

The Gaussian large-n solution to Pearson’s problem,

pn(r < x < r + dr) = 2/n e−r
2/n r dr, (1.1)

was provided by Lord Rayleigh. The variance of the walker’s position is
linear in n. Even this early example illustrates the ubiquity of the random
walk, as Rayleigh’s original solution addressed the problem of monochro-
matic wave sources with randomized phases [Ray05].

The random walk on the line is a simpler binomial process, with a ‘coin
flip’ at each time-step deciding whether the walker steps right or left. Hence,
the position of the particle on the line is given by the binomial distribution,
which in the large n limit approaches the normal distribution, assuming a
fair coin toss (see Fig. 1). The variance once again spreads linearly in n.

For a more general description of a random walk on any graph, we can
describe the probability distribution on the graph by a normalized vector
~p(t), with entries corresponding to the probability of being at each vertex.
Let V designate the set of vertices of the graph, and the matrix M be a
left stochastic |V | × |V | matrix where Mi,j is the probability of stepping
from vertex j to vertex i. Then, M is the transformation matrix for a single
time-step,

~p(t+ 1) = M ~p(t), (1.2)
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Table 1: Probability distribution for the classical walk on the line

time-step, n
Position

-4 -3 -2 -1 0 1 2 3 4
0 0 0 0 0 1 0 0 0 0
1 0 0 0 1/2 0 1/2 0 0 0
2 0 0 1/4 0 1/2 0 1/4 0 0
3 0 1/8 0 3/8 0 3/8 0 1/4 0
4 1/16 0 4/16 0 6/16 0 4/16 0 1/16

and the time evolution of the system is given by

~p(t) = M t ~p(0). (1.3)

This dynamics can be extended to cover continuous times as well. We
will concern ourselves only with walks on undirected graphs, with unbiased
coin flips. In this case, the discrete time transformation matrix is given by:

Mi,j =
{

1/dj , i 6= j and i and j connected
0, otherwise

(1.4)

Here, dj denotes the degree of the vertex j, i.e. the number of sites connected
to j. To fill in the probabilities for intermediate times, we first define the time
step ∆t, and the unit time hopping probability, i.e. the average probability
of having made a transition, γ. At each vertex j, the likelihood of taking a
transition is given by γj = γ dj . Let Γ be the diagonal matrix, Γi,j = δi,j γj .
We then have the relation:

~p(t+ ∆t) = M(Γ ∆t) ~p(t) + (1− Γ ∆t) ~p(t),

and thus

~p(t+ ∆t)− ~p(t)
∆t

= M Γ ~p(t)− Γ ~p(t)

= (M − I) Γ ~p(t) = −H ~p(t),

where we have defined the infinitesimal generator matrix H = (I −M)Γ,
whose matrix elements are given by

Hi,j =


di γ, i = j
−γ, i 6= j and i and j connected

0, otherwise
(1.5)

4



Finally, letting the left hand side of this equation become the derivative
(in the limit as ∆t goes to zero), we see that the time evolution of the
probabilities on the graph is determined by the master equation

d

dt
~p(t) = −H ~p(t), (1.6)

where pi and pj represent the probabilities of being at vertices i and j
respectively. Hence, we have a solution for the probability distribution on
the graph, analogous to Eq. 1.3, of the form

~p(t) = exp(−Ht) ~p(0). (1.7)

The matrix exponential is defined by its power series, analogously to the
exponential of a number. However, the large number of terms involved typ-
ically makes calculation of the matrix exponential inefficient to compute.
With this last equation we have established the classical picture of the ran-
dom walk, so our next step will be to extend the concept of the random
walk to the quantum regime.

1.2 The Quantum Walk

References to the notion of a quantum walk show up as early as 1946, in
Feynman’s path-integral derivation of the Dirac equation [Sch86]. However,
the name was not coined until Aharonov, Davidovich and Zagury introduced
their model of the ‘discrete time quantum walk’ in 1993 [ADZ93]. This model
extends the idea of a coin flip to a measurement of some quantum system.

The Discrete Time Quantum Walk (DTQW)

The probabilistic nature of the classical coin flip can be modeled by mea-
suring the state of a qubit in some basis {| 0 〉, | 1 〉}. The result of the
measurement then determines which way the particle steps. As an example,
consider once more the walk on the line. Define the two Hilbert spaces H P

and H C , corresponding to the location of the particle and the state of the
coin, respectively. The former is an infinite-dimensional space spanned by
the position states {|n 〉 |n ∈ Z}, whereas the latter is a two-dimensional
space spanned by the coin states | 0 〉 and | 1 〉.

We can implement a step of the walk by defining a conditional translation
operator S : H C ⊗H P 7→H C ⊗H P . Specifically,

S = | 0 〉〈 0 | ⊗ SL + | 1 〉〈 1 | ⊗ SR, (SL,R : H P 7→H P ) (1.8)
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where SL and SR apply translations one step left or right respectively. Note
that to apply the operator S, it is insufficient to only consider the position
space of the walker – we must keep track of the coin state as well. So, we
write the state of the walker as |ψ 〉 = | c 〉 ⊗ |x 〉1, and thus the operator S
acts as follows:

S|ψ 〉 = S(| c 〉 ⊗ |x 〉)
= 〈 0 | c 〉(| 0 〉 ⊗ |x− 1 〉) + 〈 1 | c 〉(| 1 〉 ⊗ |x+ 1 〉).

To simulate the random aspect of the walk, we must of course implement
a coin flip as well. This is done by defining a unitary coin operator C :
H C 7→H C . Various choices of the coin operator are possible, but typically
we wish the operator to be fair, i.e. non-biased. That is, given a coin in
either basis state, we would like the operator to take the coin state to an
even superposition over the basis states. With such an operator defined, we
can fully describe a step of the walk in the form

|ψ(t+ 1) 〉 = T |ψ(t) 〉 = S(C ⊗ IP )|ψ(t) 〉, (1.9)

with IP denoting the identity operator on the position space. One example
of a balanced coin operator is given by the Hadamard coin,

CH =
1√
2

(
1 1
1 −1

)
. (1.10)

At this point, we could recover the classical walk dynamics by measuring
the coin’s state at each time step and then applying T . Of greater interest
is what occurs when we allow the system to evolve for some time without
making any measurements, i.e. according to the equation

|ψ(t) 〉 = T t|ψ(0) 〉. (1.11)

Then, the dynamics takes on uniquely quantum mechanical features. Whereas
the classical walk results in the spreading of probabilities across the graph,
the quantum walk leads instead to propagation of probability amplitudes.

Due to interference of probability amplitudes, quantum walk probabil-
ity distributions look markedly different from the analogous classical distri-
butions. For the Hadamard coin defined above, the quantum probability
distribution is strongly peaked at the outer edges of the distribution, in

1Note: | c 〉 ∈HC , and |x 〉 ∈HP . The notation assumes that |x 〉 is a state of definite
position, but in general, |x 〉 can be a superposition over multiple positions.
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Table 2: Probabilities for the symmetric quantum walk on the line

time-step, t
Position

-4 -3 -2 -1 0 1 2 3 4
0 0 0 0 0 1 0 0 0 0
1 0 0 0 1/2 0 1/2 0 0 0
2 0 0 1/4 0 1/2 0 1/4 0 0
3 0 1/8 0 3/8 0 3/8 0 1/4 0
4 1/16 0 6/16 0 2/16 0 6/16 0 1/16

contrast with the classical Gaussian distribution. The quantum walk hence
spreads quadratically faster than the classical walk – the standard deviation,
σQW ∝ t, while in the classical case, σCW ∝

√
t. In other words, quantum

walks demonstrate ballistic propagation, rather than diffusive spreading.
Table 2 demonstrates the distinctions between the probability distribu-

tions of the classical and quantum walks. The probabilities presented are
for a walk on the line, starting at position 0, with the symmetric coin state
1/
√

2(| 0 〉+ i | 1 〉)⊗ | 0 〉. The walk is evolved using the Hadamard coin (see
Eq. 1.10) for four time steps, after which we already see the characteristic
double-peaks of the quantum walk. Numbers in boldface are different from
the classical walk distribution (compare with Table 1). The discrepancy
becomes substantial at long times, as demonstrated in Fig. 1.

−100 −50 0 50 1000

0.02

0.04

0.06

0.08

0.1

x

p(
x)

 

 

Quantum Walk Classical Walk

Figure 1: Comparison between the classical and quantum walks on the line
after 100 time steps. The quantum walk is evolved using the Hadamard coin
(Eq. 1.10), starting in the state 1/

√
2(| 0 〉+ i| 1 〉)⊗ | 0 〉.
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The Continuous Time Quantum Walk (CTQW)

While the DTQW is an intuitive way of beginning to think about quantum
walks, there is another model of the quantum walk, analogous to (classical)
continuous time Markov processes [FG98]. The continuous time quantum
walk drops the coin space, with the evolution of the wave-function instead
being governed by a Hamiltonian derived from the adjacency matrix of the
graph. Recall that the classical continuous time walk obeys (Eq. 1.6):

d

dt
~p(t) = −H ~p(t).

The conversion to the CTQW is as simple as converting the master equation
above into a Schrödinger equation for the position of the particle. What was
formerly the generator matrix H becomes the matrix Hamiltonian H, and
in the position space, the Schrödinger equation takes the form

d

dt
|ψ(t) 〉 = −iH |ψ(t) 〉, (1.12)

and the time evolution can be found by exponentiating the Hamiltonian,

|ψ(t) 〉 = e−iH t |ψ(0) 〉. (1.13)

Similar dynamics to the DTQW arise in the CTQW model, although
there are some interesting distinctions. Some insights into the connections
between the discrete- and continuous-time walks are provided by Strauch
[Str06] and Childs [Chi08]. In general, the CTQW achieves similar speedups
to the DTQW. However, these speedups are not sensitive to the coin, whereas
the DTQW often shows vastly different results for different coin operators.

1.3 The Glued Trees Graph

Early motivations for studying the CTQW model were based on decision
problems, which are easily represented in terms of decision trees. On such
graphs, classical algorithms can be devised that efficiently negotiate the
graph (e.g. the time to find the root node might be polynomial in the
depth of the tree). Childs, Farhi and Gutmann devised a variant graph
on which the quantum walk finds an ‘EXIT’ node exponentially faster than
any classical algorithm. Specifically, they consider the graph of ‘glued binary
trees’ Gd, constructed by identifying the leaves of two depth d binary trees,
as depicted in Fig. 2 [CFG02].

The system is initally localized at the root of one of the trees (a.k.a.
the entrance node; #1 in the figure) and the goal is to find the opposite
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Figure 2: The graph Gd is reducible to a line of length 2d+ 1, with the case
d = 3 shown here.

(exit) root (#22 in the figure). Childs et al. showed that a quantum walk
would traverse the graph exponentially faster than a classical random walk.
Furthermore, they constructed an oracle problem, adding a random cycle on
the leaves of the tree, such that a quantum walk-based algorithm finds the
end exponentially faster than any classical algorithm [CCD+03]. The cycle
is a complication that we will disregard in this work.

The fast quantum traversal of the glued trees (GT) graph is due to the
particular symmetry of the graph, which it shares with certain other graphs,
such as the hypercube. When a walker starts localized at one of the roots
of the tree, its propagation is confined to a subspace of the graph – the
‘column space’ (see Fig. 2). The states of the walker are restricted to evenly
weighted superpositions over the states in each column of the graph, e.g.

| col 3 〉 =
1√
8

15∑
i=8

| i 〉.

This situation considerably simplifies analysis of the graph; rather than
keeping track of the amplitude and phase of the system at each vertex of
the graph, it is sufficient to do so for each column of the graph, effectively
reducing the state evolution to a walk on the finite line.
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It is fairly straightforward to calculate the size of the Hilbert space for
the GT graph. Utilizing the mirror-symmetry of the graph, we note that
identifying the leaves of the two binary trees ensures that length of the
graph (the number of columns) is odd. Specifically, a GT graph of depth d
has length l = 2d+ 1, since a single binary tree has d+ 1 columns, and the
second contributes only d additional columns. Considering only the left tree,
we see that the jth column contains 2j vertices, where we begin numbering
from j = 0 (see Fig. 2). Hence, the central column has 2d vertices, while the
remainder of the columns to the left have 2d−1, as can be seen from Fig. 2.2

The same applies to the columns on the right of the center. Therefore, we see
that the total number of vertices on the graph is Nd = 3(2d)− 2. By similar
arguments, we can count the number of edges of the graph. Proceeding
inwards from the two roots, we see that each vertex is connected to two
edges leading inwards. We run out of edges one column from the center on
either side. Thus, we have the number of edges, Ne = 2(Nd−2d) = 4(2d−1).

The column states form an orthonormal basis for an l-dimensional sub-
space of the graph’s Nd-dimensional Hilbert space. Due to the symmetries
discussed earlier, the walk remains restricted to the column space for all
time. Since, with the exception of the first and last, each column space
state is connected only to the two adjacent column space states (e.g. | col 3 〉
couples only to | col 2 〉 and | col 4 〉), we see that the graph structure is
congruent to a finite line.

As previously discussed, the continuous time walk on the line propagates
at a constant speed, and therefore the hitting time, i.e. the time needed for
a walker to proceed from the start node to the end node with substantial
probability, is also linear in the length of the graph. On the other hand, a
classical walker is expected to only have an exponentially small probability
of being at the end node at all times. Hence, we conclude that the quantum
walk on the GT graph is exponentially faster than the classical walk.

1.4 Imperfect walks

If we are ever to put quantum walks to use (or indeed if they are actu-
alized anywhere in nature), imperfections must inevitably surface in their
implementation. Specifically, we would expect to see noise in the form of
decoherence and disorder affecting the quantum walk. Decoherence involves
unwanted couplings, such as to the environment, that cause loss of infor-
mation, rendering the walk’s evolution nonunitary. For more information

2Alternatively, because
Pd−1
j=0 2j = 2d − 1.
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on decoherent quantum walks, see Kendon’s review [Ken07]. We primarily
concern ourselves with noise in the form of disorder.

Whereas decoherence refers to a distortion of the walk’s evolution, such
as the action of imperfect operators, or random measurements in which
information is lost, disorder is characterized by variations in the structure
of the Hamiltonian away from the ideal. For the purposes of this thesis, we
will restrict the discussion to static disorder. In an experimental setting,
static disorder might be introduced by our inability to perfectly set up the
Hamiltonian, resulting in uneven site energies or bond lengths.

Mathematically, static disorder can be represented by adding small error
terms to the Hamiltonian:

H = H0 +Hs +Hb = H0 +
∑
i

εi| i 〉〈 i |+
∑
i, j
i 6=j

εi,j Hi, j | i 〉〈 j |, (1.14)

with H0, Hs and Hb representing the ideal, site disorder, and bond disorder
Hamiltonians, respectively. The result is that the eigenstates of the system
are perturbed, with corresponding energy shifts and additional couplings.
This causes the evolution of the system to be disrupted, although in a man-
ner that is in principle predictable. That is, for an individual instance of
disorder, the system’s evolution remains unitary, i.e. obeys a Schrödinger
equation. However, we typically do not know the disorder terms exactly,
and so might only be able to determine the evolution averaged over many
realizations of H. This could be construed as a form of information loss.

In the case of quantum walks, disorder changes the relative phases of
the walk along different paths, and hence the normal interference effects
are modified. Typically, this hinders the walk propagation. Keating et al.
have recently suggested that static disorder on the Glued Trees graph might
result in Anderson localization, a phenomenon well-studied in solid-state
physics, in which the system eigenstates become exponentially localized.
[KLMW07]. This localization would lead to an exponential suppression
of the propagation of the walk, substantially hindering any attempts at
quantum walk-based computation.

Keating’s paper analyzed the results of static site disorder in the column
space, introducing small error times on the diagonal of the column space
Hamiltonian. This produces a perturbed Hamiltonian

Hcol
′ = Hcol +

2d∑
j=0

εj | col j 〉〈 col j |. (1.15)
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Simulations of the disordered walks resulted in apparent exponential lo-
calization, in keeping with the predictions of Anderson localization. More
disturbing, they suggest that a quantum walker could be trapped at the
entrance node, not even reaching the graph’s center, and thus performing
worse than the classical walker.
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Figure 3: Disorder-induced exponential localization. The plots are of pj , the
probability of being at column-state j, with time t growing in increments of
t = 50.

Although the numerical evidence for localization appears compelling, it
may not be sufficient to assume that the column space simulations fully
describe the behavior of quantum walks on the Glued Trees graphs. Specifi-
cally, it is known that Anderson localization is inevitable in one-dimensional
disordered systems, but not in multi-dimensional systems [Bor63, AALR79].
There is hence room for optimism: the GT graph has higher-dimensional
structure that might allow a greater degree of propagation.

1.5 Overview of results and conclusions

This thesis examines the Glued Trees graphs in the hopes of understanding
the detrimental effects of disorder on quantum walk propagation. We first
derive several known analytical results in the dynamics of the walk. In
addition, we define a new diagnostic of the walk propagation, specifically
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the average depth davg, leading to some extra insights about the nature
of the walk. This analysis is extended to the disordered dynamics using
perturbation theory, culminating in the creation of a dynamical model of
the walk in the one-dimensional column space that closely captures the
characteristics of the multi-dimensional disordered walk.

Our preliminary goal was to derive a mapping, if one could be found,
between the vertex-space Hamiltonian H, Eq. 1.14 and a column space
Hamiltonian such as that in Eq. 1.15, which would allow for efficient sim-
ulation of the quantum walk. However, due to the one-dimensional nature
of Hcol, the disordered dynamics are dominated by Anderson localization,
which sets in for small values of disorder (ε ∼ 0.5). In contrast, the vertex-
space simulations demonstrate that the linear propagation of the quantum
walk is retained for weak disorder (ε . 1.0), although there is a turnover
from quantum to classical behavior. To describe this transition to classical
propagation, we find it necessary to account for the expanded dynamics of
the walk that take place outside the column space.

The advantages of the quantum walk over the classical on the Glued
Trees result from the coherent quantum transport in the column space of
the graph. As disorder opens up the possibility of the walk escaping from
this subspace of the graph, we treat the column space as a decaying quantum
system, coupled to a large space by the disorder perturbation. Using results
from first-order perturbation theory and Fermi’s Golden Rule, we develop
a simple dynamical model to account for the column space decay: the local
decay model, computed in the column space. Essentially, we propose that an
appropriate column space mapping is given by the non-unitary prescription:

H 7→ Hcol − iΓj/2, (1.16)

where the column-dependent decay rate,

Γj =
σ2

γ
(1−Nj

−1). (1.17)

In the decay rate Γj , we write σ2 for the variance of the error terms, 〈ε2〉, and
γ for the coupling strength. This model allows us to determine the column
space probability pcol and the hitting probability phit at the opposite root
from the starting point for times up to twice the first hitting time, in the
weak disorder regime.

Because of the column space decay, the hitting probability suffers a re-
duction that is exponential in the variance of the disorder strength σ2 and
the depth of the graph d. This is similar to the prediction from localization
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theory, although quantitatively it is less severe, allowing substantial propa-
gation for small amounts of disorder. The mechanism for the reduction is,
however, quite different. As the strength of disorder is increased, a localiza-
tion transition is reached, beyond which the quantum walk no longer propa-
gates freely. It instead becomes trapped at the starting point, in agreement
with analyses of localization on the infinite Cayley tree [ACTA73, JG79].

The remainder of this thesis is organized as follows: We first analyze
the Glued Trees walks in depth, taking the ideal Hamiltonian and deriving
the spectrum of the graph, from which we can determine expected behavior
such as the hitting time, and the probability of being at any vertex, or in the
column space at a given time. We then address the question of disordered
walk dynamics, using perturbation theory and Fermi’s Golden Rule to devise
the local decay model mentioned above. Finally, we compare the results of
our model with simulations of the vertex-space Hamiltonian.

Ultimately, we hope that the insights gained regarding disorder and de-
cay on the Glued Trees graphs can be extended to systems with similar
properties. In particular, other graphs that share the symmetries that al-
low representation in the column space should benefit from the analysis of
column space decay, and the construction of analogous local decay models.
Additionally, we have uncovered more connections between dimensionality
and disorder’s effects.

In terms of robustness against disorder, our findings indicate that the
Glued Trees graph lie between the line and the hypercube, the former suc-
cumbing to localization for arbitrarily small disorder, while the latter retains
propagation far longer. This difference in robustness reflects a strong depen-
dence on the dimensionality and degree of the graphs. There is something
of a competition at work, in that the large (geometric) dimensionality of the
GT graph works against localization, but at the same time, it contributes to
the proliferation of non-column space states which allow the column space
decay to take place.
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2 Quantum walks on the Glued Trees Graph

2.1 Motivations

To view the Church-Turing hypothesis as a physical principle
does not merely make computer science a branch of physics. It
also makes part of experimental physics into a branch of com-
puter science.

David Deutsch, 1985

In this study of quantum walks and disorder, we will primarily be con-
cerned with the dynamics on the class of graphs known as the Glued (Binary)
Trees. Conceptually simple to describe, this set of graphs nevertheless plays
host to a variety of interesting phenomena in the context of quantum walks.
As they are related to decision trees, the graphs are also of considerable in-
terest from the standpoint of computer science, and quantum computation.

Of central importance to computer science, and in particular the study
of computational complexity, is the dichotomy between polynomial and ex-
ponential. A computer scientist’s Holy Grail is a proof of the equality or
inequality of the computational complexity classes P and NP , the former
containing all problems soluble in polynomial time, and the latter containing
all problems whose solutions can be verified in polynomial time. The class
NP turns out to be equivalent to the set of problems which can be solved
in polynomial time by a nondeterministic computer, i.e. one that explores
all computational paths simultaneously.

The celebrated Cook-Levin theorem [Coo71, Lev73] states that the Boolean
satisfiability problem (SAT) is NP-complete, which is to say that any prob-
lem in NP can be reduced to an instance of SAT with only polynomial
slowdown. Specifically, a problem in SAT takes the form of a Boolean for-
mula (binary variables linked by the logical operators AND, NOT and OR),
and the goal is to determine whether an assignment of TRUE/FALSE values
to the variables can result in the formula evaluating to true. The theorem
then allows for any problem in NP to be expressed in the form of such a
formula, so if an algorithm can be devised to efficiently (read: in polynomial
time) solve SAT, then it will likewise efficiently solve every problem in NP ,
proving P = NP .

What relevance, if any, has this to quantum mechanics? Well, ever
since the advent of Deutsch’s quantum algorithm, which demonstrated a
factor of 2 speedup over any classical algorithm on an admittedly artificial
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problem [Deutsch ‘85], interest in quantum algorithms has ballooned, offer-
ing up numerous quantum mechanical algorithms that outdo their classical
counterparts by quadratic, and even exponential speedups. While quantum
computers are ‘disqualified’ from competing in P versus NP , they still offer
hope of relatively efficient solutions to hard computational problems.

As alluded to previously, Papadimitriou showed in 1991 that random
walks offer an efficient probabilistic strategy to solve SAT. In 1997, inspired
directly by similar uses of random walks in computer science, Farhi and
Gutmann introduced the Continuous Time Quantum Walk, comparing the
propagation of a quantum walker versus a classical walker on decision trees
[FG98]. They found that on such decision trees, the quantum walker’s pen-
etration of the graph was exponentially faster than the classical walker’s.
A further triumph was demonstrated in 2002, when Childs et al. proved
that a quantum walker crossed the Glued Trees graph (with a random per-
mutation on the leaves) exponentially faster than any classical algorithm
whatsoever [CFG02]. An advantage of studying the GT graph, as opposed
to its progenitor decision trees, is that the graph structure leads to a sim-
plified Hamiltonian. In addition, the isolation of a single target state (the
exit node) gives a simple criterion for success.

In this section, we will present more thoroughly the mathematical struc-
ture of quantum walks on the GT graphs. Then, we will derive several
characteristics of the GT walks, contrasting them with the classical results.

2.2 Definitions and characteristics

As mentioned earlier, the GT graph of depth d (see Fig. 4) is formed by
constructing two binary trees of depth d (i.e. with 2d leaves), and identifying
the leaves of the two trees. It contains Nd = 3(2d)−2 vertices, connected by
Ne = 4(2d−1) edges. Hence, the number of vertices, and correspondingly the
size of the Hilbert space needed to represent the graph, grows exponentially
in the depth. The exponential size is a substantial obstacle when it comes
to computing the matrix exponentiation.

A natural organization of the GT graph is to group the vertices into
columns, based on their distance (the number of links in the shortest path)
from the roots of the graph. Picking one root arbitrarily (the left root/start
node), there will be 2j vertices at distance j from the root, until we reach
the center, which contains 2d vertices. From there onwards, the graph is
mirrored, so we have instead 2l−j vertices at distance j, where we have
defined the length of the graph, l = 2d+ 1, which is equal to the number of
columns in the graph.
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Figure 4: The d = 3 Glued Trees Graph

We adopt the convention of labeling the graph vertices integers i in the
range 1 ≤ i ≤ Nd, calling the left root i = 1 and proceeding as illustrated
in Fig. 4. The columns of the graph are similarly labeled by integers j,
but with the range 0 ≤ j ≤ 2d. This labelling has the nice feature that the
‘topmost’ vertex in column j has label i = 2j , for columns 0 to d. By the
mirror symmetry of the graph, a similar structure holds for the remaining
columns, whereby the ‘bottom’ vertex in each column has i = Nd+ 1−2l−j .

The problem established by Childs et al. is to start at the left root,
and cross the graph to reach the opposite root [CFG02]. An equivalent
formulation is to find the instantaneous (one-shot) hitting probability,

phit(t) = |〈ψend |U(t) |ψstart 〉|2 = |〈Nd |U(t) | 1 〉|2 (2.1)

between the start and end nodes, with U(t) standing for the time evolution
operator.3 It turns out that a classical walker is very good at proceeding
halfway across the graph – but not further. Since every vertex has twice
as many edges leading towards the center than outwards, picking edges at
random is twice as likely to lead a walker to the central column of the
graph. At long times, the classical random walk probabilities ‘mix’, i.e.
asymptotically approach the uniform distribution over the vertices of the
graph. So, we expect the hitting probability of a classical walker after a
long time (and an upper bound on the hitting probability at any time) to
be given by

phit(t→∞) ∼= Nd
−1 ∼=

1
3

(2−d). (2.2)

3The hitting probability can in principle be defined for any pair of vertices. In this
thesis, we are only interested in the end-to-end hitting probability, and define phit as such.
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So we see that the classical walker’s probability of reaching the end node
at any individual time is exponentially small in the depth d of the graph Gd.
The probability of ever having hit the exit node thus takes an exponentially
long time to become substantial, i.e. the walker takes a long time to reach
the exit. To show that the quantum walker outperforms the classical walker,
in terms of a larger one-shot hitting probability and hence earlier arrival at
the exit, we next introduce the concept of the column space.

2.3 Analyzing the Glued Trees graph: The column space

As the length l = 2d+1 of a given GT graph grows linearly with the depth d,
computations in the column space are simplified dramatically as compared
with the full vertex-space calculations, which involve Nd = 3(2d)−2 vertices,
and therefore an Nd×Nd Hamiltonian, denoted in the ideal case by H0. We
denote the l× l column space Hamiltonian as Hcol. The states in the column
space for the graph Gd are defined as follows:

| col j 〉 =
1√
Nj

∑
a∈ column j

| a 〉, (2.3)

where we define

Nj =
{

2j , 0 ≤ j ≤ d
22d−j , d < j ≤ 2d

(2.4)

and the vertex state | a 〉 is in column j if

a ∈
{

[Nj , 2Nj − 1], 0 ≤ j ≤ d
N + 1− [Nj , 2Nj − 1], d < j ≤ 2d

(2.5)

As an illustration, consider the graph G2, with depth d = 2. We have
Nd = 10, l = 5. The Hamiltonian takes the form

H0 = −γ



−2 1 1 0 0 0 0 0 0 0
1 −3 0 1 1 0 0 0 0 0
1 0 −3 0 0 1 1 0 0 0
0 1 0 −2 0 0 0 1 0 0
0 1 0 0 −2 0 0 1 0 0
0 0 1 0 0 −2 0 0 1 0
0 0 1 0 0 0 −2 0 1 0
0 0 0 1 1 0 0 −3 0 1
0 0 0 0 0 1 1 0 −3 1
0 0 0 0 0 0 0 1 1 −2


. (2.6)
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Figure 5: The graph G3 is reducible to a line of length 2(3) + 1, via the
mapping P . [Reproduced from Fig. 2]

To convert this to the column space Hamiltonian, we can apply the mapping

P =
∑
j

| c̃ol j 〉〈 col j |, (2.7)

where | c̃ol j 〉 denotes a single state on a line, representing the column state
| col j 〉. Thus, we define the column space Hamiltonian

Hcol = P H0 P
† = −γ


−2

√
2 0 0 0√

2 −3
√

2 0 0
0
√

2 −2
√

2 0
0 0

√
2 −3

√
2

0 0 0
√

2 −2

 . (2.8)

The resulting Hamiltonian is typically simplified by disregarding the di-
agonal terms, as subtraction of a -2 from all the diagonal terms simply leads
to an irrelevant energy shift, while in the large d limit, the defects at the
ends and center of the graph do not significantly affect propagation. Unlike
in the classical case, probability conservation is ensured by the Hermiticity
of H. Happily, this reduces our problem to a familiar one: Hcol is of exactly
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the same form as the matrix describing a set of l coupled oscillators:

Hcol = −
√

2 γ


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 . (2.9)

The eigenvalues are distributed as

Ek,d = 2
√

2 γ cos
(

k π

2(d+ 1)

)
, (2.10)

with corresponding eigenvectors

| Ψ̃k,d 〉 =
1√
d+ 1

2d∑
j=0

sin
(
k (j + 1)π
2(d+ 1)

)
| c̃ol j 〉, (2.11)

where k takes integer values between 1 and 2d + 1 inclusive. We designate
these the column space eigenvalues and eigenstates.4 With these in hand, it
is a straightforward task to diagonalize the Hamiltonian in the energy basis,
at which point the dynamics of the system is known.

2 4 6 8n

!2

!1

0

1

2

En

Figure 6: The column space eigenvalues of the graph G3.

4Note that the definition here is on the line-reduced graph, but it is also valid for states
on the full graph, which we would notate without the tildes.
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2.4 Quantum Walk Propagation

Bessel Function Analysis: The Green’s Function

To apply the results of our analysis to the specific problem we are consid-
ering, i.e. the root-to-root graph traversal, we should begin by finding the
starting state |ψstart 〉 = | c̃ol 0 〉 in terms of the energy eigenstates. By
Fourier’s trick, the eigenstate decomposition is given by

|ψstart 〉 =
2d+1∑
k=1

〈 Ψ̃k,d, | col 0 〉| Ψ̃k,d, 〉 =
2d+1∑
k=1

sin
(

k π
2(d+1)

)
√
d+ 1

| Ψ̃k,d 〉. (2.12)

So, the wavefunction on the line-reduced graph has the form

|ψ(t) 〉 =
2d+1∑
k=1

sin
(

k π
2(d+1)

)
√
d+ 1

e−iEk,d t| Ψ̃k,d 〉. (2.13)

For notational simplicity, we will henceforth drop the subscript d on the
eigenvalues and eigenstates, and understand that the sum over k runs from
1 to l = 2d+ 1. We thus have

|ψ(t) 〉 =
∑
k

e−iEk t
sin
(

k π
2(d+1)

)
√
d+ 1

| Ψ̃k 〉

=
∑
k, j

sin
(

k π
2(d+1)

)
sin
(
k (j+1)π
2(d+1)

)
√
d+ 1

e−iEkt | c̃ol j 〉. (2.14)

At this point, the state of the wavefunction is not difficult to evaluate at
a given time t, but the form of the expression is not especially enlightening.
We can glean more information by moving to a continuum limit. To do so,
let θ = k π/2(d + 1) and ω = 2

√
2γ. We further convert the sum to an

integral,
1

d+ 1

∑
k

(. . .) → 2
π

∫
(. . .) dθ.

Then, taking Eq. 2.14 and substituting in Eq. 2.10 for Ek, we have

|ψ(t) 〉 =
∑
j

2
π

∫ π

0
sin θ sin(j + 1)θ e−iωt cos θ dθ | c̃ol j 〉. (2.15)

Note that we have implicitly added two points to the wavefunction above,
i.e. those at θ = 0, π. This is fine – the eigenstates are zero there anyway.
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Rearranging the sines into a difference of cosines,

sin θ sin(j + 1)θ =
1
2
(

cos jθ − cos(j + 2)θ
)
,

we obtain the expression

|ψ(t) 〉 =
∑
j

2
π

∫ π

0

1
2
(

cos jθ − cos(j + 2)θ
)
e−iωt cos θ dθ | c̃ol j 〉. (2.16)

This pair of integrals can be represented in terms of Bessel functions [AS65],
up to a complex factor. The propagation of the walker is best expressed in
terms of the Green’s function G, i.e. the wavefunction’s amplitude at site j,

G(0, j, t) = 〈 c̃ol j |e−iH t| c̃ol 0 〉
= ij (Jj(ωt) + Jj+2(ωt))

= ij
2j
ωt
Jj+1(ωt). (2.17)

This Bessel function solution decays monotonically, whereas a wavepacket
propagating on a finite line must be reflected by the edges, which means
there must be recurrences of the probability not predicted by this model.5

The problem is resolved by assuming periodicity of the system (starting
again in the discrete case), working on an infinite line instead of the line of
length l = 2d+ 1, and letting the states {| c̃ol 0 〉, . . . , | c̃ol l− 1 〉} represent
the original finite line. We will furthermore associate the state | c̃ol l 〉 with
this set of states. Additionally, we assume the eigenstates | Ψ̃1 〉 through
| Ψ̃l 〉 remain the eigenstates of the system, but extend the domain of the
sinusoidal functions to include states outside the original finite line. Finally,
we impose the same initial conditions on the wavefunction:

|ψstart 〉 =
d∑

k=1

〈 Ψ̃k,d, | c̃ol 0 〉| Ψ̃k,d, 〉 =
2d+1∑
k=1

sin
(

k π
2(d+1)

)
√
d+ 1

| Ψ̃k,d 〉. (2.18)

Admittedly, this ‘state’ is not normalized, but the segment of it restricted to
the range of column states {0, . . . , l} is.6 The same applies for each chunk
of the line, { | c̃ol (0 + n(l + 1)) 〉 , . . . , | c̃ol (l + n(l + 1)) 〉 }, where n ∈ Z.
Since the sine function is periodic, we know the amplitudes of | c̃ol j 〉 and

5Of course, when we moved to the continuum limit, the range of possible j became
infinite, so it should be no surprise that the wavefunction keeps traveling indefinitely.

6This is because the amplitude at | c̃ol l 〉 is zero due to the choice of eigenstates
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| c̃ol (j+ 2n(l+ 1)) 〉 to be equal, for j ∈ {0, . . . , l} and n ∈ Z+ and likewise
for | c̃ol (−j) 〉 and | c̃ol j 〉 for j ≥ 0.

If we now take the continuum limit and integrate, we have not just
one Bessel function solution but infinitely many, offset from each other in
time. Another way to think about the result is to imagine that, rather than
a single source at | c̃ol 0 〉, we instead have an infinite number located at
| c̃ol (0± 2n(l+ 1)) 〉 for n ∈ Z. The finite line Green’s function G′ becomes

G′(0, j, t) = 〈 c̃ol j |e−iH t| c̃ol 0 〉

=
∞∑

n=−∞
G(0, j + 2n(l + 1), t), (2.19)

with G given by Eq. 2.17. So we see that the function G we found earlier
is merely the first term in this series. This new expression gives perfect
agreement with the exact amplitudes found by summing the time-evolved
energy eigenstates eiEkt| Ψ̃k 〉 (See Fig. 7).
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Figure 7: The quantum walk on the columns of G75, showing the reflection
from the right root. The points indicate the approximate Bessel function
solutions, while the line is the exact solution from diagonalizing Hcol.
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The Average Depth

The Bessel function analysis provides us with a nice local description of
the quantum walk, in the sense that we know how the walk behaves at
each site. However, it would also be enlightening to have some sort of
global characterization. With that in mind, we wish to define an additional
quantity, the average depth davg(t) reached by the walker:

davg(t) = 〈ψ(t) | ĵ |ψ(t) 〉, (2.20)

where ĵ is the column position operator, whose action on a column state is

ĵ| c̃ol j 〉 = j| c̃ol j 〉.

We compute this using the column state basis, substituting in two copies of
Eq 2.14. Each introduces a sum over the column states, which we index by
k and k′, so we need to compute a triple sum in j, k and k′. For brevity, we
make the substitution j′ = j + 1. The sum then has the form:

davg(t) =
l∑

k=1

l∑
k′=1

f(k, k′) eit(Ek−Ek′ ), (2.21)

where we have set, as before, θ = k π/2(d+ 1) and θ′ = k′ π/2(d+ 1). The
function f(k, k′) is given by

f(k, k′) =
l∑

j′=1

(j′ − 1) sin(j′θ) sin(j′θ′) sin(θ) sin(θ′)
(d+ 1)2

. (2.22)

If we plot just the magnitude of f , corresponding to the coefficients of
the exponentials, we see (Fig. 8) that the largest contributions come in
three diagonal lines, i.e. with k′ = k, and k′ = k ± 1. This suggests that
a reasonable approximation might be found by keeping only these terms in
the triple sum, which in fact turns into a double sum. Let us first find the
sum of the k = k′ terms, which will be constant in time, denoting it f0. In
the integral approximation, where we treat θ as a continuous variable, we
have:

f0 =
l∑

j′=1

2(j′ − 1)
π (d+ 1)

∫ π

0
sin2

(
j′θ
)

sin2(θ) dθ. (2.23)

The integral is straightforward, and evaluates to π/4. The sum follows with
as little fuss, to give f0 = d. This is a reassuring result – since the walker has
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Figure 8: Plots of the discrete and continuum limits of f , for d = 11

a tendency to stay in the middle of the graph, we would expect the constant
term in davg to be d. A quick numerical check shows that the discrete sum
over k in place of θ yields the same result. So we can move on to the case
k′ = k ± 1.

Without loss of generality, we can take θ > θ′. We can furthermore com-
bine the two sums, as they only differ in the sign of the complex exponential.
This turns the exponential factor into a cosine,

eiωt(cos θ−cos θ′) + e−iωt(cos θ−cos θ′) = 2 cos
(
ωt(cos θ − cos θ′)

)
.

In the limit of large d, the difference ∆θ = θ− θ′ = π/2(d+ 1)� 1. We can
then use the small angle formula to simplify the cosine:

cos
(
ωt(cos θ − cos θ′)

)
= cos(ωt(cos θ − cos(θ −∆θ))
= cos(ωt(cos θ − cos θ cos ∆θ − sin θ sin ∆θ))
∼= cos(ωt(���cos θ −���cos θ −∆θ sin θ))
= cos(ωt∆θ sin θ) = cos(ωd t sin θ),

where ωd = ω∆θ.
The function we need to evaluate is:

f1(t) =
4(d+ 1)

π

∫ π

0
f(θ, θ′) cos(ωd t sin θ) dθ, (2.24)
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Figure 9: Comparison between f(k, k) [upper blue points], f(k, k+ 1) [lower
red points] and sine approximations for d = 51. The k′ = k points agree
precisely with the sine, whereas there is a small deviation for the k′ = k± 1
terms.

If we plot f(θ, θ′) just along the lines k′ = k ± 1 (shown in Fig. 9), we
see that we can reasonably approximate it by −2/5 sin2 θ.7 Since we assume
d� 1, we can simplify the expression to:

f1(t) ∼= −
8d
5π

∫ π

0
sin2 θ cos(ωd t sin θ) dθ. (2.25)

To aid in the integration, we will add another term to f1, but one that
evaluates to zero. That is, we will integrate

f1(t) = −4d
5

(
2
π

∫ π

0
sin2 θ cos(ωd t sin θ)− 2

π

∫ π

0
cos θ sin θ sin(ωd t sin θ)

)
dθ.

(2.26)
With a little effort, this can be manipulated into the form

f1(t) =
4d
5

(
1
π

∫ π

0
cos(ωd t sin θ − 2θ)− 1

π

∫ π

0
cos(ωd t sin θ)

)
dθ

=
4d
5

(J2(ωd t)− J0(ωd t)) . (2.27)

Bessel functions reappear! This approximation is only valid in the continuum
limit, as d becomes large, but in that limit, we find the agreement with the

7This can be verified by exact treatment of the sum Eq. 2.23.
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sums to be quite good. The average depth can then be expressed as

davg(t) = f0 + f1(t) = d+
4d
5

(J2(ωd t)− J0(ωd t)) . (2.28)

We not only see that the walk oscillates between the two ends of the
graph, with gradually diminishing amplitude, but also that the period of
oscillation is determined by ωd = ω π/2(d + 1). Thus, the period scales
with the length of the graph, which again agrees with the hypothesis of
linear propagation. So long as the walk remains ideal, the column space
analysis fully captures the walk dynamics, but the situation becomes more
complicated when imperfections are introduced.
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Figure 10: Comparison between the exact value [solid light red], truncated
sum (k′ = k, and k′ = k ± 1) [dashed light blue] and continuum approxi-
mation [solid heavy blue] for the average depth davg as a function of t and
various values of d. The approximations undershoot, but improve visibly as
the depth d increases.
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2.5 The full Glued Trees spectrum

So long as we are only concerned with the evolution in the column space,
the eigenstates we found previously are all that can be accessed. However,
the Hilbert space of the graph is much larger than the l-dimensional column
space, and hence there are many other eigenstates of the graph. These play
a significant role when considering the effects of weak disorder.

If we observe that the glued trees graph is self-similar, then a simple hier-
archy becomes apparent: each glued trees graph Gd contains 2ν subgraphs,
each equivalent to Gd−ν . Furthermore, these subgraphs can be grouped into
2ν−1 pairs of subgraphs formed by removing the roots of a larger graph
equivalent to Gd−ν+1. This is illustrated for d = 3 in Fig. 11, where two
copies of G2 result from the removal of vertices 1 and 22, and similarly two
copies of G1 are produced by removing vertices 2 and 20 (or 3 and 21).

(a) The subgraphs equivalent to G2 (b) The subgraphs equivalent to G1

Figure 11: The subgraphs of G3

If we consider the subspaces formed by each pair of subgraphs, we can see
that an equal but opposite-signed superposition over the paired subgraphs
also allows for stationary states, as the opposite phase portions interfere
destructively at the two nodes that connect the subgraph pair (e.g. vertices
1 and 22 in Fig. 11(a)). To see this, let |ΨGd′

k, d′ 〉 represent a column space
eigenstate of the graph Gd′ . Then if G1

d−ν and G2
d−ν are paired subgraphs

of the graph Gd (each equivalent to Gd−ν), the state

|Ψν,k,d 〉 =
1√
2

(
|ΨG1

d−ν
k, d−ν 〉 − |Ψ

G2
d−ν

k, d−ν 〉
)
, for 0 ≤ ν ≤ d (2.29)

is a new eigenstate of Gd, with eigenvalue Ek, d−ν . Note that the states
mentioned above all reside in the larger Hilbert space of Gd.
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Recall that for a given ν, there are 2d−ν choices of G1 and G2. Thus, the
spectrum of the GT graph is substantially degenerate, with E = 0 having
the highest multiplicity. Specifically, there are 2d eigenstates with energy
E = 0 – one in the column space, and then one per pair of subgraphs,
including 2d−1 in the central column alone (the singlet states).

Having established the structure of the spectrum, let us now make the
notation more succinct. We define the following:

1. The sub-column space Ci is the column space of the paired subgraphs,
which are connected on the left side of the graph by the vertex i. For
example, we would denote the column space over the two subgraphs
in Fig. 11(a) by C1 and those in Fig. 11(b) by C2 and C3 respectively.

2. The sub-column-state | coli j 〉 is the jth column state of Ci.

3. The sub-column space eigenstate |Ψi
k 〉 is the kth eigenstate of Ci.

Similarly, we define C(ν), | col(ν) j 〉 and |Ψ(ν)
k 〉 to be the set of Ci, | coli j 〉

and |Ψi
k 〉 respectively, where i ∈ col (ν − 1). That is, the first vertex state

in each of the three is in col ν. Using this convention, the full column space
is C(0), while the pair of subgraphs in Fig. 11(a) correspond to C(1), and
the four in Fig. 11(b) correspond to C(2). The notation will be of most use
in our discussion of Fermi’s Golden Rule, in the following chapter.

2.6 Discussion

In this chapter, we have derived a number of results concerning the Glued
Trees graph. In particular, we have determined the spectral structure of the
graph, and used this to understand how an initially localized wavefunction
propagates in time. We find that the amplitude at any site is given by an
infinite series of Bessel functions, and this dependence results in a linearly
propagating wavefunction, moving at a velocity ω = 2

√
2 γ. Defining the av-

erage depth, davg, we note that this quantity is oscillatory, with an amplitude
that decays slowly. Such behavior can be interpreted as a wavepacket that
sloshes back and forth between the ends of the graph, being reflected upon
hitting the roots. Another expectation we might have is that the wavepacket
will tend to spread out in time, obeying the dispersion relation determined
by the energy spectrum. Evidence for this is found in the numerical results
to be presented in Chapter 4.

To gain a better understanding of the differences between the classical
and quantum cases, we can apply a similar analysis to the classical walk.

29



In this case, we are not allowed to make the simplifications of disregarding
the degree of the graph vertices, and hence we use the graph’s Laplacian
to define the infinitesimal generator matrix for the continuous time random
walk (see Section 1.1). However, we can still reduce the system to a line
representation. Numerical solutions give us the eigenvalues and eigenvectors
on the line, so we can easily find the time evolved probability distribution
given by Eq. 1.7. Figure 12(a) shows the evolution of the probability on
the graph, which shows the diffusive behavior of the classical walk clearly –
the probability quickly transfers to the center of the graph, where it then
becomes exponentially localized.

The subsequent plot shows the average depth reached by the classical
walker. Unlike the oscillatory wavepacket motion of the quantum walk,
the classical walk resembles an exponential decay towards the center of the
graph, and davg never rises past d. This distinction is responsible for the
celebrated exponential speedup enjoyed by the quantum walk.

We can also derive the exponential speedup mathematically. Recall that
the approximate Green’s function for the quantum walk is (Eq. 2.17)

G(0, j, t) = ij
2j
ωt
Jj+1(ωt).

The peak of this function can only be determined numerically, but for larger
values of j, it is close to τj = j/ω = j/2

√
2γ, which agrees with the predic-

tion of linear propagation at the velocity 2
√

2γ. The height of the peak is
likewise a numerically calculated result, but comes out close to 1/

√
l at the

end node – substantially larger than the classical hitting probability. The
conclusion is that the quantum walker crosses the graph in an exponentially
shorter time than the classical walker.

Now that we know the expected behavior of the ideal quantum walk on
the GT graphs, we will proceed to explore the effects of noise, in the form of
static disorder, on the wavefunction propagation. A reasonable hypothesis
is that the disruption will reduce the rate of transport, causing something
resembling a transition from quantum ballistic propagation to classical dif-
fusive propagation. In the following chapter, we will derive several models
to describe the effects of disorder, culminating in a dynamical model for
calculating the walk’s evolution in the presence of disorder.
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(a) The probability distribution P (j) on the column space plotted at
times t = 0, 2, 4, 8, 16, 32.
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(b) The classical average depth, davg [solid blue curve], compared with
the quantum result, [dashed red curve]

Figure 12: The propagation of the classical walker on G15
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3 Disorder, Localization and Decay

3.1 Motivations

Quantum phenomena do not occur in a Hilbert space; they occur
in a laboratory.

Asher Peres

Jokes about spherical cows in vacuo notwithstanding, we as physicists
are ultimately concerned with physical reality, and not the idealized behav-
ior of theoretical constructs. An understanding of any sort of phenomena,
therefore, necessarily involves their implementation in actual physical sys-
tems. It is a fact that exact precision and isolation are impossible to come
by in our messy, warm and noisy environment. Consequently, we cannot
construct machines that perfectly simulate most systems, particularly as we
enter the quantum mechanical regime. It is necessary, then, to understand
the effects of noise on the systems that we would like to simulate.

All of the above applies to quantum walks, and certainly to quantum
walks on the Glued Trees. The effects of noise on the GT and similar graphs
have in fact already been the subject of much study [KLMW07, Ken07].
In this chapter, we will apply perturbation theory to the disordered GT
walks, ultimately deriving a local decay model that describes the end-to-
end propagation of the GT walk.

3.2 Fundamental concepts

Disorder-induced localization

In his 1958 study of electron transport in disordered lattices, Anderson pre-
sented the result that static site disorder (in the form of variations in energy
between atoms) led to localization; quantum interference effects inhibit state
transfer over substantial distances [And58]. The degree of localization de-
pends on the dimensionality of the system.8 In particular, it has been shown
that in 1D, the uniqueness of paths connecting separate states mandates
that the eigenstates of the system be exponentially localized [Bor63, EC71].
This condition is relaxed in higher dimensions, where obstructions might be
avoided, so to speak. The 2D case is the critical dimension, above which
there are states that are not exponentially localized, although disorder does
in general inhibit quantum transport [AALR79].

8In the sense of spatial dimensions, rather than the dimension of the Hilbert space.
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The topic of disordered walks on the Glued Trees has been investigated
previously by Keating et al. [KLMW07]. By simulating walks on the column
space in the presence of diagonal disorder of the form in Eq. 1.15

Hcol
′ = Hcol +

2d∑
j=0

εj | c̃ol j 〉〈 c̃ol j |,

they found that the wavefunction of the walker demonstrated clear signs
of localization, with the probability distribution dropping off exponentially
with the distance from the starting point. Such a situation would be catas-
trophic for any attempt at quantum walk-based computations. However,
the situation may not be quite so dire.

Since exponential localization is inevitable on one-dimensional systems,
regardless of the strength of disorder, the result found by Keating et al.
was in some sense a foregone conclusion, since their simulations took place
in a one-dimensional lattice. Hence, extrapolating from their result to pre-
dict localization on the full graph may not give the full picture. It turns
out that the analytical calculations for Anderson localization can be car-
ried out exactly on the Bethe lattice or ‘Cayley Tree’, essentially an infinite
tree with fixed degree. In the case with connectivity K = 2, this is sim-
ply an infinite binary tree. Several studies predict a localization transition
at a critical strength of disorder, beyond which the conductance vanishes
[ACTA73, JG79, GJ80]. Below this critical value, there exist extended states
on the graph, allowing for varying degrees of transport. These results are of
particular interest, since before a walker reaches the center of the graph, it
essentially sees no difference between a Cayley tree and a GT graph. Hence,
we expect that if the Cayley tree possesses extended states for small disor-
der, so should the GT graph, in contradiction of Keating’s findings. Our
results (presented in the next chapter) bear out this conjecture.

Rather than simulate diagonal disorder in the context of the column
space Hamiltonian, as in Keating’s model, we choose to implement the evo-
lution on the full graph, starting with site disorder, and comparing the
results with the effects of bond disorder. While extending the calculations
to graphs of the size considered by Keating (d ∼ 500) is computationally
unfeasible, we have covered a range of smaller graphs (d ∈ [5, 23], with
Nd ∈ [94, 25 × 107] ). Besides the simulations, we have also derived three
models for the effects of disorder, which will be developed in this section.

Apart from the dimensionality of the problem, one other objection to
Keating’s findings can be raised. Specifically, it is unclear what the diag-
onal disorder in the column space might correspond to physically. On-site
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energies that vary independently from site to site are intuitively the sort of
disruptions we might expect from imperfect experimental control, but varia-
tions that are correlated over collections of many sites (i.e. GT columns) are
less well motivated. Studies on the hypercube have shown the two paradigms
to be vastly different. Specifically, when studied using Strauch’s (arguably
more egalitarian) ‘vertex model’ [Str09], the hypercube shows a substantial
robustness against disorder, with a small but finite asymptotic value for
the hitting probability, given some fixed disorder/decoherence strength as
the graph size increases, whereas the hitting probability vanishes for large
graphs in the ‘subspace model’ of Alaǵıc and Russell [AR05]. The former
case essentially Golden Rules out localization, likely due to the hypercube’s
high dimensionality. Similar results might be expected for the GT, since it
is intermediate in structure between the line and the hypercube.

Quantum decay

Decay being a recurring theme in Nature, it is unsurprising that the in-
vestigation of unstable states has a long history. A notable pioneer in the
field was Gamow, who provided a derivation of alpha decay [Gam28]. A
standard paradigm in quantum decay is the presence of a single state cou-
pled to a continuum. As an example, we might consider an excited state
of a hydrogen atom, which may decay, releasing a photon in an arbitrary
direction. For such states, it is generally held that the probability of being
in the preferred state diminishes exponentially in time, but with important
deviations at short and very long times.

Noting that criteria on ‘physical feasibility’ contradict the results of ex-
ponential decay, Khalfin pointed out that at short times, we cannot neglect
the existence of a non-exponential term, which leads to initial decay that
is slower than exponential [Kha58]. This slower decay allows frequent mea-
surements to retard decay (known as the quantum Zeno effect or ‘watched
pot’ effect), although Schulman, Ranfagni and Mugnai have demonstrated
that other measurements can also accelerate decay (a.k.a. the anti-Zeno
effect) [SRM94].

After this short-time evolution, the exponential law holds basically for
timescales on which there is substantial probability in the unstable state. At
long times, as the probability in the final states build up, reverse flow can
regenerate the original state, once more producing slower-than-exponential
decay [FGR78]. Another relevant phenomenon is that of limited quantum
decay, in which eigenstates fail to decay due to their energies being outside
the range of final state energies [GS95].
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Fermi’s Golden Rule

A standard tool in the study of quantum decay is the ‘Golden Rule’, so
named by Fermi for its widespread applicability. The Golden Rule Golden
Rule states that, when we have a single initial state that is coupled by a
small perturbation V to a continuum of states, we expect the decay from
the initial state |ψ0 〉 to one of the continuum states |φα 〉 to be governed
by a decay rate of the following form [Sch68]:

Γα =
2π
~
|〈φα |V |ψ0 〉|2ρ(α) (3.1)

where α is a continuously varying parameter, and ρ(α) is the density of
states at the corresponding energy,

ρ(α) =
∆N
∆E

∣∣∣∣
α

. (3.2)

In other words, the decay rate is proportional to the absolute value squared
of the matrix element of the perturbation that couples the initial and final
states and the density of states. Such decays typically conserve the energy
of the system, which is to say that the initial state only decays directly to
states that are close in energy.

As the Golden Rule depends on the decay being one-directional, in the
sense that the decay products do not return to the initial state, it is inappli-
cable at long times, when there has been a substantial buildup of probability
in the final states. If the initial state is not an eigenstate of the unper-
turbed Hamiltonian, the decay may involve multiple decay rates, and hence
will show a more complicated profile than a straightforward exponential de-
crease. Finally, while the Golden Rule can be applied to discrete systems, it
is only truly effective in the continuum limit, i.e. when the number of final
states is large, and the energy spacing of the spectrum relatively small.

3.3 Decay from the column space

The fast traversal of the Glued Trees graph by a quantum walker is a re-
sult of the graph’s extensive symmetry, and hence if the symmetry of the
wavefunction on the graph is lost, the interference effects that lead to rapid
traversal are lost. In particular, if we introduce disorder to the Hamilto-
nian, the components of the wavefunction following different paths on the
graph will accumulate random phases that will interfere destructively. An
immediate consequence is that the walk will depart from the column space,
inhibiting propagation.
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To study the decay from the column space, a quantity of obvious interest
is the column space probability, pcol, defined for some wavefunction |ψ(t) 〉
as:

pcol(t) =
2d∑
j=0

|〈 col j |ψ(t) 〉|2 . (3.3)

The column states | col j 〉 are defined as in Eq. 2.3. This quantity not only
provides a convenient measure of propagation, but also serves as a (very)
rough upper bound on the hitting probability. 9

Since the disordered Hamiltonian remains nevertheless a unitary oper-
ator, we do expect to observe quantum recurrences, in which the system
comes arbitrarily close to its initial state. However, the time scales involved
for such a recurrence are far longer than the time required for a walker to
cross the graph. So, we can essentially assume – at least for weak disorder
– that the portion of the wavefunction that has decayed from the column
space does not return.

With that assumption, we now present three models of the column space
decay under diagonally disordered Hamiltonians. Comparisons with the
numerical results will be shown in the following chapter.

9In most of this chapter, we will work in the full Hilbert space rather than the line rep-
resentation, hence column space states and eigenstates will generally be notated without
tildes. The only exceptions are when we are discussing the various column-space models.
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3.4 Models of decay

Short-time decay

Our first approximation is a short time calculation of the column space prob-
ability, found by taking the first order Taylor expansion of the Hamiltonian.
We will keep terms of up to O(t2). Given some initial starting state, |ψ0 〉,
the column space probability at time t is given by

pcol(t) =
2d∑
j=0

|〈 col j |ψ(t) 〉|2

=
2d∑
j=0

∣∣〈 col j |e−iH t|ψ0 〉
∣∣2

=
2d∑
j=0

〈 col j |e−iH t|ψ0 〉 〈ψ0 |eiH t| col j 〉

∼=
2d∑
j=0

〈 col j |(1− iH t− t2

2
H2)|ψ0 〉 〈ψ0 |(1 + iH t− t2

2
H2)| col j 〉.

(3.4)

Expanding out the terms of the summand gives the following expression:

pcol(t) =
2d∑
j=0

|〈 col j |ψ0 〉|2 + t2|〈 col j |H |ψ0 〉|2

+ it (〈 col j |H |ψ0 〉〈ψ0 | col j 〉 − 〈ψ0 |H | col j 〉〈 col j |ψ0 〉)

− t2

2
(
〈 col j |ψ0 〉〈ψ0 |H2 | col j 〉+ 〈ψ0 | col j 〉〈 col j |H2 |ψ0 〉

)
.

(3.5)

Note that the contents of both parentheses in Eq. 3.5 are complex conju-
gates. As a result of this, and the fact that the Hamiltonian and column
states are both real, the choice of a real starting state ψ0 (or one with an ar-
bitrary overall phase) allows us to simplify the equation further – the linear
term vanishes, to give:

pcol(t) =
2d∑
j=0

|〈 col j |ψ0 〉|2 + t2|〈 col j |H |ψ0 〉|2

− t2
(
〈 col j |ψ0 〉〈ψ0 |H2 | col j 〉

)
. (3.6)
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We now consider starting states taken from the column states of the
graph, i.e. |ψ0 〉 = | col j0 〉. Then, the orthonormality of the column states
leaves only one sum,

pcol(t) = 1− t2
〈 col j0 |H2 | col j0 〉 −

2d∑
j=0

|〈 col j |H | col j0 〉|2
 . (3.7)

Let us write out in full the squared matrix element sum,

2d∑
j=0

|〈 col j |H | col j0 〉|2 =
2d∑
j=0

〈 col j0 |H | col j 〉〈 col j |H | col j0 〉

= 〈 col j0 |H

 2d∑
j=0

| col j 〉〈 col j |

H | col j0 〉

= 〈 col j0 |HP H | col j0 〉, (3.8)

where operator P is simply the column space projector (Eq. 2.7), which
commutes with the ideal Hamiltonian.

Consider first the case H = H0. Since H0 | col j0 〉 is in the column space,
and P acting on a column space state merely leaves the state untouched,
Eq. 3.8 simplifies to

〈 col j0 |H0
2| col j0 〉 =

2d∑
j=0

|〈 col j |H0 | col j0 〉|2,

or equivalently,

〈 col j0 |H0
2| col j0 〉 −

2d∑
j=0

|〈 col j |H0 | col j0 〉|2 = 0;

the ideal Hamiltonian does not contribute to the quadratic term in Eq. 3.7.
To find the column space probability in the presence of diagonal disorder,

H = H0 +Hs, we let

Hs =
Nd∑
i=1

εi| i 〉〈 i |.

As the perturbation Hs is diagonal in the vertex basis, it does not couple
distinct column spaces to each other, and so

〈 col j |Hs | col j0 〉 = 0, (3.9)
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for j 6= j0. Terms involving HsH0 likewise disappear. Consequently, we
need only use the perturbation Hs in Eq. 3.7. So, we calculate the column
space probability to be:

pcol(t) = 1− t2
〈 col j0 |Hs2| col j0 〉 −

2d∑
j=0

|〈 col j |Hs | col j0 〉|2


= 1− t2
(
〈 col j0 |Hs2| col j0 〉 − |〈 col j0 |Hs | col j0 〉|2

)
= 1− t2/Nj0

2
∑

i,j ∈ col j0

εi εj (Nj0δi,j − 1), (3.10)

We can separate the sums of the squared terms and cross-terms, where we
are still summing over the vertex labels in col j0.

pcol(t) = 1− t2/Nj0
2

(Nj0 − 1)
∑
i

εi
2 −

∑
i 6=j

εi εj

 . (3.11)

Up till now, we have said nothing about the distribution of the disorder
terms on the graph. We will presently assume that they are randomly
distributed, following a probability distribution that is symmetric about
0, and with a finite variance σ2. In practice, our simulations implement
disorder with a uniform distribution on some range |εi| ≤ ε, in which case
we have σ2 = ε2/3. These assumptions allow us to find the expectation
value of the column space probability10,

〈pcol(t)〉 = 1− t2/Nj0
2

(Nj0 − 1)
∑
i

〈εi2〉 −
∑
i 6=j
〈εi εj〉

 . (3.12)

Since the disorder terms have a mean of zero, the expectation values of the
cross-terms vanish, 〈εi εj〉 = 〈εi〉 〈εj〉 = 0, while the expected value of the
squared terms is simply the variance, 〈εi2〉 = σ2. This gives us a surprisingly
simple result,

〈pcol(t)〉 = 1− t2σ2 Nj0 − 1
Nj0

= 1− t2σ2

(
1− 1

Nj0

)
. (3.13)

10It turns out that the sum in parentheses is also equivalent to the squares of the pairwise
differences between the on-site energies (εi − εj)2. This makes a good deal of sense, as it
is the unevenness of the energies that gives to the interference between vertex states in
the same column.
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That is to say, we expect the column space probability to decay quadratically
at a rate that increases with the number of vertices in the initial column
state. If we somewhat näıvely extrapolate this result to the exponential
decay regime, we might expect the rate of decay Γj0 starting in a column-
space state to scale as

Γj0 ∝ σ2(1− 1/Nj0) ≤ σ2(1− 2−d). (3.14)

Observe that the RHS quickly approaches σ2 as we move towards the center
of large graphs. This agrees with our intuitions, and with some aspects of the
decay that we observe in simulations. The reason we might expect the decay
to accelerate closer to the center of the graph is that, with more vertices in
each column, there is more room for phase differences that will push the
state out of the column space, and furthermore each column state overlaps
(and hence couples to) more the eigenstates of the graph’s full spectrum.

A comparison with simulation demonstrates that although the charac-
ter of the short-time decay is correct, it is valid only for relatively short
times. This calculation also gives no clues about the final states to which
the probability is leaking, and is dimensionally incorrect (it has units of
energy squared, rather than of inverse time). For additional insights on the
decay, and a clearer understanding of the mechanisms behind it, we invoke
Fermi’s Golden Rule.

Fermi’s Golden Rule applied

In Chapter 2, we described the spectrum of the Glued Trees graph in detail,
in particular the large number of degenerate eigenstates. In the limit of
large graphs, we might reasonably apply Fermi’s Golden Rule to describe
the decay from the column space, as much of the decay will take place well
before the wavepacket reaches the center of the graph. Then, the probability
decays primarily into the outermost sub-column spaces, which are most
closely described by the continuum limit. We will begin by considering the
decays from the column space eigenstates, computing the matrix elements
for the decay.

Recall that the Golden Rule Golden Rule states that the decay rate Γ
obeys Eq. 3.1,

Γα =
2π
~
|〈φα |V |ψ0 〉|2ρ(α).

In the context of the decay from the column space, we let |ψ0 〉 be one
of the column space eigenstates |Ψk 〉, and |φα 〉 be drawn from the sub-
column space eigenstates |Ψi

k′ 〉. So, we can let α be represented instead
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by the discrete indices i and k′. The perturbation V is simply the diagonal
matrix of on-site energies εi. Finally, we can disregard the factor of ~ – in
fact, we have been working the entire time in units where ~ = 1.

To set up the matrix element calculation, we first express the eigenstates
|Ψk 〉 and |Ψi

k 〉 in terms of (sub)column space representations. We can
assume without loss of generality that i = 2ν , for some integer ν ≤ d, i.e.
the sub-column space Ci is the ‘top’ one in C(ν) – the matrix element with
all the sub-column spaces at a given depth ν are identical.

|Ψk 〉 =
1√
d+ 1

2d∑
j=0

sin
(
k (j + 1)π
2(d+ 1)

)
| col j 〉

|Ψi
k′ 〉 =

1√
d− ν + 1

2(d−ν)∑
j′=0

sin
(
k (j′ + 1)π

2(d− ν + 1)

)
| coli j′ 〉.

The matrix element can be written explicitly as

Mk, k′, ν = 〈Ψi
k′ |V |Ψk 〉

=

2(d−ν)∑
j′=0

sin
(

(j′+1)k′π
2(d−ν+1)

)
√

(d− ν) + 1
〈 coli j′ |

V

 2d∑
j=0

sin
(

(j+1)kπ
2(d+1)

)
√
d+ 1

| col j 〉

 .

(3.15)

Because the perturbation is diagonal, the contributions to the matrix
element only come from the combinations where the column states line up,
i.e. when coli j′ ⊂ col j. So our sum over the column states will be reduced
to those in the range ν ≤ j ≤ 2d− ν. Hence,

Mk, k′, ν =

2(d−ν)∑
j′=0

sin
(

(j′+1)k′π
2(d−ν+1)

)
√

(d− ν) + 1
〈 coli j′ |

V

2d−ν∑
j=ν

sin
(

(j+1)kπ
2(d+1)

)
√
d+ 1

| col j 〉

 .

(3.16)
If we now go ahead and take the absolute value squared of the matrix ele-
ment, we will end up with an expression that includes the square of a sum
over disorder terms. We then take the expectation value of the matrix el-
ement. By similar arguments to those in the derivation of the short time
decay, only the squared terms should remain, and these will be replaced by
the variance of the disorder terms.
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Let us consider the action of the perturbation on a single column state
| col j 〉. The vertex states that comprise the column state will each pick up
their corresponding disorder term:

V | col j 〉 =
1√
Nj

∑
µ∈ col j

εµ |µ 〉.

Without loss of generality, we can assume that j ≤ d, i.e. | col j 〉 is not on
the right side of the graph. Then it contains Nj = 2j vertices, each weighted
by 1/

√
Nj . We then take the inner product of this column state with the

sub-column-state | coli (j−ν) 〉, where we have set j′ = j − ν to match up
indices correctly.

〈 coli (j−ν) |V | col j 〉 =

 1√
Nj−ν

∑
µ′ ∈ coli j

〈µ′ |

 1√
Nj

∑
µ∈ col j

εµ |µ 〉

 .

Since only the vertex states that can be paired up between | col j 〉 and
| coli (j−ν) 〉 contribute to the inner product, we will get a sum of N(j−ν)

disorder terms, each divided by the factor
√
Nj N(j−ν).

Upon squaring and taking the expectation value, the cross-terms vanish,
leaving just the squared terms. Each of these has magnitude σ2/Nj N(j−ν),
and there are N(j−ν) such terms from each column state, so each column
state contributes σ2/Nj , modified by a sine factor. By the symmetry of the
graph, we can combine the terms with j < d and j > d, leaving us with the
expectation value〈
|Mk, k′, ν |2

〉
=

σ2

(d+ 1)(d− ν + 1)

[
2−d sin2

(
k π

2

)
sin2

(
k′π

2

)

+
d−1∑
j=ν

21−j sin2

(
k π(j + 1)
2(d+ 1)

)
sin2

(
k′π(j − ν + 1)
2(d− ν + 1)

)]
.

(3.17)

We now have an expression for the quantity M ′k, k′, ν =
〈
|Mk, k′, ν |2

〉
be-

tween any column space eigenstate and any of the eigenstates of the Hamil-
tonian. Although we can compute this matrix element numerically with
little trouble, the expression cannot be simplified in any elegant fashion.
However, it is interesting to plot the magnitude of M ′k, k′, ν for the various
possibilities of k, k′ and ν given some choice of d.
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Figure 13: Plots of the matrix element M ′k, k′, ν for the graph G16.
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We can observe several interesting characteristics. First of all, we see that
the decay rate into each sub-column space C(ν) has a banded structure with
respect to k′, with the number of bands equalling ν + 1. The bands emerge
due to the relative overlap between the column space and non-column space
eigenstates, and the increasing significance of the bands is due to the fact
that, as ν grows, the number of column states overlapping the non-column
space eigenstate shrinks, so the variation in the coefficient of | col j 〉 close
to the center of the graph dominates the matrix element.

Of especial interest is the behavior of the E = 0 column space eigen-
state, i.e. that with k = d + 1. This eigenstate has magnitude sin[(j +
1)π/2]/

√
2d+ 1 at column j, that is it has magnitude 0 on the d columns

with j odd, and magnitude 1/
√
d+ 1 on the remaining columns. This at-

tribute is shared by all the E = 0 non-column space eigenvalues, except
for a shifting of the column label j. As a result, the matrix element for
the energy-conserving decay displays a dramatic even-oddness, oscillating
between 0 for odd ν and approximately (8/3)2−ν for even ν. The E = 0
column space eigenstate is in fact the largest component of the starting state
localized at either root, so this decay is potentially the most significant, al-
though one should also note that the couplings from the E = 0 column space
eigenstate to the other eigenstates in the column space are substantial, and
so the decay will be somewhat complicated.

Having found the expected matrix element for a given pair of initial and
final states, we now wish to find the decay rate for a choice of initial states,
which involves a sum of the decay rates over all possible final states. That
is, letting Γk represent the decay rate for the column space probability from
a single eigenstate | ψ̃k 〉, we have

Γk = 2π
2d−1∑
i=1

2(d−ν)+1∑
k′=1

|〈φi, k′ |V | ψ̃k 〉|2ρ(i, k′), (3.18)

with i indexing the chosen sub-column space, and k′ the index of the eigen-
value. Here we can make one important simplification: since the matrix
element is the same for all eigenvalues of a given sub-column space C(ν), we
can group the corresponding terms of the sum together, adding in a factor
2ν−1 to account for the multiplicity, and then sum over ν, rather than i.
Hence, we can apply the result found above for the expectation value of the
matrix element, putting the decay rate in the form

Γk = 2π
d∑

ν=1

2(d−ν)+1∑
k′=1

2ν−1M ′k, k′, ν ρ(ν, k′) (3.19)
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To find the decay rate for one of the column space eigenstates using the
Golden Rule Golden Rule, we will also need the density of states ρ(E), but
it is not immediately obvious how to calculate ρ exactly. We can proceed by
estimating a constant value of ρ, separating the matrix element sum from
that over the density of states. In doing so, we will take the average value
of ρ,

ρ =

∑
ν,k′ [ρ(ν, k′)]∑

ν,k′ [1]
. (3.20)

Let S denote the sum over the matrix elements. Then, the decay rate is
given by an expression of the form:

Γk ≈ 2π Sk ρ = 2π

∑
ν,k′

2ν−1M ′k, k′, ν

 ∑ν,k′ [ρ(ν, k′)]∑
ν,k′ [1]

. (3.21)

Let us first calculate the average density of states. Note that for each
sub-column space C(ν), the following are true:

Ek = 2
√

2γ cos
(

k π

2(d− ν) + 2

)
;

dE

dk
=

π

2(d− ν) + 2
·
[
−2
√

2γ sin
(

k π

2(d− ν) + 2

)]

=
−2
√

2π γ
2(d− ν) + 2

√
1− E2

8λ2
. (3.22)

It makes sense to evaluate ρ at the center of the band, where the bulk of
the probability is located.

ρ (E = 0) =
1

2(d− ν) + 1
·
∣∣∣∣∆k
∆E

∣∣∣∣
≈ 1

2π γ
√

2
· 2(d− ν) + 2

2(d− ν) + 1

≈ 1
2π γ

√
2

(3.23)

With this result, the decay rate can be approximated by

Γk ≈
1

γ
√

2
Sk =

1
γ
√

2

∑
ν,k′

2ν−1M ′k, k′, ν . (3.24)
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To complete the expression, we need to evaluate the sum Sk. Expanding
out M ′k, k′, ν from Eq. 3.17, we find that we need to evaluate a triple sum
over ν, j and k′.

Sk =
d∑

ν=1

2(d−ν)+1∑
k′=1

2ν−1M ′k, k′, ν (3.25)

=
d∑

ν=1

2(d−ν)+1∑
k′=1

2νσ2

2(d+ 1)(d− ν + 1)

[
2−d sin2

(
k π

2

)
sin2

(
k′π

2

)

+
d−1∑
j=ν

21−j sin2

(
k π(j + 1)
2(d+ 1)

)
sin2

(
k′π(j − ν + 1)
2(d− ν + 1)

)]
. (3.26)

Since the sum over k′ is independent of the other two, we will do this one first.
The sum can be simplified if we convert the sines to complex exponential
form, and then sum the resulting geometric series. The result for the non-
central columns is elegant:

2(d−ν)+1∑
k′=1

sin2

(
k′π(j − ν + 1)
2(d− ν + 1)

)
= d− ν + 1. (3.27)

It is easy enough to see that the result for the central column will be identical,
since there the sine squared evaluates to 1 for odd k′ and 0 for even k′. So
we are left with

Sk =
d∑

ν=1

2νσ2

2(d+ 1)

[
2−d sin2

(
k π

2

)
+

d−1∑
j=ν

21−j sin2

(
k π(j + 1)
2(d+ 1)

)]
. (3.28)

Unfortunately, the factor of 2−j in the sum over j prevents us from sim-
ilarly simplifying the sum over j. Nonetheless, we can find a closed-form
representation for it by a similar process:

d−1∑
j=ν

2−j sin2

(
k π(j + 1)
2(d+ 1)

)
= 2−ν

1 +
2 cos

(
k π (ν+1)
d+1

)
− cos

(
k π ν
d+1

)
4 cos

(
k π
d+1

)
− 5



− 2−d

1 +
2 cos(k π)− cos

(
k π d
d+1

)
4 cos

(
k π
d+1

)
− 5


(3.29)
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The final sum can be simplified further if we fix E = 0, or equivalently
k = d + 1. In that case, the fractions on the right simplify to (−1)ν/3 and
(−1)d/3 respectively:

d−1∑
j=ν

2−j sin2

(
π(j + 1)

2

)
= 2−ν

(
1 +

(−1)ν

3

)
− 2−d

(
1 +

(−1)d

3

)
(3.30)

The sum over ν then yields

SE=0 =
2π σ2

6(d+ 1)
(
9 · 2−d + (−2)−d + 6 d− 10

)
. (3.31)

If we plot the matrix element sums Sk (Eq. 3.28) for varying k and d,
we find that as d increases, the discrepancy for different choices of k in
fact diminishes, and Sk converges to SE=0 for all k (see Fig. 14). Finally,
multiplying in the average density of states ρ from Eq. 3.23, we find an
expression for the decay rate:

ΓE=0 ≈
σ2

γ
√

2

(
9 · 2−d + (−2)−d + 6 d− 10

)
6(d+ 1)

. (3.32)

In the limit of large d, the first two terms in parentheses vanish, so if
we define the constant Γ0 = σ2/(γ

√
2), then we have the E = 0 decay rate

approximately given by

ΓE=0 ≈
σ2

γ
√

2

(
1− 8

3(d+ 1)

)
= Γ0

(
1− 8

3(d+ 1)

)
. (3.33)

This convergence means that, for large depth graphs, we might expect
the decay to simplify in character, becoming uniform. Furthermore, this
happens to be the regime in which the Golden Rule is more applicable. The
scaling of ΓE=0 with d is shown in Fig. 15. Recall that the short-time decay
rate we calculated was (from Eq. 3.14)

Γj0 ∼ σ2(1− 1/Nj0) ≤ σ2(1− 2−d). (3.34)

Apart from a factor of 1/γ
√

2, the rate bears a good resemblance to the
approximate matrix element sum from Fermi’s Golden Rule. Both rates
depend on σ2, and approach a limiting value for large d, although the rate
of approach is slower for the Golden Rule result.

Although Fermi’s Golden Rule yields no further results without a better
method to evaluate the density of states, the calculation presented here still
offers us a number of insights into how the column space probability decays.
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Figure 14: Plot of the matrix element sum Sk for the GT eigenstates | ψ̃k 〉.
The discrepancy between the eigenvalues shrinks for increasing d, repre-
sented by a greater uniformity in the color of the plot.
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the large d approximation Γ′E=0 from Eq. 3.33 [dashed green curve].

48



Local exponential decay

Armed with an understanding of how the decay rate for the column space
probability depends on the walker’s location, we can implement a fairly
simple model of the decay, and compare this with simulations of the actual
decay. For ease of computation, we will naturally choose to compute the
walk evolution in the column space.

We know that the short-time decay model fails for time-scales on the
order of the first hitting time, but it seems plausible that the decay rate
might depend similarly on the walker’s location for intermediate time decay.
Furthermore, this is the exponential decay regime, in which the FGR model
should also have some validity. The one important detail appearing in the
FGR calculation, but not in the short-time decay calculation is the inverse
dependence on γ, which we will include in the local decay model. This gives
the decay rate the appropriate units. Therefore, we conjecture that the
column space probability might decay as:

pcol(t) = p0 exp
[
−σ

2 t

γ

(
1−Nj

−1
)]
, (3.35)

at each column j. This column space decay is implemented by allowing the
probability at each vertex | c̃ol j 〉 of the reduced graph to decay exponentially
with the corresponding decay rate Γj . That is, we apply the mapping 2.7
to the system, representing each column of the graph as a single vertex on
a line of length l. The evolution of the graph is then determined by the
column space Hamiltonian, Hcol. Implementing the column space decay is
functionally equivalent to adding an imaginary diagonal component Hdecay

to Hcol, so the effective Hamiltonian Hcol
′ is defined by

Hcol
′ = Hcol + Hdecay

= Hcol − i
l∑

j=0

Γj
2
| c̃ol j 〉〈 c̃ol j |

= Hcol − i
σ2

2 γ

l∑
j=0

(1−Nj
−1) | c̃ol j 〉〈 c̃ol j | (3.36)

where the factor of 1/2 is required since that Hamiltonian affects the prob-
ability amplitudes, which scale as the square root of the probability. The
evolution defined by Hcol

′ is of course non-unitary, i.e. will not conserve
probability – this is precisely what we are trying to model. This simplified
model compares surprisingly well to simulations of the exact decay, as will
be demonstrated in the following chapter.
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3.5 Discussion

In this section, we have developed three basic models to describe the behav-
ior of the column space probability under the influence of site disorder. The
overall conclusion is that disorder introduces couplings between the eigen-
states in the column space and those outside, with the effect of siphoning
probability out of the column space. Since the two end nodes are in the
column space, any probability leak out of the column space translates to
a reduced hitting probability. Furthermore, Fermi’s Golden Rule and the
local decay model predict that the decay is exponential in character, the
latter with with a position-dependent decay that grows as we approach the
center of the graph, as well as with the size of the graph.

Based on the decay rate we derived, and the assumption of exponential
decay, there are several predictions we can make at this point. First of
all, we note that the density of eigenstates is highest at the center of the
graph, and these furthermore have the most couplings to other eigenstates.
So, we would expect that the decay eventually leads to a preponderance of
probability in the center of the graph, as in the classical walk. Secondly, due
to the exponential decay, the probability of reaching the exit node is indeed
suppressed exponentially, particularly as the size of the graph increases.

However, there is an important distinction between this quantum decay
and suppression of the hitting probability due to localization. Localization
would imply that all wavefunctions are exponentially suppressed away from
the entrance node. In fact, the suppression due to decay results from the
buildup of probability outside the column space, which also removes proba-
bility from the entrance node. We therefore expect that for weak disorder,
something resembling a quantum-to-classical transition will take place, with
ballistic propagation and traversal of the full graph giving way to diffusion
towards the center.
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4 Simulations and results

4.1 Numerical methods

Very often, such a simplified model throws more light on the real
workings of nature . . . It can be a disadvantage rather than an ad-
vantage to be able to compute or to measure too accurately, since
often what one measures or computes is irrelevant in terms of
mechanism. After all, the perfect computation simply reproduces
Nature, does not explain her.

Phil Anderson, Nobel Lecture, 1977

Lacking a quantum computer on which to simulate the quantum walks
in the presence and absence of disorder, we have instead compared our
analytical results with simulations, studying the problem by numerically
integrating the Schrödinger equation in MATLAB and FORTRAN. We first
present several numerical strategies that we have employed to make the
integration tractable.

Recall that the glued trees Hamiltonian is defined by the adjacency ma-
trix of the graph (see Eq. 2.6). For the GT graph of degree d, there are
Nd × Nd entries in the matrix, where Nd = 3(2d) − 2. Exponentiating a
matrix of this size is a non-trivial computation. Fortunately, however, for a
given choice of d, the GT graph only has 4(2d−1) edges, and thus the Hamil-
tonian has 8(2d − 1) nonzero elements, all of which are ones. The matrix is
therefore sparse, which allows us to simplify the calculation somewhat.

To approximate the matrix exponentiation, we apply a second-order
splitting or symmetric product formula method, as described by De Raedt
and Richardson [DR87, Ric91]. This scheme works by first breaking up the
Hamiltonian into diagonal and off-diagonal terms,

H = Hdiag + Hoff-diag,

=
∑
j

Hj, j | j 〉〈 j | +
∑
j 6=k
Hj, k | j 〉〈 k |, (4.1)

and then decomposing the off-diagonal portion into a sum of two-site op-
erators. The matrix exponential is then approximated using the Baker-
Campbell-Hausdorff (BCH) formula, which states that the exponential of a
sum of matrices dt(X + Y ) can be written as

edt(X+Y ) = edtX edt Y e−
dt2

2!
[X,Y ] e

dt3

3!
(2[Y,X,Y ]]+[X,[X,Y ]]) . . . (4.2)

51



In essence, we apply a set of matrix rotations pairwise to components
of the wavefunction that are connected by a bond. That is, we express the
off-diagonal Hamiltonian as the sum

Hoff-diag =
∑
j <k

Hj, k R(j, k), (4.3)

with the operators R(j, k) defined as follows:

R(j, k) =
(
| j 〉〈 k |+ | k 〉〈 j |

)
. (4.4)

Then, we have

T (j, k)(dt) = exp
(
−i dtR(j, k)

)
= cos dt

(
| j 〉〈 j |+ | k 〉〈 k |

)
− i sin dt

(
| j 〉〈 k |+ | k 〉〈 j |

)
+
∑
l 6= j,k

| l 〉〈 l |. (4.5)

Using the BCH formula, the time evolution operator can thus be approxi-
mated by

Udt = exp(−i dt Hoff-diag) exp(−i dt Hdiag)

≈

∏
j<k

Hj, k T (j, k)(dt)

Φ(dt), (4.6)

where Φ(dt) stands for the phase rotations,

Φ(dt) =
∏
l

e−iHl, l dt| l 〉〈 l |. (4.7)

We can in fact improve the accuracy of the algorithm above to third
order by symmetrization. That is, we apply the rotations halfway, then the
phase rotations, and finally complete the rotations in reverse order:

Udt =

∏
j,k

Hj, k T j,k(dt/2)

 Φ(dt)

∏
j′,k′

Hj, k T (j′, k′)(dt/2)

 , (4.8)

where j′ = Nd − j, and similarly k′ = Nd − k.
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For our purposes, there are two Hamiltonians we will deal with, splitting
them up as in Eq. 4.1 and proceeding in the manner outlined above. The
first is the vertex space Hamiltonian, including site disorder terms,

Hver = H0 + Hs = H0 +
Nd∑
j=1

εj | j 〉〈 j |, (4.9)

and the second is the non-unitary time-evolution from the local decay model,

Hcol
′ = Hcol + Hdecay

= Hcol − i
σ2

2 γ

l∑
j=0

(1−Nj
−1) | c̃ol j 〉〈 c̃ol j |

as defined in Eq. 3.36. Exponentiating the second term in each Hamilto-
nian gives the Φ term in Eq. 4.7. The factor of (−i) in Hdecay causes the
exponential decay of the probability.

4.2 Numerical results

Using the methods outlined above, we can begin to test the results we found
earlier. We will vary two parameters: the graph depth, d, and the maximum
disorder strength ε. For a given depth graph, we compare the dynamics over
a range of disorder values up to ε, averaging over a number of iterations,
with the diagonal terms of the Hamiltonian Hii = εi taken from a uniform
distribution in the range |εi| ≤ ε. The main results we will present are
the simulated evolution of the hitting probability at the end node, phit, the
column space probability, pcol, the average depth davg and the standard
deviation of the walker’s depth, σd.

The bulk of the results presented below are drawn from two data sets
comprising 3800 individual simulations, broken down as follows:

1. The range of depths runs from d = 5 to 23.

2. The disorder range runs from ε = 0 to 0.9.

3. Each of the combinations of d and ε is averaged over ten iterations for
which the disorder is randomized.

4. Simulations are run separately for site disorder and bond disorder.

5. The simulations are run up to a maximum time of 4thit, in 2500 steps.
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The hitting time thit is an approximate value for the time at which phit
is maximized. A first approximation would be to choose thit = t0 = l/ω,
since the walk propagates at the speed ω = 2

√
2γ. By approximating the

location of the Bessel function’s peak, we find that a small correction term
t′ = 1.0188(l/2)1/3/ω improves the result considerably. So we set

thit = t0 + t′ =
l + 1.0188(l/2)1/3

ω
. (4.10)

4.2.1 Ideal evolution

As a first test for the validity of our numerical results, we compare the
results of our disorder-free simulations with the analytical results derived in
Chapter 1. That is we set ε = 0, and simulate the walk on the graph Gd.
As a reference case, we use d = 15.

Figure 16(a) shows the hitting probability at the end node, phit for t up
to 4thit, compared with the Bessel function solution (Eq. 2.19). The plots
are in perfect agreement. The wavepacket first arrives at time t = thit, and
returns, although with a slightly broader profile, two hitting times later. As
anticipated, the probability is much more than exponentially small in the
depth, and hence much greater than the classical hitting probability.

Second, Fig. 16(b) plots the average depth davg, showing once more
the linear propagation across the graph, with reflections that sync with
the arrivals at either root. Rather than the exact sum from Eq. 2.21,
we show the continuum approximation, from Eq. 2.28. This plot closely
resembles Fig. 10(b), and the agreement is once again good, although the
approximation fails to capture the full magnitude of the davg oscillation.

Finally, Fig. 16(c) displays the standard deviation of the depth, σd. At
first, the curve rises linearly, but dips periodically at each hitting time. This
quantity σd measures the spreading of the wavepacket. Initially localized,
the wavepacket spreads out as it propagates, due to the uncertainty in the
momentum components. The coalescence marked by the dips is due to the
reflection of the wavepackets at the ends of the graph. As time progresses,
the wavepacket continues to spread, although we should be cautious not to
extrapolate too far. This is the sort of behavior we plotted in Fig. 7.

While altogether unsurprising, it is a helpful validation that the numer-
ical results bear out the analysis, even in the face of substantial approx-
imations (e.g. the average depth calculation). These numerical plots are
derived from a simulation on the vertex space of the graph, but if we use
the column space Hamiltonian to implement the line-reduced evolution, we
find the same results.
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Figure 16: Correspondence between simulation results [colored points] and
analytical calculations [black curves] on the graph G15. In the plot of davg,
we plot the approximate result using the continuum limit, rather than the
exact sum. 55



4.2.2 Disordered Evolution I:
Column space decay

We have given arguments aplenty to predict a column space decay, and the
numerical simulations undeniably bear out this result. The following two
plots illustrate the global characteristics of the column space decay:

Fig. 17 shows the evolution of the column space probability pcol on a
graph of depth 15. Plotting pcol on a semilog scale versus t and ε, we observe
that pcol is proportional to e−ε

2
, and also decays roughly exponentially in

time. For large disorder values, the probability of being in the column space
has fallen by about one order of magnitude by the first hitting time, with
similar consequences for the hitting probability. However, for weak disorder
(ε . 0.5), there is still substantial probability in the column space up to
four hitting times beyond the start of the evolution. So there is still a good
chance of end-to-end propagation on the graph.

It is also interesting to follow the dependence of the decay on the degree
of the graph, as shown in Fig. 18. The quadratic dependence of the decay
rate on ε is again visible, but of more significance is its linear scaling with
the depth of the graph. We have plotted pcol for t = thit, but recall that thit
scales with the length of the graph (l = 2d+1) due to the linear propagation
of the wavefunction. Therefore, it appears that the depth dependence is
entirely due to the scaling of the hitting time, and not due to intrinsic
differences between differently sized graphs. This result ties in well with the
conclusions of the previous chapter, in which we found the decay rate to be
nearly constant over most of the graph.

The next item on our agenda is to compare the simulated decay with
the models we derived previously. We have already seen that the short-time
decay of the column space probability seems to scale quadratically with
time, in agreement with our perturbation theory result. Ideally, though,
we would like to make more quantitative pronouncements about the scaling.
However, the short-time decay from the initially localized state is essentially
masked by the variation in position of the decay rate, and is thus difficult
to observe. Starting the system in the central column state leads to a more
uniform decay. The simulations agree with our calculations, but also reveal
that the quadratic decay is valid only up to times on the order of 0.05thit.

Although the Fermi’s Golden Rule calculation is more sophisticated than
the short-time decay, it yields only a single decay rate that varies for the
different eigenstates, and is harder to apply to the case of a superposition
over the eigenstates. So we proceed to compare the results of the local decay
model with the exact simulation. The conclusions are heartening.
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Figure 17: Semilog plot of pcol(ε, t) for d = 15. The decay from the column
space shows a definite Gaussian scaling with the disorder strength, and a
time-dependence that is close to exponential, with some Gaussian character
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Figure 19: Numerical values for pcol(t) and phit(t) on the graph G15. The
points represent the results of the numerical simulations, while the curves
are the corresponding results from the local decay model. Disorder increases
from 0 to 0.6, in steps of 0.1, with the zero disorder case shown by the
topmost blue data set. For clarity, error bars are not shown in plot (b),
however the local decay curves fall within one standard deviation of the
plotted values.
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Figure 19(a) shows the values of pcol(t) up to four hitting times on the
graph G15, with disorder in the range 0 ≤ ε ≤ 0.6. The remaining values
of disorder show similar results, and have been omitted for clarity. Numer-
ical results are shown by crosses, with the error bars given by the standard
deviation of pcol over the ten averaged iterations. The curves are the corre-
sponding values of pcol derived from the local decay model. The agreement
is excellent, up to t = 2thit, although the model then begins to undershoot.
In the local decay model, probability is lost permanently from the column
space, and continues to decay indefinitely, whereas the decay levels off in
the exact simulations. This breakdown of exponential decay may be due to
the expected transition for systems with a lower bound energy [Kha58].

Especially impressive is the fact that the local decay model successfully
reproduces fine features of the decay, such as the ‘kinks’ observed around
integer multiples of thit. These correspond to times when the bulk of the
probability is at either root of the graph, and our calculations in the previ-
ous chapter determined that the decay is reduced at those locations. Given
that it can make detailed predictions of this sort, we are then motivated to
examine whether or not it can reproduce the hitting probability from the
vertex-space simulations. That is, assuming that the reduction in hitting
probability is solely due to decay from the column space, the hitting proba-
bility ought to be reduced by the simple factor phit(t) = p0

hit pcol(t), with p0
hit

representing the hitting probability from the ideal Hamiltonian evolution.
The comparison is plotted in Figure 19(b).

As with the column space probability, we find the local decay model
to closely replicate the vertex-space simulations. In the magnitude of the
oscillations, the agreement is good – it is primarily in the structure of the
peaks that there are differences. Specifically, the peaks in the vertex-space
simulations are slightly sharper, and shifted forwards at the first hitting
time, although the maximum arrives later at the second hitting time (t =
3thit). For comparison, the classical hitting probability is estimated to be
1/Nd = 1.3×10−5, so even with fairly strong disorder, where the magnitude
of the perturbation terms is comparable to half the magnitude of the terms
of the Hamiltonian, the quantum hitting probability is much higher.

To confirm that the hitting probability scales directly with the column
space probability, we can plot the ratio of the two as a function of disorder
strength and depth. Setting t = thit is the most sensible choice, since this
maximizes the hitting probability, and is a good reference point for the
different depths. If we do this (see Fig. 20), we observe that the ratio
is mostly independent of the disorder strength, below some limiting value
(approximately ε = 0.5).
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Figure 20: The ratio phit/pcol taken from the exact simulations, plotted at
t = thit. For small disorder, this quantity is essentially independent of the
disorder strength.

From these results, we conclude that, in the perturbative regime, the
disorder does not substantially alter the behavior of the walk on the graph,
except to cause a leak of the probability from column space states to states
outside the column-space, which causes a diminished likelihood of reaching
the end node (or returning to the start node). Hence, the local decay model
provides a good method for determining the probability at either root.

4.2.3 Disordered Evolution II:
A quantum-to-classical Transition?

We have now established the veracity of the column space decay, and demon-
strated that, for varying levels of disorder, there remains some end-to-end
propagation on the GT graph, as evidenced by the results for phit. The
next question we would like to pose is whether we can characterize more
accurately the degree of propagation achieved by the walker. To answer this
question, we consider the effect of disorder on the average depth.

Before looking at the numerical results, let us reexamine the two cases
for which we know the exact results for the evolution of davg. That is, recall
that the quantum scenario results in an average depth that oscillates, with
a slowly diminishing amplitude (similar to a damped oscillator in the un-
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derdamped regime). The classical walker, however, approaches the center of
the graph in a fashion that resembles an exponential decay. This resembles
a critically damped oscillator (see Fig. 12(b)) Now, we might expect that
adding disorder to the system disrupts the quantum mechanical features of
the system in such a way that the characteristic evolution becomes closer
to classical. In this case, we would expect the amplitude of the davg oscil-
lations to decrease gradually, eventually turning into a similar exponential
approach. The relevant plot is shown in Fig. 21.

In this figure, the evolution of the average depth very clearly transitions
from oscillatory behavior to a decay towards the center of the graph (davg =
d = 15). For all disorder strengths, the average depth initially grows linearly,
the difference occurring when the walker reaches the center. The ideal walker
simply keeps going, until it is reflected from the opposite end of the graph.
As disorder increases, the walk progresses shorter distances from the center,
and the average depth turns around earlier, rapidly coming to a halt at the
center. So the quantum character of the walk is indeed lost.

For an explanation of this behavior, we need to recall two facts about the
GT graph. Firstly, the density of eigenstates is much greater at the center
of the graph (see Section 2.5), and hence when probability leaks out of the
column space eigenstates, it must inevitably become more concentrated near
the center.

Given the successes of the local decay model in predicting the decay of
the column space probability and the hitting probability, we might wonder
if it could be applied to replicate the results for the average depth as well.
To do so, we need to account for the probability that has escaped from
the column space. A näıve guess would be that all this probability winds
up at the center of the graph. To test this, we run the local decay model,
and compute the average depth using the probabilities in each column as
provided by the simulation, but add a term d0(t) = d (1 − pcol(t)) to the
result, representing the remaining probability at the center.

This calculation of dave is shown in Fig. 22. The salient features of the
vertex-space calculation are retained, with only one substantial difference.
That is, for larger disorder values, the local decay model would seem to
suggest an exponentially fast approach to the center of the graph, which
is not a valid result. This is an artifact of the our assumption that all
probability decays directly to the center of the graph; in truth, the non-
column space probability will still take some time to propagate inwards.
Nevertheless, this inaccuracy does not diminish the merit of the local decay
model predictions in the case of weak disorder.
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Figure 21: The average depth, davg(t), plotted for d = 15, showing a transi-
tion from quantum ballistic propagation to classical diffusion.
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Figure 22: Approximation of the average depth reached by the walker,
davg(t), plotted for d = 15, calculated using the local decay model.
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4.2.4 Disordered Evolution III:
Whither localization?

All our results so far point to varying degrees of propagation, whether of the
ballistic quantum sort, or transport more akin to classical diffusion. How-
ever, as mentioned earlier, analyses of the infinite Cayley tree predict the
appearance of a localization transition for sufficiently large disorder. Insofar
as the quantum walker ought to be unaware of the global structure of the
graph in regions it has not yet reached, we expect similar results to hold for
the Glued Trees: sufficiently large disorder should cause exponential local-
ization of the walker near its starting point. That being said, the situation
is complicated somewhat by the fact of the graphs’ finite size. Particularly
on smaller graphs, the localization length may be comparable to the size of
the graph, in which case it will not significantly affect the dynamics.

Having set up the simulations for weak disorder, it is certainly not diffi-
cult to repeat the calculations in the context of large disorder. A paper by
Girvin and Jonson calculates the Cayley tree localization transition to occur
at ε = 7.8 in our units [JG79]. As we will see shortly, signs of localization
appear before then; they already show up before ε = 1.5.

While this large discrepancy is somewhat disturbing, there are various
possible explanations for the difference. Firstly, the precise location of the
transition is hard to determine, in phenomenological terms. A system may
demonstrate localization for some energies and not others. That is, there is a
‘mobility edge’ in the energy, which separates localized states from extended
states. This situation complicates matters when the initial state is a super-
position over the energy eigenstates, as is ours. It is therefore possible for a
portion of the wavefunction to be localized, while the remainder continues
to propagate. Furthermore, the quantities that we have been considering are
not optimal as measures of localization: phit becomes negligible well before
localization sets in, while pcol and davg do not offer direct pictures of the
wavefunction. So it is hard at this stage to point to an exact number where
we consider localization to have occurred.

That being said, plots of pcol and davg do have some insights to offer
regarding the existence of localization. There are two harbingers of local-
ization that we can point to: if the wavefunction becomes substantially
localized at the starting position, then we expect less decay of the column
space probability, since at the very least that amount of probability that
remains at the start node stays in the column space permanently. The aver-
age depth reached also will hit some limiting value below d, i.e. the walker
will not move to the center of the graph.
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(a) Weak disorder (0 ≤ ε ≤ 1.2)
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(b) Strong disorder (1.6 ≤ ε ≤ 10)

Figure 23: For weak disorder, we see column space decay as discussed pre-
viously, but for strong disorder (ε > 1.5), the decay of pcol is limited by the
amount of probability trapped at the start node. (Plotted for G15)
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(b) Strong disorder (1.6 ≤ ε ≤ 10)

Figure 24: Weak disorder causes the transition from quantum to classical
propagation, but strong disorder causes localization of the wavefunction,
and the walker does not in fact reach the graph’s center. (Plotted for G15)
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On the previous two pages are plotted the column space probability and
average depth at a range of disorder strengths, i.e with ε between 0 and
10. The boundary between ‘weak disorder’ and ‘strong disorder’ is between
ε = 1.2 and ε = 1.6, which is when we begin to see a regeneration of the
column space probability, as well as an average depth evolution that closely
resembles the classical result. The contrast between the two regimes is stark,
agreeing well with what we expect from a localization transition.

In the weak disorder regime, Fig. 23(a), we recognize the familiar column
space decay, which occurs more and more rapidly with increasing disorder.
Its character is essentially exponential, with very little probability remaining
in the column space. However, the strong disorder plot is markedly different.
In Fig 23(b), the initial decay profile is similar, with a short-term quadratic
decay that quickly transitions to exponential decay. However, the decay
eventually slows and halts at a finite value, which ought to nearly equal the
probability localized at the start node. For ε = 10, it appears that as much
as 80% of the wavefunction does not leave the origin!

The evolution of the average depth is shown in Fig. 24. In the weak dis-
order regime, the quantum-to-classical transition is clearly visible, whereas
the walk in strong disorder appears to travel only part way across the graph,
never assuming a form concentrated at the center. This difference in the de-
gree of quantum transport arises from the difference in structure of the
eigenstates of the Hamiltonian. For weak disorder, the perturbation does
not substantially change the shape of the eigenstates; they remain extended
over the graph. Once the disorder becomes sufficiently strong, however, the
energy gap between neighboring sites becomes very large on average, and so
the walker has little likelihood of hopping, making the eigenstates localized
at individual sites.

We might well ask whether or not the localization transition is depth-
dependent. Plotting the average depth or the column space probability at
long times should give us an answer. The difference should be especially
pronounced for times when the ideal walk is far from the center.

In Fig. 25, we plot the average depth davg for depths d = 5, 10, and 15,
at t = 3thit. The average depth can be seen to converge for all three graphs,
reaching a minimum value around ε = 8, in good agreement with the critical
value computed by Girvin and Jonson [JG79]. Below this critical value, the
eigenstates on the graph likely show varying degrees of localization, but upon
reaching this transition, all the eigenstates become localized, regardless of
the depth. At this point, the situation really is that of the Cayley tree, since
the wavefunction can gain no information about the structure of the graph
beyond the first few columns.
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Figure 25: Plot of the average depth davg versus the disorder strength ε for
depths d = 5, 15 and 20. The localization transition occurs around ε = 8.

Given the evidence for localization, we may well ask if this is not a
vindication of the Keating results. The answer is an emphatic no! It is
straightforward to simulate the walk in the column space, with diagonal
disorder on the individual column-states, in which case we see localized
behavior much earlier than in the vertex-space simulations. The evolution
is given by the Hamiltonian from Eq. 1.15

Hcol
′ = Hcol +

2d∑
j=0

εj | c̃ol j 〉〈 c̃ol j |,

with εj drawn randomly from a uniform distribution over the range −ε′ ≤
εj ≤ ε′. In Fig. 26, we show plots of the average depth for simulations
of this sort, using disorder strengths ranging from 0 ≤ ε′ ≤ 0.9. On the
vertex-space, this would be solidly within the conductive regime, but the
column space disorder simulations already show significant localization for
ε′ ∼ 0.4, comparable to the vertex-space results for ε = 4.0. Hence, we can
conclude that an implementation of diagonal disorder in the column space
significantly overestimates the severity of the localization effects, and is an
inadequate model for studying disorder on the graph.
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Figure 26: The average depth davg plotted for site disorder, implemented
on the sites of the column space model. In this case, localization sets in
considerably earlier.

4.3 Discussion

The results we have presented demonstrate three main characteristics of
the quantum walk on the Glued Trees graphs in the presence of disorder.
We have shown that the most significant effect of disorder is to couple the
column space eigenstates to other states outside the column space, causing
probability to be irretrievably lost from the column space via a process of
exponential decay. Since the roots of the graph have support only on the col-
umn space eigenstates, this effect translates directly to reduced probability
of arrival at the end node at the first and subsequent hitting times. In the
perturbative regime, i.e. for weak disorder, we find that we can efficiently
model the column space probability and the hitting probability by using a
dynamical model incorporating local decay. Furthermore, for strong disor-
der, we observe evidence of a localization transition occurring at a critical
value of the disorder strength.

A slightly different paradigm from the site disorder we have studied is
bond disorder, i.e. modifications of the off-diagonal terms of the Hamilto-
nian. While the decay rate calculations are more complicated, particularly
those for Fermi’s Golden Rule, due to the couplings across column-states, we
can make a simple estimate of how the effects of disorder should scale with
the disorder strength. Since there are approximately three edges for each
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vertex, and each of these edges will introduce phase-shifts for paths that
traverse them, we might expect the bond disorder strength to have roughly
three times the effect of the corresponding site disorder strength. That is,
we estimate that the decay rates will be three times larger for bond disorder
with the same disorder range. If we carry out the simulations, we find that
this prediction indeed appears to be borne out: the decay is more severe,
and localization begins to appear earlier.

It is downright simple to incorporate the bond disorder estimate into
the local decay model, but the results are mixed. While the tripling of the
decay rate matches up with the vertex-space calculations, we find that the
timeframe in which the local decay model is valid shrinks by a corresponding
factor. This is due to the essentially limitless decay of the model. In prin-
ciple, for very large graphs this should be less of an issue since the fraction
of probability that remains in the column space at large times is minuscule.
That being said, this limitation of the model should not be brushed off.

Naturally, it would be an interesting problem to try to improve on the
local decay model, in the hopes of extending the timeframe of validity with-
out sacrificing the efficiency of the calculations. An obvious method is to
account for return of the column space probability, or at the very least a
modification of the decay rate at long times. If the former technique is to be
used, however, the uncertainty about where the probability would return to
necessitates a more complex treatment, involving the density matrix. Small
returns might also be gained by improving the calculation of the average
depth from the local decay model, for larger disorder values.

While much has been gained from studying small and intermediate de-
gree graphs (5 ≤ d ≤ 23), our calculations suggest that the dynamics of
decay might be simplified on much larger graphs (d ≥ 100). Computing
power sadly prevents us from attempting a vertex-space simulation of such
large graphs, although groups with more power available would be encour-
aged to extend the calculations.

69



5 Conclusions

I think perhaps the most important problem is that we are trying
to understand the fundamental workings of the universe via a
language devised for telling one another when the best fruit is.

Sir Terry Pratchett

Our findings essentially indicate that quantum walks on the Glued Trees
graph can be placed in three regimes based on the strength of disorder. For
disorder terms that are small compared to the terms of the Hamiltonian,
the walk remains essentially quantum-mechanical in character, showing lin-
ear propagation across the graph, although a growing proportion of the
wavefunction becomes caught in the center of the graph. Once the disor-
der is comparable to the Hamiltonian, the dynamics become more classical
in character, the wavefunction moving rapidly to the center of the graph,
and subsequently remaining concentrated there. Once the diagonal terms
of the Hamiltonian become dominant, the wavefunction becomes localized,
and the walk becomes trapped at its starting point, with an exponentially
small probability of being found further away.

The exponential decay of the column-space probability has mixed im-
plications for the feasibility of implementing quantum-walk-based computa-
tion. The result of exponential decay appears to counteract the speedup, the
most notable advantage of the quantum walk over the classical, putting the
two paradigms on more equal footing. However, the fact that decay, and not
localization, is the dominant source of the reduced hitting probability, means
that the situation is less dire. First of all, the dependence of the decay is
only quadratic in the size of the disorder, with the critical disorder strengths
sufficiently large that it may be possible to design quantum circuits or other
implementations with tolerable margins of error. Secondly, the propagation
is largely a function of the column-space probability, so if techniques can
be devised to retard the decay a la the ‘watched pot’ effect (e.g. by re-
peated measurements of the wavefunction’s being in the column-space), this
limitation may yet be overcome [SRM94].

In the spirit of scientific holism, one hopes that the techniques employed
in the study of the Glued Trees walks can be extended to cover other sys-
tems. The obvious extensions are to graphs with similar symmetric struc-
tures, which enable the column-space analysis. These include the hypercube,
dendrimer structures studied in the context of solar power, and of course the
individual binary trees. We expect that decay from the column-space will
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prove to be a similarly important aspect of the disordered walk dynamics
for such systems.

There remain many open questions regarding the topics of the Glued
Trees, column-space decay and disordered walks, and the work we have pre-
sented opens up several more. Likely the most important point is that the
characterization of the walk in the presence of disorder is far from com-
plete. While the local decay model serves very well for the timescales that
are relevant to the problem of end-to-end propagation on moderately sized
graphs, there is some doubt as to whether it continues to be valid in the
limit of very large d, where simulation in the vertex-space is essentially un-
feasible. Needless to say, extension of our simulations to much larger graphs
(d > 100) would be a welcome comparison. It is possible that accounting
for the return of probability to the column-space via the density matrix ap-
proach may be of use in improving the model. Also, the local decay model
is effective at predicting the average behavior of the disordered graphs, but
it is incapable of taking into account the specific variations in a single in-
stance of disorder. This weakness is fortunately minor; for large graphs, the
vertex-space is large enough that uncorrelated disorder will tend to average
out over each column, and moreover an experimenter is unlikely to know the
exact deviations in an experimental setup, so such a level of detail is prob-
ably unrealistic. In any case, simulations of single instances do not appear
to deviate too significantly when compared with the averages.

Besides characterizing the effects of disorder on the Glued Trees, it would
be interesting to examine the effects of other sorts of noise, such as decoher-
ence of the wavefunction. While it is generally held that robustness against
one sort of noise carries over to other kinds, it is also true that qualitiatively
different effects arise from disorder and decoherence. The combined effects
of different sorts of noise also form an interesting topic, albeit one further
removed from quantum computation, in that the amounts of noise involved
are considerably greater. In such contexts, localization may be more pro-
nounced and more relevant, in which case a more in-depth analysis of the
localization transition would be important. Likely, the Cayley tree results
of Abou-Chacra et al. will be useful in such endeavors [ACTA73].

While discussing the application of Fermi’s Golden Rule, we were forced
to employ some less rigorous methods in approaching the density of states.
This could in principle be improved upon, although as a tool, the Golden
Rule is already an approximation, so it is uncertain what might be gained
from such an investigation. Of greater interest, however, is the energy-
dependence of the decay, which we have attempted to address only in pass-
ing. It is possible to study the amount of probability that decays into the
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various eigenstates and sub-column-spaces, but due to the many couplings
between eigenstates, the character of the decay is greatly complicated. The
energy-dependence of the decay could also potentially add insights to the
understanding of the localization transition and the mobility edge.

From the point of view of implementation, it is interesting to consider
different schemata for encoding the Glued Trees walks. The issue of mapping
general quantum walks to qubit Hamiltonians and back has been explored by
Hines and Stamp [HS07b]. As an example, the structure of the d-dimensional
hypercube is well-known to be encoded in the form of the collection of d-
qubit strings, with edges connecting strings with Hamming distances of 1.
Qubits are the most natural units to think of in terms of an experimental
realization, so we would want to encode the GT graph in an n-qubit system.
With Nd = 3(2d − 2) vertices, we will need at least d + 2 qubits, and at
most Nd. The analysis above assumes an Nd qubit encoding (a.k.a. a unary
encoding). Preliminary study suggests that encodings using the Hamming
weight of l = 2d + 1 qubits to represent the current column-state or the
minimal d+2 qubit encoding would be efficient to implement using quantum
circuits, however much work remains to be done on this question.

Over and above the feasibility of the encodings lies the question of how
robust the encoded systems will be against noise. Once again, the hyper-
cube provides some hints. Previous studies have demonstrated that the
maximally efficient qubit encoding, suffers more severely from decoherence
and disorder than a‘unary’ encoding in which each qubit represents a ver-
tex. Alagić and Russell’s investigation of decoherence on the qubit-encoded
hypercube determined that the hitting probability vanished for arbitrarily
large graphs [AR05].

Strauch carried out a similar analysis, comparing the performance of
the hypercube walk in two cases: dephasing between distinct faces of the
hypercube (the ‘subspace model of Alagić and Russell), versus dephasing
between different vertices [Str09]. He found that for a fixed value of disor-
der or decoherence in the ‘vertex model’, the hitting probability approached
a small but finite asymptotic limit as the graph size grew, in contrast to the
subspace model. This result essentially ruled out localization. An argument
in favor of the vertex model is that it assumes no knowledge of the graph
structure, as ought to be the case in a physical realization. However, Hines
has argued that the subspace model is more appropriate in the case of ex-
perimental realizations in qubit registers [HS07a]. The expectation is that
similar results regarding the robustness of different encodings will hold for
the Glued Trees, but analysis of this claim remains to be carried out.
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