
ELSA Documentation for Version 1.0b1

July 6, 2009

Contents

1 Introduction 1

2 Setup 2
2.1 Compiling on Unix Systems . 2
2.2 Other Systems . 2

3 Reference 3
3.1 General Structure and Configuration . 3

3.1.1 Overview . 3
3.1.2 The elsa.conf File . 4
3.1.3 The Spec File . 6

3.2 Log Management Tasks . 6
3.2.1 The splot merge Task . 6
3.2.2 The splot undup Task . 7
3.2.3 The splot flag Task . 8
3.2.4 The convert data Task . 8

3.3 Table Generation Tasks . 9
3.3.1 The splot table Task . 9
3.3.2 The splot table composite Task 11

3.4 Abundance Calculation . 12
3.4.1 The splot abun Task . 12
3.4.2 The abun batch Task . 13

3.5 ELSA’s mini-tasks . 13
3.5.1 The temp dens Task . 13
3.5.2 The intrat Task . 15
3.5.3 The normalize Task . 15

3.6 The references Task . 16
3.7 Using TIPbase Atomic Constants . 17

3.7.1 Getting and Using Data from TIPBase 17
3.7.2 The table gen Task . 17

3.8 List of Recognized Ions . 19

1

4 Programmer’s Guide 20
4.1 When In Doubt... Copy! . 20
4.2 General Architecture Notes . 20
4.3 Adding New Ions . 22
4.4 Adding New Temperatures and Densities . 23
4.5 Adding New Atomic Data . 23
4.6 Adding Configuration Variables . 24

5 Acknowledgments 25

6 Authors’ Contact Information 25

1 Introduction

ELSA is an integrated tool for astrophysics researchers. It is meant to serve a bridge between

raw data logs taken with the Image Reduction and Analysis Facility (IRAF) and the final,

organized tabular data. It was originally designed to analyze emission-line spectrum data

from planetary nebulae, but it is now possible to use ELSA on a host of astronomical objects

that produce similar spectra. ELSA integrates much of the latest research in atomic physics

and astrophysics, as well new, original methods, to produce sophisticated calculations of ionic

and elemental abundances, electron temperatures, and electron densities based on emission

line strengths. It also provides facilities for managing and formatting the resultant data for

use in research and publications.

ELSA was developed by Matthew D. Johnson and Jesse S. Levitt at Williams College

in the summer of 2005. Large portions of it are based heavily on the work of Karen Kwitter

at Williams College and Dick Henry at the University of Oklahoma. It borrows widely from

the established work of numerous individuals who have developed atomic data and constants

for use in applications like these.

What follows is the comprehensive documentation for ELSA. It includes the basic and

setup, and operation of the program, as well as a guide for experienced and semi-experienced

programmers who wish to modify the code. We would appreciate it if any significant modi-

fications to the code could be brought to our attention, as ELSA is still a work in progress

and we wish to include as many as improvements and advances as possible in future versions

of the code.

If you find ELSA to be useful to you in your research and analysis, we encourage you to

tell us and provide feedback on how future versions could be expanded and improved.

2

2 Setup

2.1 Compiling on Unix Systems

The latest source code and binaries for ELSA can always be found on the website:

http://www.williams.edu/astronomy/research/PN/.

To obtain a working copy of ELSA, there are two options. If you use Mac OS X (Pow-

erPC), Solaris (SPARC), or Linux (i386), you may download the binaries for your system.

These are pre-compiled for specific system and platform. If you’re not using one of the above,

or you prefer to compile your own binary, obtain the source code distribution. In any case,

unpack it as such:

gunzip elsa-1.0.tar.gz

tar -xvf elsa-1.0.tar

If you’re compiling from souce, you then should be able go into the elsa/src directory

and run make. This will build your ELSA binary and place it at the root level of the di-

rectory (outside src. If this seems to have worked correctly, you’re done. Now you will

probably want to edit your config file, elsa.conf, as described in section 3.1.2.

If your system has a non-standard make and isn’t able to deal with the Makefile provided

here, you can build it manually with the following:

gcc -o elsa *.c -lm

Your C compiler may be called cc if your system is old enough not to have the GNU C

compiler (GCC) installed on it. If you experience any severe system-specific problems that

prevent you from compiling or running ELSA, please let us know!

2.2 Other Systems

ELSA is designed on and for Unix systems. Currently there is no version for Windows or

other operating systems. It may be possible to compile and run the code on such systems

provided that there is sufficient compatibility with the POSIX library calls. In these cases,

you will need to make sure that you link against libmath (the -lm option in GCC) or you

may experience very strange mathematical behavior.

3

3 Reference

3.1 General Structure and Configuration

3.1.1 Overview

The source code compiles to a single Unix binary. This binary will provide an interface

to the multiple “tasks” that make up ELSA’s suite of tools. Each task has a specific

function and takes specific arguments and parameters (typically names of input and output

files, or numerical constants required for the operation the task performs). There is also a

general configuration file (called elsa.conf by default) which provides the values of several

important global constants and switches that pertain to all tasks in the program, such as

the values of Hα and Hβ, the wavelength tolerance threshold, and more. See section 3.2 for

descriptions of these run-time configuration variables.

The tasks fall into one of three categories: log merging and management, table generation,

and abundance calculation. Log merging and management tasks process the data in splot

log files produced by IRAF, and run diagnostics on it to flag unknown wavelengths and

measurements with long comments. Table generation tasks will create organized data tables

in various table formats after performing corrections for reddening, helium recombination

contamination, temperature and density dependence, and Balmer ratio variance. Abundance

calculation tasks will compute ionic and elemental abundances, electron temperatures, and

electron densities based on line strengths after performing the aforementioned corrections.

ELSA is run from the Unix command line as such:

elsa [options] [task] [task syntax - .]

The syntax for each task is listed in its respective subsection below.

There are a small number command line options available. In this version, they only

control the preferred output format. This version can output in human readable (tab-

delimited) format, in the CSV (comma separated value) format suitable for use with tabular

data and plotting programs, and in LATEX (with the AASTEX extensions) format. Running

elsa -h will print the online help, which shows the list of tasks and command line options

present in the current version. As of the time of this writing, the options are:

-c Use a set c (dereddening) value. Only applies to abundance calculation and table gener-

ation tasks. Usage: -c=X.XX, where X is in [0-9].

-e Calculate and report error/uncertanties. Applies to table generation and abundance

calculation tasks.

4

-h Print online help and exit (no task execution).

-p Preserve unparsed lines as comments in convert data task.

-r Use human readable output wherever possible.

-s Use CSV (comma separated values) output wherever possible.

-t Use LATEX output wherever possible.

-v Print version number and exit (no task execution).

It is possible to stack options (such as -vc), but as of this version there is no reason to do

this as all the options are mutually exclusive. In the event that, for example, two conflicting

formatting options are given, the last option given will take precedence. Note that not all

output formats are available for all tasks. See the task reference below for more information

about possible output formats for specific tasks.

3.1.2 The elsa.conf File

The global configuration file is by default named elsa.conf and will unpack in the same

directory as the source code and documentation. Before running ELSA, you should edit

the configuration file and make sure that the values in it are acceptable for your data. The

configuration file contains comments which explain the values in it. Here are the important

parameters you will need to set:

SpecFile Contains the name of the file from which the list of “known” or reference wave-

lengths will be read. See section 3.1.3 for the structure and use of this file. The filename

can be an absolute path (beginning with a slash) or a relative path (not beginning with

a slash), in which case it is relative to the current working directory when ELSA is

invoked. Its default is wavelengths.txt, which assumes it is a file so named in the

same directory as the ELSA executable. Must be a string value, but no quotation

marks are necessary to delimit it.

MaxLines Specifies the maximum number of lines that can be read from a data file (either

in splot format or ABUN format). ELSA will allocate enough memory to hold the

number of lines specified by this value, so there is no disadvantage to setting it too

high other than that ELSA use a larger amount of memory. If it is set lower than the

number of lines found in a file, ELSA will stop reading lines after it reaches this limit.

Must be an integer value.

5

MaxSpec Specifies the maximum number of reference wavelengths that can be read from

SpecFile. Behavior is similar to that of MaxLines, only with regard to the spec file

instead of input data files. Must be an integer value.

MaxTolerance Determines the upper and lower limits within which ELSA will search for

wavelengths. This parameter is used in all tasks in ELSA. The log management

tasks use it to identify “overlapping” wavelengths as described in sections 3.2.1 and

3.2.2. The table generation and abundance calculation tasks use it to determine which

reference wavelength a line from the data input file should be associated with. If,

for example, this parameter is set to 5.0, observed wavelengths in log files will match

the reference wavelength in question if they are within ±5 angstroms of the reference

wavelength. The splot flag task uses this parameter in the same fashion to determine

which wavelengths cannot be identified with a reference wavelength and should thus be

flagged. Must be a floating point value. (See also the discussion of the radial velocity

task parameter in sections 3.2 and 3.3, as it also affects the selection of observed

wavelengths to associate with reference wavelengths.)

HalphaWavelength Specifies the reference wavelength for Hα. It should not be listed in the

spec file. Must be a floating point value.

HbetaWavelength Specifies the reference wavelength for Hβ. It should not be listed in the

spec file. Must be a floating point value.

He2Wavelength Specifies the reference wavelength for He II. This wavelength can (and prob-

ably should) be listed in the spec file. Whereas Hα and Hβ are treated specially and

output independently of processing the spec file, He II is not. This wavelength only

determines which flux will be used to perform correction for contamination from he-

lium recombination (see section 3.2 for a discussion of this). Once the correction is

complete, He II will be processed like the rest of the reference wavelengths.

HalphaHbetaRatio Defines the default value for the ratio of Hα/Hβ. Common convention

in planetary nebula research to date has fixed this value at 2.86. ELSA has a facility

to calculate this value based on the temperature and density of the object in question.

This parameter’s value is used if that facility is turned off, or fails to produce a value

for any reason. This value is also used to “seed” the dynamic calculation of the true

value. Must be a floating point value.

BalmerDecrement This is a boolean switch to tell ELSA whether it should use the Balmer

Decrement to calculate a correct value for Hα/Hβ. If this is enabled, any log put

6

through a table generation or abundance calculation routine will require the presence

of the O III lines (λ5007 and λ4363) and the S II lines (λ6716 and λ6733) to determine

the O III temperature and electron density before calculating the Balmer Decrement.

If this presents a problem you can disable this functionality and the aforementioned

tasks will only require Hα and Hβ to run. The value of HalphaHbetaRatio will be

used instead. Must be the string ”on” or the string ”off” (without quotation marks).

3.1.3 The Spec File

The spec file contains the list of reference wavelengths to be used for table generation and

abundance calculation tasks. The format of the file is simple: each line contains a wavelength

in angstroms as a floating point value (note that both integers and decimals are acceptable

as floating point values) followed by a space, followed by the text description of what ion

the wavelength is related to. Everything after the initial space is considered to be this text

description. The number of lines in the spec file should not exceed the amount specified by

the MaxSpec configuration variable. If it does, lines beyond the specified limit are ignored.

Comments and blank lines are not allowed in the spec file, and their presence may cause

formatting faults which will prevent ELSA from being able to complete a run.

The “master list” of wavelengths read from this file is used to generate table output, and

to generate the data that is passed to the abundance calculation routines. If a wavelength

does not appear in the spec file, it will be ignored by ELSA in all table generation and

abundance calculation tasks.

See the provided sample “wavelengths.txt” for a guide to creating spec files.

3.2 Log Management Tasks

3.2.1 The splot merge Task

Syntax: splot merge <file 1> <file 2> [scale] [output file]

The splot merge task consolidates two splot log files generated by IRAF into a single

log. Raw, unedited logs should work correctly. The expected format of the log files is columns

of floating point values. This task will read the files line by line, taking the first column as

the wavelength and the third column as the flux. The second column (the continuum level)

and all columns after the third are ignored. The task also ignores any line that does not

begin with a number (i.e., it will ignore blank lines and “header” lines). Lines beginning

with a pound sign (#) are taken to be comments. Comments are preserved throughout all

processes in ELSA. All the text after the pound sign is taken to be the comment. The pound

7

sign itself and all leading and trailing whitespace are deleted. All comments are associated

with the last valid line of data that was read. In the event of multiple consecutive comments,

the strings will be concatenated into a single comment string and associated with the last

valid line of data.

The output will be in the same format, although zeroes will be output as placeholders

for the continuum level (this will not cause problems when the output log is read, since the

continuum level is ignored). Comments will be output prefixed by a pound sign following

the line that they refer to. Output is written to the named output file if it is provided

and the file writable. If not, output will be to the standard output. Since this task has a

special output format, all command line options about output formats are ignored.

The parameter scale is a floating point value by which all the flux values in file 2 will

be multiplied prior to processing. The goal of the scale factor is normalize all the flux values

across both files to the same scale (in the event that the instrumentation used to obtain the

data produced different scales for different ends of the spectrum). There is no facility in

ELSA to calculate the scale factor automatically. The scale factor parameter is optional. If

it is not provided, it will be assumed to be 1.0.

After the scale factor has been applied to file 2, this task will iterate through each line

in both files. It will find all other lines whose wavelength falls within ± the value of the

MaxTolerance configuration variable of the wavelength in question. All such overlaps that

are found will cause you to be prompted to select one of the overlapping lines to be written

into the output file. This will eliminate all duplicate lines, whether they happen to be in the

same file or in different files. The prompt will present you with the wavelength, flux, and

comment for you evaluate.

It is recommended that you check the output file against your input files to ensure that

your MaxTolerance setting was sufficient to both catch all overlaps, and to prevent finding

false overlaps. This task is ultimately intended to produce valid input for the table generation

and abundance calculation tasks, which cannot deal with duplicate line matches. Always

save original copies of your data.

3.2.2 The splot undup Task

Syntax: splot undup <file> [output file]

The splot undup task functions very similarly to splot merge. However, instead of

reading its “pool” of data from two files, it only reads it from one. There is, obviously,

no need for a scale factor in this case. As in splot merge, overlapping measurements are

located using the MaxTolerance variable and you will be prompted as described in the

8

previous section to choose one of the overlapping measurements. Output is written to the

provided output file name, or to standard output if the output file name is not provided

or the file is not writable. As is the case with splot merge, all command line options for

output formats are ignored.

3.2.3 The splot flag Task

Syntax: splot flag <file> <velocity> [output file]

The splot flag task will find measurements in an splot log that do not match any of

the reference wavelengths in the spec file. It will also find any measurements that have long

associated comment strings, which likely indicates some sort of special narrative remark on

the measurement (rather than a standard number of colons to indicate uncertainty).

Matching will occur in the inverse of the normal method. The velocity parameter will

be applied as described in section 3.3.1 and the “expected” wavelengths shifted accordingly.

The MaxTolerance variable will then be used to determine the upper and lower limits for

matching a specific reference wavelength.

Output will be written to the named output file or to standard output if it is not available

or not provided. The output will be human readable text in two sections: one for the

unknown wavelengths, and one for the long comments.

3.2.4 The convert data Task

Syntax: convert data <input file> [output file] <format>

The convert data task will convert wavelength and flux data from an arbitrary table-

style format into a format similar to the splot log so it can be read by ELSA. Data in

input file must have a wavelength and a flux on each line, and their position is indicated

with the format string by a w (or l) and f, respectively. For example, if each line consists

of the wavelength, followed by a comma, followed by the flux, the format string should be:

w,f. The comma here is said to be the delimiter; multiple delimiters in a row (not necessarily

the same character, however) will ignore anything in between them. For example: w,,f will

match 4861, ignored text, 100, recognizing 4861 as the wavelength and 100 as the flux.

Finally, c may be used in the format string to denote a comment; they are preserved and

placed on the line following the data prepended by a #, in the splot log format. Thus,

c;f,/w will match H-beta; 100, garbage / 4861, reading H-Beta as a comment, 4861 as

the wavelength, and 100 as the flux, while ignoring garbage.

9

By default, any line that is not successfully parsed is ignored and not put into output file.

However, if convert data is run with the -p option (for “preserve”) all unsuccessfully parsed

lines will be preserved as comments. This is not recommended, though, as ELSA considers

any comment line in the splot log to be a comment for the preceding data.

Finally, convert data can be used for extracting data from TEX tables with the -t

option. The wavelength is read immediately following the λ (denoted by λ) in the

column indicated by the format string. (If the sequence λ is not present, it reads

wavelength as normal. The other function that the -t option performs is to take any colons

(:) from the end of the flux and to put them on the following comment line, together with

any comments gleaned by use of the c token.

For example, if your TEX table looks like this...

Wavelength fλ PN 1 Fλ PN 1 Iλ PN 2 Fλ PN 2 Iλ

He II λ4686 0.04 - - 1.0: 1.1

Hβ λ4861 0.00 100 100 100 100

[O III] λ5007 -0.04 454 453 1154 1105

Hα λ6563 -0.36 292:: 286 420 289

...you would probably want to run the following commands...

./elsa -t convert data myTable.tex PN1.convert.log w&&f

./elsa -t convert data myTable.tex PN2.convert.log w&&&&f

...because the wavelength is before the first ampersand, the flux is after the second one for

PN1 and after the fourth for PN2. Note that the 4686 flux would not be recorded in the

file PN1.convert.log. The -p option is strongly discouraged when dealing with TEX files as

there would be many formatting lines “preserved” as comments. Finally, the -t option has

been tested for use with AASTEX’s deluxetable and will be able to extract data from it.

3.3 Table Generation Tasks

3.3.1 The splot table Task

Syntax: splot table <file> <velocity> [output file]

The splot table task generates a complete table of extinction-corrected line intensities

based on an splot log. It takes a single file of input, which must be in the log format

described in the previous section. It is strongly recommended that you run splot merge or

splot undup on your data before attempting to run this task on it; the output from those

tasks will (almost) always be compatible with splot table.

10

The table generated is based directly on the list of reference wavelengths in the spec file

given by the SpecFile configuration variable. This task will systematically walk the list of

reference wavelengths and try to match them to measured wavelengths in the log file. Two

factors apply in this matching. The first is the velocity parameter passed to the task from

the command line. This is the radial velocity of the object in question, in kilometers per

second. Based on this parameter, splot table will determine a wavelength shift and apply

it to all wavelengths in the file. The equation for this shift is:

1 −
v

c
=

λobs

λref

(1)

Once this shift has been applied, the task will attempt to match λobs instead of λref to

measured wavelengths. Matches will be made for measured wavelengths within the limits

given by λobs± MaxTolerance from the configuration file. If you would prefer not to use the

radial shift method, you can simply specify it as 0 on the command line. If you choose to

do this, you may need to set MaxTolerance to a higher value.

Once all matches have been made, splot table will correct the flux values for interstellar

reddening. ELSA features some of the most precise techniques for this type of correction

currently available. The correction is done by calculating an extinction coefficient c (not to

be confused with the speed of light in a vacuum). The equation for this is:

c =
1

0.36
log

(

F (Hα)

RBF (Hβ)

)

(2)

where RB is the Balmer ratio, or the expected value of Hα/Hβ. If there is a non-zero flux for

He II (as specified by the configuration parameter for the He II wavelength), the calculation

of c will be done in an iterative fashion to take into account contamination from helium

recombination. Additionally, if you have enabled BalmerDecrement in the configuration file,

this will also be part of the iterative loop. If not, or if there are errors calculating the Balmer

decrement, the value of RB will revert to the value specified by the configuration variable

HalphaHbetaRatio. Finally, remember that c can be set to a fixed value with the -c=X.XX

option.

After the calculation of the correction coefficient, the intensity as a fraction of Hβ is

calculated using the wavelength-dependent dereddening formula from Savage and Mathis

(1979):

I = 100

(

F

F (Hβ)

)

10(1.68−4.3×10−4λ+1.904×10−8λ2+4.839×10−14λ3)c (3)

Output is written to output file or to the standard output if the file is not available or not

11

provided. The output file will contain a brief “header” which will display the preliminary

c value as well as the observed (uncorrected) fluxes of Hα and Hβ. It will also display the

Balmer ratio used in generating the table.

Since this task depends heavily on the presence of Hα and Hβ, it will fail if these lines

are not found at the wavelengths specified in the configuration file. If you have enabled

dynamic calculation of the Balmer ratio, it will also require the presence of O III lines and

S II lines. See section 3.1.2 for more information on this. This task will also fail if multiple

matches are found for any given reference wavelength. If this happens and you have already

run splot merge or splot undup on your data, you may need to adjust your MaxTolerance

variable, or examine the data manually and fix the problem.

3.3.2 The splot table composite Task

Syntax: splot table composite <list file> [output file]

The splot table composite task performs all the same calculations and corrections as

splot table. However, while splot table is intended to produce output containing all

available information about a single object, this task will process several logs into a single

composite output file. This file will not contain all available information, but rather only

the “finished product” (the corrected and scaled intensities relative to Hβ). The goal of this

task is to produce output suitable, or nearly suitable, for publication.

The input file, list file, is a text file containing a list of files to be processed. File

paths may be absolute or relative. Relative paths are considered relative to the location of

the list file, not the directory that ELSA is run from. Each file name must be on its own

line in the list file, followed by a space, followed by the radial velocity. The radial velocity

will be applied as described in the previous section. If you do not wish to use the radial

velocity method of wavelength matching, set it to 0 in the list file. It should not be omitted.

Assuming there are no errors opening any of the files, their respective data will be read in

and processed in the same manner as described in the previous section.

The only output format allowable for this task is LATEX. Command line output options

will be ignored for this task. The LATEX output will contain a multi-column table (using

the AASTEX templates) with the uncorrected and corrected line intensities relative to Hβ.

The correction factor, Balmer ratio, and the log10 of the flux of Hβ will be written at the

bottom of the table, after the list of reference wavelengths. Comment strings, which are

fully preserved throughout ELSA, are pared down in this task. Comments are stripped of

all characters but colons (as this is the convention for indicating levels of uncertainty used

by Kwitter and Henry). The colons will be appended to their associated figures in the final

12

table to indicate the uncertainty. Comments containing no colons will be discarded entirely.

Note that while there is technically no limitation on how many log files can be put in the

list file, it is advisable in our experience not to run more than four or five at a time. More

than this may make the table too wide for LATEX to process correctly into a normal paper

size.

3.4 Abundance Calculation

3.4.1 The splot abun Task

Syntax: splot abun <file> <velocity> [output file]

splot abun is the primary task for calculating abundances. It accepts a single splot

log, which should ideally be the output from splot merge or splot undup, although it is

possible to use raw logs. This task will read in data and perform corrections identically to

splot table. Instead of generating a table of the corrected, scaled line intensities, however,

splot abun uses them to produce detailed information about abundances, temperatures,

and density within the nebula in question.

The details of how these calculations are done are too numerous to explain in this doc-

ument. The source file pne abun.c contains the function that controls most of this task.

Methodology and citations to data can be found in comments in this file. This task is

very directly based on Abun, previously maintained by Richard Henry of the University of

Oklahoma.

There are three sections of output from this task. The first section contains abundances

of specific ions. These are given as proportions to singly ionized hydrogen. Since a specific

ionic temperature is used to calculate each of these abundances, that temperature is listed

with each abundance. Comments are preserved here. If multiple lines are used to calculate

an abundance, their comments are concatenated and displayed. The second section contains

ionic temperatures for selected ions, and the electron density calculated from S II lines. The

third section contains general elemental abundances, given as proportions of other elements

where appropriate. The corresponding data for the Sun and the Orion Nebula are output

for reference purposes.

All three supported output formats are available for this function. However, we recom-

mend CSV or LATEX output, provided you have the capability to read them (Microsoft Excel

can open CSV files). If no format is specified on the command line, this task defaults to

CSV output.

13

3.4.2 The abun batch Task

Syntax: abun batch <list file> [output file]

This task invokes the functionality of splot abun over multiple files. The abun batch

task does not produce a single composite output file. It produces one output file for each

input file.

abun batch takes as an input a file containing a list of old-style Abun input files, one

file per line. This is an important difference to note between this task and splot abun.

The format of these old-style input files is not the same as the splot logs used in most of

ELSA. The old-style input files consist of a list of wavelengths, followed by their respective

corrected, scaled line intensity, separated by a space, with one wavelength per line. Once

the input is read, the data is considered identical to that generated by the correction and

rescaling routines in the tasks that deal with splot files. It is also important to note that

the wavelengths in these input files must be identical to the reference wavelengths. There is

no velocity shifting or matching, only direct comparison between the input wavelengths and

reference wavelengths.

The purpose of this function is essentially to maintain backwards compatibility with data

that had already been prepared for Abun. Previously, all corrections and scaling were done

by hand or with some other program. The intensities were then placed into these files,

directly related to their reference wavelengths, and run through Abun. However, it is easy

enough to generate these input files if you wish to use this task now to work on many objects

at once.

As with splot abun, all output options are available for this task, though our recommen-

dation against using “human readable” still stands unless it is a last resort. Output files will

be placed in the same directory as the list file. They will be named by appending .abun.ext

to the basename of the input file (stripping off the portion of the input file name from the

first dot onward). The extension depends on the output format. It is .csv for CSV files,

.tex for TEX files, and .txt for human readable files.

3.5 ELSA’s mini-tasks

3.5.1 The temp dens Task

Syntax: temp dens

The temp dens task allows for a quick, interactive computation of temperatures and

densities. Because no external data are provided (i.e. no splot log file is needed), the user

14

must enter either line intensities or ratios by hand. After running ELSA’s temp dens task

the user is prompted for a temperatures and densities to calculate. Any number of the

supported temperatures and densities listed below may be entered; type the code in the

fourth column and press enter (note that there is a space after “temp” or “dens”). When

all desired temperatures and densities have been entered, enter a blank line. Because a

temperature is needed to calculate a density, and vice versa, if the set of inputs contains

only temperatures, ELSA will prompt for a density; likewise, if only densities are entered, a

temperature is requested. However, if at least one temperature and at least one density are

requested, ELSA will run a convergence loop for the first density and temperature input.

In any case, the first temperature and density either calculated or entered by the user are

used for future calculations. Finally, for each temperature and density requested, ELSA

will prompt for line strength input. The user may enter either both line strengths, separated

by a space, or just the ratio of the two (the prompt specifies which lines are used and which

line is the numerator and which is the denominator).

The purpose of this task is to allow for quick temperature and density calculations with

the data in hand. This may be useful, for example, with brand new data just received or

to check ELSA’s temperature and density calculations against previously published results.

All temperatures and densities calculated with temp dens are also calculated in ELSA’s

main abundance calculation routine.

Ion Type Lines Used Code

O II Temperature λ7325 / λ3272 temp O2

O III Temperature λ5007 / λ4363 temp O3

N II Temperature λ5755 / λ6584 temp N2

S II Temperature λ4071 / λ6724 temp S2

S III Temperature λ9532 / λ6312 temp S3

Cl II Density λ144000 / λ332800 dens Cl2

Cl III Density λ5517 / λ5537 dens Cl3

Ar III Density λ89900 / λ218000 dens Ar3

S III Density λ187000 / λ334800 dens S3

Ne V Density λ143000 / λ243000 dens Ne5

Finally, the intrepid user may want to add temperature and density calculations to this list.

This is (hopefully) relatively easy to do. First, the file elsa temp dens.h in the src/include

directory must be modified to add the name of the ion, the wavelengths used, and the name

of the function to the end of the proper arrays. It should prove relatively straight forward to

15

follow the examples of the provided temperatures and densities (and remember to update the

NUM TEMP or NUM DENS defines). Second, the actual temperature or density function must be

added; for consistency, it is strongly recommended that it be placed in the file pne abun.c in

the src along with the other temperature and density functions. Also, this allows the direct

copying of an existing temperature or density function, which is also highly recommended,

as the elsa get temp and elsa get dens functions are flexible and easy to use. While a

basic knowledge of the C language is certainly required, it is hoped that adding new tem-

peratures and densities should not prove too difficult. (See also “Adding New Temperatures

and Densities” in the Programmer’s Guide section.)

3.5.2 The intrat Task

Syntax: intrat

The intrat task provides direct access to ELSA’s implementation of Storey and Hum-

mer’s (1995) INTRAT routine, which calculates the ratio of emission intensities for two transi-

tions of a hydrogenic ion. At the moment, only H and He II are supported. Like temp dens,

intrat is interactive: it will query the user for element (1 for H, 2 for He), a temperature,

a density, an upper level, a lower level, and then upper and lower reference levels. The

number returned is the intensity of the ”upper level” to ”lower level” transition divided by

the intensity of the ”upper reference level” to ”lower reference level” transition.

3.5.3 The normalize Task

Syntax: normalize <optical file> <UV/IR file> [temperature] [density]

This task is to be used as an aide when merging two sets of observations, one in the optical,

one in the IR or UV, with the splot merge task. It does not do any data manipulation itself,

but rather outputs the merging ratio that should be given to the splot merge task. There

are many requirements for the data fed into this task. First, the temperature and data

must either be provided directly or be calculable from the optical file provided. If no

temperature is provided, the O III temperature is used; failing that, the N II temperature;

failing that, a default of 10,000. If no density is provided, the S II density is used; failing

that, a default of 1,000. Also, the temperature and density arguments do not have to

be numbers: they can be strings representing which temperature or density to use. At the

moment, the following temperatures are supported: NII, OII, OIII, SII, SIII, as are

the following densities: SII, SIII, ClII, ClIII, ArIII, NeV. Note that there is no space

16

between the element and the ion. If the requested temperature or density are not available,

it is treated as if it was not provided. normalize functions by using intrat to determine the

expected ratio of a hydrogenic transition either of He II or H. This means that specific lines

are needed for it to work. UV data must have the 1640 line of He II, which will be compared

to 4686, and IR data must have either the 7.46µ or 12.4µ line of H, which is compared to Hβ.

If the required lines cannot be found, normalize fails. If all the required data are present,

normalize outputs the ratio.

3.6 The references Task

Syntax: references [output file] [search string]

The references task prints out references for atomic data used in ELSA. It supports

all three forms of output: human-readable displays the output in tab-aligned columns, ideal

for quickly locating a reference; CSV outputs the same data into a comma-delimited table,

and LATEX formats the output with AASTeX in two parts: one table for quickly referencing

the source of each data point, and again in long citation format as would be included at the

end of a paper.

If output file is not provided, output is sent to stdout; if search string is not pro-

vided, all references are sent to output. References are scanned from the file references.txt

in the main ELSA directory. references.txt is produced by elsa merge constants.py,

and includes citations for data from either the “old” data, the TIPbase data, or both, as

applicable. (See Using TIPbase Atomic Constants, below, for details.)

Using the search string option allows for specific selection of a limited number of ref-

erences. Query terms should be enclosed in either forward slashes (//) for exact phrase

matching, curly braces ({}) for AND matching, or straight braces ([]) for OR matching.

References can be matched by anything in ELSA’s “reference line;” this includes author,

year, publication, ion (e.g. ArIV for Argon+3), and type (collision strength, Einstein A, etc.).

For example: /Collision Strengths/ would find all references containing the phrase “Col-

lision Strength”, and thus all collision strength references; {Mendoza 1983} would find all

references containing both “Mendoza” and “1983”; and [OII NII] would find all references

containing OII as well as those containing NII. (It would also find all references contain-

ing OIII, since OII is contained in OIII. To avoid this, use [/OII / NII], which would

match “OII ”, and not “OIII”.) Finally, search terms can be nested: {[red /green blue/]

yellow} would match a record containing “yellow” as well as either the phrase “green blue”

or the word “red”. Theoretically, the nesting limit is infinite; in reality, it is capped by the

17

recursion limit. We do not anticipate that this limit will be a problem.

3.7 Using TIPbase Atomic Constants

3.7.1 Getting and Using Data from TIPBase

ELSA uses a great deal of atomic data in its abundance calculations and table generating

functions. There are, generally speaking, four different types of data needed for each ion:

Einstein A values, effective collision strengths, energy levels, and statistical weights. Of these,

the Einstein A values and effective collision strengths are particularly laborious to calculate

from models, and as such their values are gathered from published literature. The original set

of data was compiled by Dick Henry (Kwitter & Henry 2001) and is still available for use.

However, we recommend using data from The Iron Project database (see http://vizier.u-

strasbg.fr/tipbase/home.html). Since TIPbase is an ongoing process, Python scripts are

provided with the source code to download data from TIPbase and merge it with the “old”

data. The scripts, elsa gettipbaseconstants.py and elsa merge constants.py, are lo-

cated in elsa/src/include.

To download TIPbase data, simply go into elsa/src/include and type:

./elsa gettipbaseconstants.py

To then use TIPbase constants:

./elsa merge constants.py -t

To revert to ”old” constants:

./elsa merge constants.py -o

After using elsa merge constants.py in either form, you m
¯

ust recompile. Move to the

src directory, and:

make clean; make

Note that the make clean is necessary since elsa merge constants.py alters header

files.

ELSA is distributed using TIPbase constants by default; if you wish to use the old

constants you must merge with the o option first.

3.7.2 The table gen Task

Syntax: table gen

After getting and merging new atomic data from TIPbase (or switching from TIPbase to

old or vice versa)it is recommended that the temperature and density interpolation tables

be rebuilt with the table gen task. The table gen task is interactive; after running it the

user is asked one by one whether or not to generate each table (default is yes), and for each

18

table the user is asked for a lower and upper bound in temperature and density (log 10), as

well as the step size. Defaults, as well as minimums and maximums, are provided, though

not explicitly stated. After generating new tables, ELSA should be recompiled. Change to

the src directory and:

make clean; make

Again, the make clean is necessary because header files have been changed. We realize

that this means after updating from TIPbase that two recompiles are necessary; however,

updating is needed so infrequently that this should not prove to be too much of a burden.

Hint: Feeling lazy and want to use all the defaults? Try yes | ./elsa table gen.

19

3.8 List of Recognized Ions

This is a list of all the ions that ELSA contains data for and is able to use in abundance

calculations, along with which lines ELSA scans for each ion and which temperature is used

to determine its level populations. This release of ELSA only processes optical lines roughly

in the range λ3700 − λ9500, with a few UV and infrared lines recognized as well. Future

plans exist for the inclusion of a large range of infrared and UV lines into the program. If

you have specific suggestions or requests for lines or ions to include, don’t hesitate to let us

know (and point us to a source for the atomic data).

Ion Wavelength Temperature

Ar III λ7135, λ89900 O III

Ar IV λ4740 O III

Ar V λ7005 O III

C III λ1909 O III

C IV λ1549 O III

Cl II λ8578 O III

Cl III λ5537 O III

Cl IV λ8045 O III

He II λ5876 –

He III λ4868 –

N II λ6584 N II

N III λ1751 O III

Ne III λ3869 O III

Ne IV λ1602 O III

Ne V λ1575 O III

O I λ6300 N II

O II λ3727, λ7325 N II

O III λ5007 O III

S II λ6716, λ6731 N II, S II

S III λ9069, λ9532 N II, S III

S IV λ105200 O III

20

4 Programmer’s Guide

Note: This section assumes a reasonable knowledge of the C programming language. It is

not within the scope of this document to explain basic programming concepts. Many excellent

guides are available on the Internet for this.

4.1 When In Doubt... Copy!

In general, ELSA has been designed to be as internally consistent as possible across the

different calculations that it makes. That is, the function to calculate the O III temperature

looks almost the same as that which calculates the N II temperature, and looks similar to

the S III density calculation function, and so on. Thus, the best approach when adding

something to ELSA is usually to find where it has been done before and copy. If adding a

new ionic abundance calculation, look for the other calculations in pne abun.c and copy; if

adding a new temperature, copy another pne temp function and change what is needed. In

this manner, expansion of ELSA is relatively easy.

4.2 General Architecture Notes

Anyone attempting to modify the ELSA code should do so with a general idea of the

structure of the code. The code is divided up into several source files, each with an associated

header file. The basic content of the files is:

pne main.c Contains the main() routine and the functions to sort out command line argu-

ments and identify the requested task (if any). No science data is dealt with here.

pne read.c Contains functions to obtain data from files in various ways. This includes the

reading of the configuration and spec files, and the standard routine for parsing and

reading splot files. This file also contains most of the code for calculating extinction

correction factors, rescaling line strengths, and other important science tasks.

pne task.c Contains a function to control each task available in the program. If you want

to change the behavior of specific functions, this is a good starting point.

pne abun.c Contains the code taken from Abun and translated from Fortran to calculate

abundances. Also includes several “helper” functions for this process, and copious

comments making reference to the literature that the data used here is taken from.

pne output.c Contains functions to turn commonly used data structures into formatted

output.

21

pne func.c Contains all miscellaneous functions to handle hairier calculations, string for-

matting, and array management. Some of these are science-related, some are not.

Additionally, the header files pne atomic.h, pne ions.h, pne config.h,and pne struct.h

contain common data and declarations that are included by several of the C files.

There several important and commonly used data structures in the program. They are

as follows:

struct LineData This is a structure that holds all the possible information about a single

emission line: wavelength, flux, intensity, energy, and comments. Most task control

functions call functions from pne read.c to generate an array of struct LineData

structures to represent the “data table” contained in a log file. There are three im-

portant functions that make these arrays. pne get data creates an array with as

many elements as there were lines in the file (but not more than MaxLines) and

fills only the wavelength, flux, and comment members of the structures. It re-

turns the count of elements in the array and modifies the array by reference. The

function pne get data with calcs returns a pointer to an allocated array of length

equal to the length the reference wavelength list. It fills the wavelength, flux,

intensity, energy, and comment members of the array. It proceeds with the cal-

culations using the HalphaHbetaRatio variable as the Balmer ratio, but does per-

form all other corrections for reddening and helium contamination. The function

pne get data with c correction does the exact same thing, but it computes its own

Balmer ratio and uses that. Most instances of this structure are referred to by the

variable name m.

struct Config This contains the configuration data read from elsa.conf by the function

pne readconf. It also contains a substructure of the type struct LiveData called

data. While the normal members of struct Config are only modified at the beginning

of the program’s run, the data members are modified by tasks. This is because it is

most convenient to keep the radial velocity, and the operative c and Balmer ratio values

in a globally accessible structure to eliminate the need to pass them back and forth.

The Config structure is instantiated at the beginning of the program, and a pointer

to this single instance is passed to nearly every function in the program. This avoids

truly global variables while still providing a globally-accessible space for certain data.

This global instance of this structure is always called conf.

struct ItemData This holds a single output value, along with information about it. Gen-

erally it is used for ionic abundances, and will have the abundance, the uncertainty,

22

the name of the temperature and density used, and the name of the ion. It also serves

as an item in a linked list, having a pointer to another ItemData struct. If an ionic

abundance is calculated with different temperatures, then they should all be in the

same linked list. Likewise, all temperatures and densities are stored in two linked lists

(one for temperatures, one for densities). These are read in the output functions and

appropriately formatted into tables.

struct AbunData This structure holds the output of ELSA’s abundance calculations. It

has a pointer to an ItemData for temperature and density, each of them being the

head of a linked list. For abundances, it has the abundances two-dimensional ar-

ray. The first index represents the element, and the second the ion, in spectroscopic

notation. Thus, abundances[8][3] represents O III abundance, abundances[6][1]

represents C I abundance. The elemental abundance is stored at the zero position:

abundances[2][0] holds the He elemental abundance. If an ionic abundance is not

calculated or impossible, its position remains null: abundances[5][5] will remain

NULL for the foreseeable future, and abundances[2][5], though it exists in the array,

will always be NULL. Finally, each element in the abundances array is potentially the

head of a linked list, and all items in the list will be an abundance for that ion, though

calculated differently (usually using a different density or temperature).

These tools should be sufficient for you to add functionality to the program if need be. Use

the “get data” functions to fill your data arrays, and the various functions in pne output.c

to get them into useful formats. This is the general flow used in the existing tasks. The

technical details of adding new capabilities to ELSA follows.

4.3 Adding New Ions

To add a new ionic abundance calculation to ELSA, there are a few places that need

modification. First, ELSA must know to look for the appropriate wavelengths. Edit the

spec file (usually wavelengths.txt to include the relevant lines. Then open pne abun.c

and go to the pne abun calc function; this is where most of the work will be done. Add any

relevant pne find index calls in the same manner as the existing ones (note that wavelength

is taken in centimeters. Add declarations for the atomic data needed along with the

other atomic data declarations; atomic data is stored in elsa ion constants.h, and thus

declarations should be extern. If the atomic data are not present already, they will need to

be added: see “Adding New Atomic Data” below. Next the actual calculations for the ion

must be added. Ionic calculations are sorted by element further down in the pne abun calc

function. Insert the math in the appropriate place, and create an ItemData struct in the

23

same fashion as the others to hold the output. Add the ItemData struct (or rather, a pointer

to it) to the appropriate place in the AbunData struct’s abundances two-dimensional array:

the first array index is for the element, the second for the ion (in spectroscopic notation,

starting at one, not zero), and if that spot is already occupied, add the new data to the end

of the list. The output function will automatically output the new data in the correct place.

And remember: when in doubt... copy!

4.4 Adding New Temperatures and Densities

Adding new temperature and density calculations to ELSA is also designed to be as easy as

possible. First, a new interpolation table must be generated. Open elsa table generators.c

and copy an existing temperature or density function–preferably one that represents the same

transitions in a different element or ion–and change the variable and output names to rep-

resent the new ion (remember to change the name of the function as well!). Next, open

pne task.c, go to the elsa table gen function, and copy an existing block (containing

a printf, fgets, and switch statement), and change the prompt and function call. Fi-

nally, go back to pne abun.c and add #include <include/filename.h> to the top, where

filename was entered (or rather, changed) when adding the new interpolation table gen-

eration function to elsa table generators.c. Now, compile and run ELSA’s table gen

task, remembering that only the newly added table need be generated. If the atomic data is

not present, then it will not compile; see “Adding New Atomic Data” below, then try again.

Temperature and density functions are in pne abun.c; a good place to start is to copy an ex-

isting one and change the variable names used. The interpolation table variables should have

been created with the table gen task; the atomic data (Einstein A’s, transition energies,

etc.) likewise was used in the interpolation table generation, so should also already exist.

After the function is in place, go up to pne abun calc and find the appropriate place to call

it; temperature and density are calculated above the abundances. Be sure to insert the new

temperature or density in the appropriate linked list in the AbunData struct named Output;

the output function will automatically insert it in the appropriate table. And remember,

again: when in doubt... copy!

4.5 Adding New Atomic Data

As new ions, temperatures, and densities are added to ELSA’s repertoire, atomic data will

be needed to support these calculations. Adding these data is designed to be less intensive

on C programming, and more interactive. Ideally, TIPbase has the data needed, and it is

only a matter of adding the ions to the list of data to gather from TIPbase to add them

24

to ELSA. Open elsa gettipbaseconstants.py, found in the include directory. It is a

Python script, but do not fear: first, Python is one of the easiest languages to learn for

experienced programmers and the uninitiated alike, and second, no knowledge of Python is

actually required. On line 129 is the list of elements, and on 132 is the list of corresponding

ions. If a new ion is to be added to an existing element, add it to the appropriate list on

the second line (spectroscopic notation); if a new element is to be added, add it to the first

list, then add any ions in a new bracketed list in the second line, corresponding to the same

position as the new element in the first line. (Note that neither elements nor ions need be

in ascending order.) Save the script, and run it, noting whether or not it was able to get the

data for the new ion. There are two categories: energy/Einstein A and collision strength. If

either of them fail, data need to be manually entered into elsa old constants.h. Because

a five-level atom model is used, the arrays are of length 10. The first element represents the

datum for the two to one transition, the second for the three to one, the third for the four

to one, and so on: the fifth is the three to two transition, the sixth the four to two, and the

tenth the five to four. If this ordering seems counter-intuitive, it is a relic of the Fortran to

C conversion. In any case, the next script to be run is elsa merge constants.py. It will

recognize that there are no statistical weight data for the new ion, and query the user for

it. It will also point out if there is lacking collision strength data, and direct the user to

enter it. After the merge script is run, the data should be available in the same manner as

the other atomic data, ready for use. Finally, we recommend adding any references used for

Einstein A’s or collision strengths to the file old references.txt in the include directory

(using the same format as the existing ones) and running the merge script again. This will

update references.txt in the main directory and add them to any references output by

the references task.

4.6 Adding Configuration Variables

Begin by editing pne struct.h and adding a new member to the Config structure to repre-

sent the new variable you wish to add. Next, edit pne read.c and add a new if statement

to the series of them in the pne readconf function. Use the string comparison library call to

identify your parameter keyword in the config file (comparing with the local variable param).

You may then use the value local variable as you fit. If you are trying to read a numerical

value, make sure to call strtod or strtol on it. If it is a string, it will suffice to use strcpy.

25

5 Acknowledgments

We are grateful for the help, support, and enthusiasm that Professors Kwitter and Henry have

contributed to this project. We also thank the multitude of individuals who have published

the data and constants necessary for the processes in this program to work. Finally, we

knowledge the continued financial support of the Keck Northeast Astronomy Consortium

and the National Science Foundation in making the research and development of ELSA

possible. This research is partially supported by NSF grant AST 03-07118 to the University

of Oklahoma.

6 Authors’ Contact Information

Matthew D. Johnson

Department of Astronomy, Wesleyan University

Middletown, Connecticut 06459

mdjohnson@@wesleyan.edu

Jesse S. Levitt

Department of Astronomy, Williams College

Williamstown, Massachusetts 01267

Jesse.S.Levitt@@williams.edu

Peter J. J. O’Malley

Department of Physics and Astronomy, Haverford College

Haverford, Pennsylvania 19041

pomalley@@haverford.edu

26

