
Parameters of a Strömgren Sphere

Let’s assume that we have a 40,000 K B-main sequence star sur-
rounded by an interstellar medium composed entirely of hydrogen
(density N(H) = 1 particles cm−3).

How long will a neutral hydrogen atom stay neutral? The photon
luminosity of a B main sequence star is

∫ ∞
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dν = 5× 1048 photons s−1 (19.01)

where ν0 is the ionization frequency for hydrogen. Let’s now
assume all the ionizing radiation comes from the star. The photo-
ionization rate at a distance r from the star is

P = N(H0)
∫ ∞
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4πr2hν
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Note the terms in the equation. The photoionization rate is pro-
portional to the number of neutral atoms that are around to be
photoionized, the number of photons available for photoioniza-
tion, and the cross section for ionization. For a precise calcu-
lation, we should integrate this equation, but for now, we can
just adopt an “average” value of aν . For a 40,000 K star, only
the high-end tail of the blackbody function extends shortward of
912 Å, hence almost all ionizations occur with aν ≈ 5×10−18 cm2.
So

P = N(H0)
∫ ∞
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If we now pick a position, say, 5 pc away from the central star,
then we can just plug in the numbers to get P ∼ 10−8 ioniza-
tions cm−3 s−1. In other words, in a cubic centimeter of space,
the time between ionizations is 108 seconds: a neutral hydrogen
atom can stay neutral for over a year!



What is the distribution of states for hydrogen? The time it takes
an atom to decay from state nL to state n′L′ is just one over the
Einstein A value. The time it takes at atom to decay from state
nL to any state is therefore

τnL =
1∑

n′<n

∑

L′=L±1

AnL,n′L′
(19.04)

(Note that by specifying that L′ = L ± 1, we are neglecting the
forbidden transitions.). Typical A values for permitted transi-
tions are 104 <∼ AnL,n′L′

<∼ 108 sec−1, so 10−4 >∼ τnL
>∼ 10−8 sec-

onds.

There is one exception to this. A hydrogen atom in the 2 2S
state, has no permitted way to decay down to 1 2S. Atoms in this
state must either be a) collided out of the state, or b) decay via a
low probability (A = 8.23 sec−1) two-photon emission, where the
atom makes a temporary state for itself between 1 2S and 2 2S. If
this occurs, the atom will be trapped in 2 2S for τ = 0.12 seconds.

In any event, the time for a hydrogen atom to decay is less than
a second, whereas it must weight a year before a neutral atom
gets photoionized. Consequently, all photoionizations occur from
the ground state.



What fraction of hydrogen atoms will be neutral? Let ξ be the
fraction of neutral hydrogen, i.e., ξ = N(H0)/N(H), and again,
let’s consider a spot 5 pc from a 40,000 K main sequence star.
As we have seen, at that location

P = N(H0)
∫ ∞
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4πr2hν
aν dν ≈ N(H0) 10−8 sec−1 (19.05)

For an emission region to be in equilibrium, the number of ion-
izations (in each cubic centimeter) must equal the number re-
combinations. The latter number is given by

R = NeNpαA (19.06)

In other words, the recombination rate is proportional to the
density of free electrons, the density of hydrogen atoms need-
ing an electron, and the recombination coefficient, αA ∼ 4 ×
10−13 cm3 s−1. Ionization balance implies

N(H0)
∫ ∞
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4πr2hν
aν dν = NeNpαA (19.07)

In a pure hydrogen nebula, Ne = Np, and Np = (1 − ξ)N(H).
Thus

ξN(H)(10−8) = (1− ξ)2N(H)2(4× 10−13) (19.08)

or
2.5× 104ξ = (1− ξ)2N(H) (19.09)

For a typical ISM value of N(H) ∼ 1, ξ = 4 × 10−5. Virtually
all the hydrogen is ionized!



How thick is the transition region between the ionized and neutral
material? The mean free path of an ionizing photon is given by

` =
1

N(H0)aν
(19.10)

(the larger the cross section, or higher the density of neutral
atoms, the shorter the path). By definition, in the transition
region, half of the hydrogen is neutral. Thus the mean free path
of an ionizing photon in this region is

`trans ∼ 1
0.5N(H)aν

(19.11)

For aν ∼ 5 × 10−18 cm2 and N(H) ∼ 1, `trans ≈ 4 × 1017 cm,
or 0.1 pc. Thus, when the material starts to become neutral,
the ionizing photons are rapidly eaten up. Considering that the
entire H II region might be ∼ 10 pc across, the transition region
is very thin.

(Note: if the source of ionizing radiation is very hard (for in-
stance, as in the power law continuum of an AGN), then the
effective aν can be significantly smaller. This can translate into
a large transition region.)



What is the size of an ionized region? To calculate this, let’s
start with the full equation for ionization balance. The ioniza-
tion rate at every location in the nebula must be equal to the
recombination rate at that location.

N(H0)
∫ ∞
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Here, Jν is the mean intensity of radiation, in units of energy per
unit area, per unit time, per unit frequency, per unit solid angle.
(The 4π term is the implicit integration over all directions.) Note
that Jν has two components. Ionizing radiation can come from
the central star, but it can also come from a diffuse component.
If, somewhere in the nebula, an electron recombines from the
continuum directly into the ground state, the photon emitted
will have enough energy to ionize another atom.

Keeping track of the diffuse ionizing field is fairly complicated.
However, for some nebulae, there is an excellent approximation.
Most recombinations will produce a photon with ν ≈ ν0; such
a photon has a high cross section for re-absorption. Therefore,
let us make the on-the spot assumption that all photons
produced by ground state recombinations are absorbed
locally. Any recombination to the ground state produces a pho-
ton that is immediately re-absorbed by a neighboring atom: it’s
as if no ground state recombination ever occurred.

(In low density nebulae with N(H) ∼ 1, this approximation is
not very good, since, as we have seen, the mean free path for an
ionizing photon is

` =
1

N(H0)aν
(19.10)

If the neutral fraction is small, ξ ∼ 10−4, then ` can be large.



However, as the density of particles increases, the mean free path
decreases, and the approximation becomes better and better.)

If we neglect the diffuse component of the ionizing radiation field,
then the only ionizing photons are those that come from the
central star. If each square centimeter of the star produces a
monochromatic flux of πFν (ergs cm−2 s−1 Hz−1), then any point
in the nebula sees this field, diluted by a geometrical term, and
by the attenuation that has already occurred. In other words,

N(H0)
∫ ∞
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(19.13)
where R is the radius of the star, r is the distance to the star, and
τ , the optical depth, reflects the fact that some photons from the
star have already been absorbed before they reach r. Specifically,
the equation for optical depth is

τν(r) =
∫ r

0

N(H0)(r′)aν dr′ (19.14)

Since the luminosity of the star is

Lν = 4πR2(πFν) (19.15)

the equation of ionization balance simplifies to

N(H0)
4πr2

∫ ∞
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where now we are using αB , which is the recombination rate to
all levels except the ground state of hydrogen.



Now, let’s assume that the density of the emission region is
roughly constant. We can re-write (19.16) as

N(H0)
∫ ∞
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Now let’s integrate both sides over r, and let R represent the
extent of the nebula.∫ R

0
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(19.18)
We can replace dr with dτ/N(H0)aν , since

τν(r) =
∫ r

0

N(H0)(r′)aν dr′ =⇒ dτ

dr
= N(H0) aν (19.19)

And, at the edge of the nebula τ = ∞ (by definition), so
∫ R
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∫ ∞
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(19.20)
or just ∫ ∞
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dν = Q(H0) (19.21)

In other words, the left hand side of (19.17) is just the number
of ionizing photons coming from the star. (This should not be
too surprising, since, one way or the other, all the photons must
be eaten up.) In the case of a constant density nebula, the right
hand side of (19.17) is straightforward to integrate, and, since
the ionization fraction inside the nebula is extremely high, Np ≈
Ne ≈ N(H). So

Q(H0) =
4
3
πR3N(H)2αB (19.22)

Thus, we have a very simple expression for the size of the nebula.
Our 40,000 B-main sequence star will generate an H II region
∼ 50 pc in radius.



Modifications Due to Helium

Photons with energies greater than 24.6 eV (504 Å) can ionize
helium and, due to the ν−3 dependence on cross section, such
photons are ∼ 8 times more likely to ionize helium than hydro-
gen. At first glance, this would seem to mean that helium can
significantly reduce the size of a Strömgren sphere. However, the
energy difference between the n = 1 state of helium, and the
n = 2 state is about 19.9 eV. (The exact difference depends on
whether we are talking about singlet states, or triplet states, and
whether the n = 2 term is a P or an S.) Thus, almost every
recombination of a helium atom will produce another photon ca-
pable of ionizing hydrogen. Consequently, the effect of helium on
the size of the Strömgren sphere is minor.

(Note: some interesting physics is associated with the He I atom.
Since there are two electrons, He I has singlet levels (opposite spin
electrons) and triplet levels (same spin electrons). Like hydrogen,
singlet decays from 2 1P to 1 1S are no problem, but 2 1S to 1 1S
is forbidden; these atoms can only decay by creating a temporary
state somewhere between 2 1S and 1 1S and emitting 2 photons
(A = 51 sec−1). When this occurs, 56% of the time, one of the
photons will have an energy greater than 13.6 eV. Atoms in the
triplet state, however, have a harder problem: once they get to
2 3S, the only way for them to decay is to have one electron
change its spin. The A value for this is A = 1.27×10−4 sec−1. If
the spin-change does occur, then the resulting photon can ionize
hydrogen, but since the timescale for this is long (τ ≈ 2.2 hours),
it’s possible that the atom will get collided out of 2 3S before it
can decay. In fact, some of these collisions will dump the electron
directly in 1 1S. If this occurs, an ionizing photon will be lost.
Depending on the density, He I will eat up between from 4% to
34% of hydrogen’s ionizing photons.)



The accurate computation of ionization balance for a hydrogen-
helium nebula can be moderately complicated, but the problem
can be approximated by noting that aν(He0) is always signifi-
cantly larger than aν(H). Thus, if you make the assumption that
all photons capable of ionizing helium do ionize helium, then

∫ ∞
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dν = Q(He0) =

4
3
πN(He+)NeαB(He0)R3

He+ (19.23)

where ν1 is the ionization frequency of helium, and RHe+ is the
radius of the He I Strömgren sphere.

If the central star is hot enough to produce photons with energies
greater than 54.4 eV (228 Å), then helium can become doubly
ionized. Because of the extremely large differences between the
energy levels of He II, a recombination to He II will produce, on
average, 1.25 photons capable of ionizing hydrogen.


