COSMIC EVOLUTION

on the occasion of the 60th birthdays of Jean Audouze and James W. Truran

Institut d'Astrophysique de Paris

13-17 November 2000

Editors

Elisabeth Vangioni-Flam Roger Ferlet Martin Lemoine

Institut d'Astrophysique de Paris

DEUTERIUM NEAR AND FAR IN THE GALAXY

D. A. LUBOWICH1

Dept. of Physics and Astronomy, Hofstra U., Hempstead, NY 11550, USA E-mail: dlubowic⊕aip.org

JAY M. PASACHOFF

Hopkins Observatory, Williams College, Williamstown, MA 01267,USA E-mail: jmp@williams.edu

JASON A. OSTENSON

Williams College, Williamstown MA 01267 USA and Keck Summer Fellow, Vassar College, Poughkeepsie NY 12604, USA E-MAIL: E-mail: Jaostenson@Vassar.Edu

We report on our program to determine the deuterium abundance distribution in the Milky Way. We have reported D/H = 1.7×10^{-6} in a molecular cloud 10 pc from the Galactic Center, from which we infer recent continuous infall of pregalactic primordial gas. We have searched for the Balmer D α lines with high S/N = 300 - 1000 observations of a halo star (HD 140283), slowly rotating B stars (1 Her and γ Peg), H II regions (Orion Nebula and M17), and the planetary nebula NGC 7027.

From observations of the J = 1-0 and 2-1 microwave spectral lines of DCN (Fig. 1a) we recently determined that D exists in the 50 km/s molecular cloud 10 pc from the Galactic Center (GC) with D/H = 1.7×10^{-6} (Lubowich, Pasachoff, Balonek, Millar, Tremonti, Roberts, and Galloway. Nature, 405, 102, 2000). We concluded that significant amounts of D are not produced via any Galactic process, the D observed in the GC is the result of infall from low-metallicity gas representing primordial or pre-Galactic matter, and the GC has not had a recent quasar or AGN phase within the past 5 Gyr. Our results are consistent with a cosmological D/H = 5×10^{-5} , which implies that most of the baryons are in the form of dark matter and that most of this dark matter is non-baryonic. We will use this technique in 2001 to determine D/H in molecular clouds in the GC and edge of the Galaxy (2 pc and 28 kpc from the GC).

We are continuing our search for the Balmer $D\alpha$ lines in stars and nebulae. We have not $D\alpha$ in stars or nebulae. We have taken high S/N echelle spectra of the Orion Nebula at three positions (one position is shown in Figs. 1b and 1c), the slowly rotating sharp-lined B4 IV stars ι Her and γ Peg, the low-metallicity halo star HD 140283, and the planetary nebula NGC 7027. The spectra were taken with the NSO McMath 1.5-m and KPNO coudé feed 0.9-m telescopes. Our future work includes searching for D/H in stars and H II regions 14 - 18 kpc from the Galactic Center.

DAL is supported by an NSF international travel grant administered by the AAS.

 DCN spectrum of the Galactic Center 50 km/s molecular cloud. (NRAO 12 m radio telescope)

 Echelle spectrum of Orion Nebula 15 arcsec west of the brightest Trapezium star HD 37022, 1800 s exposure taken on 21 Dec. 1999 (NSO McMath-Pierce 1.5 m telescope, resolution = 84,000)

 Expanded echell spectrum of Orion Nebula 15 arcsec west of the brightest Trapezium star HD 37022. Combined nine 1800 s exposure taken on 21 Dec. 1999.