Last time we considered (a special case of) the rotation map

\[R_\theta : \mathbb{R}^2 \to \mathbb{R}^2 \]

which rotates the plane counterclockwise about the origin by angle \(\theta \). Today we explored two questions:

1. Is \(R_\theta \) linear?
2. Can we find a nice formula for \(R_\theta(x, y) \)?

Some of you suggested a geometric approach. The main idea, captured in the illustrations below, is that \(R_\theta \) is a **rigid motion**: it doesn’t affect shapes, and more precisely, moves shapes to congruent shapes. This gives two ways to describe rotated image of points like \(x + y \) and \(\alpha x \):

Proof of Additivity

On one hand, \(P = R_\theta(x + y) \). On the other, \(P = R_\theta(x) + R_\theta(y) \).

Proof of Scaling

On one hand, \(Q = R_\theta(\alpha x) \). On the other, \(Q = \alpha R_\theta(x) \).

These pictures give an appealing way to think about the problem, not only because they’re pretty, but because they give a sense of why \(R_\theta \) must be additive and scale. However, they’re unsatisfying in a different way: it’s difficult to tell how rigorous they are. For example, do these pictures represent the general situation? The illustration of additivity does not: what if \(x \) and \(y \) are collinear with the origin? And how do we know that there aren’t some other configurations of \(x \) and \(y \) which behave differently than the above pictures suggest?

Date: February 24, 2016.
A different approach combines geometry with algebra. Given a point \((x, y) \in \mathbb{R}^2\), write it in polar coordinates as \((r, \alpha)\), say. We can convert back and forth between rectangular and polar coordinates using the following dictionary:

\[
x = r \cos \alpha \quad y = r \sin \alpha
\]

\[
r = \sqrt{x^2 + y^2} \quad \alpha = \arctan(y/x)
\]

All these formulas can be read off from the following picture:

The point \((x, y)\) labelled in polar coordinates as \((r, \alpha)\).

The advantage of working in polar coordinates is that rotation becomes easy: we have

\[
R_\theta(x, y) = (r, \theta + \alpha)
\]

where the right hand side is in polar. Translating this back to rectangular coordinates, we find

\[
R_\theta(x, y) = \left(r \cos(\theta + \alpha), r \sin(\theta + \alpha) \right).
\]

Although technically this tells us where \(R_\theta(x, y)\) is located, it’s not a very satisfying answer because it’s not in terms of \(x\) and \(y\). This is easy to rectify using trig addition rules:

\[
R_\theta(x, y) = \left(r \cos(\alpha + \theta), r \sin(\alpha + \theta) \right)
\]

\[
= \left(r(\cos \alpha \cos \theta - \sin \alpha \sin \theta), r(\sin \alpha \cos \theta + \cos \alpha \sin \theta) \right)
\]

\[
= \left(x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta \right)
\]

This formula will allow us to easily prove the linearity of \(R_\theta\). More importantly, it will give us a hint about the structure of linear maps from \(\mathbb{R}^2 \to \mathbb{R}^2\). We’ll pick this up next lecture.