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In this paper, we consider the use of block bootstrap to improve the per-

formance of the MB rank test introduced by Pedroni, Vogelsang, Wagner, and

Westerlund (2010). Asymptotic validity of the booststrap test is proved for T

going to infinity. We report the size and power properties of the bootstrap test

obtained through Monte Carlo simulations.
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1. INTRODUCTION

Early generations of panel unit root tests assumed independence across

the cross-sectional dimension. However, the assumption of independence

across the cross-sectional dimension has faded out in the literature because

it induces size distortions, or increased rates of type I errors, in the panel

unit root tests when there is a cross-sectional dependency in the data. Thus,

the recent literature have focused on identifying the nature and magni-

tude of cross-sectional dependency in order to develop a proper unit root

test accordingly. For instance, Bai and Ng (2004) devised a method called

PANIC to identify the number of common stochastic trends and to extract

them out of the data in order to create data without common factor type

cross-sectional dependency. However, Palm, F., S. Smeekes and J. P. Urbain

(2010) point out that such methods involving the specification and estima-

tion of cross-dependency have a fundamental limitation, as they are unable

to account for other types of cross-dependency that might be present in the

1I would like to thank Professor Pedroni, my thesis advisor, for his support and guid-

ance at every step of the way. I would also like to thank Professor Gentry and Professor

Kuttner for their encouragement and suggestions, and Susan Chen ’12 for reviewing my

draft.
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data.

Two methods have been developed which do not require the estimation

of cross-sectional dependency. The first method, proposed by Palm et al.

(2010), uses a block bootstrap for unit root tests. The authors take a block

of panel series and re-sample them to create pseudo-series with the same

dependence structure of the original data, and apply modified test statistics

of Levin, A., C. F. Lin, and C. S. J. Chu (2002) and Im, K. S., M. H. Pesaran,

and Y. Shin (2003). Although their method can deal with a wider variety

of cross-sectional dependency than the common-factor approaches or other

bootstrap approaches (such as the one by Chang, Y., J. Park and K. Song

(2004)), the method is still limited in that it cannot tell exactly how many

units in the cross-sectional dimension are stationary. Furthermore, since

the test statistics they used are not pivotal, bootstrapping cannot provide

asymptotic refinement. The second method was proposed by Pedroni, P.,

T. Vogelsang, M. Wagner, and J. Westerlund (2010). Their tests, known

as nonparametric rank tests, can deal with the most general form of cross-

sectional dependency. They show in the paper that short run and long run

variances of detrended series both asymptotically converge to distributions

with the same nuisance parameter that describes the dependence structure.

Hence, by taking the ratio of the two variances, they show that the limiting

distribution of the ratio is nuisance-free. Thus, their tests do not require

any a priori assumptions about the dependence structure of the series and

can deal with the most general form of cross-sectional dependency.

This paper considers applying the block bootstrap method to the tests

developed by Pedroni et al. (2010). Since the test statistics by Pedroni

et al. (2010) are pivotal, applying the block bootstrap to the rank tests

can offer asymptotic refinement. In other words, the distribution arising

from the bootstrap test statistic gets closer to the true distribution of the

original test statistic faster than the true distribution converging to the
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asymptotic distribution. At the same time, the block bootstrap rank tests

can still account for all types of cross-sectional dependency that the original

rank tests can. Thus, combining the block bootstrap method with the tests

devised by Pedroni et al. (2010) results in desirable panel unit root tests.

The paper is structured in the following order: Section 2 presents the data

generating process (DGP) and the assumptions underlying them. Section 3

presents the construction of the asymptotic test statistic and bootstrap test

statistic. Section 4 provides the asymptotic properties of both the asymp-

totic and bootstrap test statistics. The small sample properties and the

issue of block length selection are discussed in Section 5. Finally, Section 6

concludes the paper. Mathematical proofs of the validity of the bootstrap

test statistics are presented in the Appendix.

2. ASSUMPTIONS

We follow the data generating process described in Pedroni et al. (2010)

which allows for general cross-sectional dependency. We first note that bold-

faced symbols represent vectors and matrices, and ⇒ implies convergence

in distribution as T → ∞. Let yt = [y1,t, . . . , yN,t]
′ (t=1,. . . ,T) be an N -

dimensional vector generated by the following process:

yt = αpF
p
t + ut,(2.1)

where F p
t = [1, t, · · · , tp]′, p ≥ −1, and F 0

t = 1 with αp = [α′1, · · · ,α′N ]′

satisfying αi ∈ R(p+1). In words, F p
t represents a polynomial trend function

and αp is the associated matrix of trend coefficients. Note that p = −1, 0, 1

generate the most widely considered situations of yt = ut, yt = α0 + ut

and yt = α0 +α1t+ ut, respectively.

As we have already discussed in the introduction, the rank tests of Pe-

droni et al. (2010) use the ratio of the properly normalized short run and

long run variance of ut. They show that both variances weakly converge
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to distributions sharing the same nuisance parameter, namely the long run

variance of ∆ut. Note that any such argument requires some form of in-

variance principle, which requires mild assumptions to be made on the data

generating process. The assumptions that we will impose on ut are neces-

sary both for the validity of the original test and bootstrap test. To state

the assumptions and introduce our test statistic in concern, we need to de-

scribe ut in further detail. We follow the steps from Pedroni et al. (2010)

again. Suppose that N1 units of ut are either stationary or cross-sectionally

cointegrated while N2 = N−N1 units contain independent unit roots. Now,

consider an orthogonal matrix A whose first N1 columns span the cointe-

grating space of ut. We can express A by its sub-matrices A1 and A2 where

A1 is composed of the first N1 columns of A while A2 is composed of the

remaining N2 columns such thatA′1A2 = A′2A1 = 0. That is,A = [A1,A2].

Using this orthogonal matrix A, we can extract the stationary portion of

the N1 units and separate them from the N2 unit-root portion in a following

way:

wt = A′ut =

w1,t

w2,t

 ,(2.2)

where w1,t ∈ RN1 is stationary while w2,t ∈ RN2 is unit-root non-stationary.

Then, we can obtain a stationary vector by augmenting w1,t with ∆w2,t,

the first difference of w2,t. Let this new stationary vector be vt. We are now

ready to state the assumptions we need for the remainder of this paper.

Assumption 1 vt =
∑∞

j=0ψjεt−j, ψ0 = I,
∑∞

j=0 j|ψj| < ∞ where εt

is i.i.d. over t with mean zero and finite positive definite variance Σε. In

addition, det(
∑∞

j=0ψjs
j) 6= 0 for all {s ∈ C : |s| = 1}, E|εt|2+ε < ∞ for

some ε > 0, and ψi and εj are independent for all i and j.

Given the assumption above, we can derive the following invariance prin-
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ciple which will be crucial for the convergence of our test statistic. Let

et = ∆wt and δt = ∆ut such that et = A′δt.

Lemma 1 (Invariance Principle) Let yt be generated by the data generating

process described above and let Assumption 1 hold. Then, as T →∞,

1√
T

brT c∑
t=1

et ⇒ B(r) = Ω1/2
e W (r),

where Ωe is the positive definite long-run variance matrix of et and W (r)

is the standard N-dimensional Brownian motion on r ∈ [0, 1].

We would like to note that Pedroni et al. (2010) assumes more general

conditions under which the invariance principle holds. For the purpose of

this paper, however, we will assume that vt follows the linear process condi-

tion as the sufficient condition for the invariance principle. This is in order

to simplify the proofs required to show the validity of bootstrap. Lastly, we

impose an assumption on the growth of the block length as T grows. The

following assumption is identical to the one imposed by Paparoditis, E. and

D. Politis (2003).

Assumption 2 As T →∞, b→∞ and b = o(T 1/2).

The above assumption is crucial for proving the bootstrap version of the

invariance principle. The over-differenced series degenerates because the rate

of growth of T is faster than that of b, which is guaranteed by the above

assumption. We will investigate this issue in detail in the Appendix.

3. BOOTSTRAP RANK TESTS

3.1. The main test statistic

The test we will consider tests the null of unit root non-stationarity in

N2 > 0 units against the alternative of stationarity across all units. To see
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how the test works intuitively, consider Ω∆u, the long run variance of ∆ut.

Let r ≡ rank(Ω∆u). Using the transformation matrix A we considered in

the previous section, we can easily verify the following:

Ω∆u = AΩ∆wA
′ = A2Ωv2A

′
2,

where v2,t = ∆w2,t. This implies that r = rank(Ωv2) = N2. Then, we can use

the variance of ut to construct a test statistic since the variance will capture

the information on the presence of unit roots in ut. We now show how to

construct the main test statistic of Pedroni et al. (2010), which converges

in distribution to a nuisance free distribution under the null of r = N2. The

test statistic is called MB. We will stick to their naming scheme. For deeper

intuitions on how the test works, refer to Pedroni et al. (2010). To begin

with, we need to obtain the estimates of “residuals,” ût. We can do this

using the OLS estimation of (2.1). So,

ût = yt −

 1

T

T∑
t=1

yt(F
p
t )
′

(
1

T

T∑
t=1

F p
t (F

p
t )
′

)−1
F p

t .(3.1)

We now obtain estimated short-run and long-run variances. The short-run,

or contemporaneous, variance can be estimated as

Σ̂û =
1

T

T∑
t=1

ûtû
′
t.

As for the long-run variance estimate, we state the result from Kiefer, N. M.

and T. J. Vogelsang (2000) in which they provide a simplified formula for

the estimated long-run variance (Ω̂) using the untruncated Bartlett kernel

k(x) = 1− |x|
T

.

Ω̂û =
2

T 2

T∑
t=1

ŜtŜ
′
t,

where Ŝt =
∑t

j=1 ûj. MB statistic is then given by

MB =
1

2T
tr(Ω̂ûΣ̂

−1
û ).(3.2)



PANEL NONPARAMETRIC RANK TESTS USING BLOCK BOOTSTRAP 7

3.2. Bootstrap algorithm

We illustrate the construction of the bootstrap version of the MB statistic.

The block bootstrap algorithm we employ is a panel extension of difference-

based block bootstrap algorithm by Paparoditis, E. and D. Politis (2003).

The algorithm is designed such that the bootstrapped series correctly mim-

ics the behavior of the original series under the null hypothesis. Note that

the asterisk mark (∗) indicates bootstrap variables.

Block Bootstrap Algorithm:

1. Calculate the centered differences of ut
2.

δ̂i,t = ui,t − ui,t−1 −
1

T − 1

T∑
t=2

(ui,t − ui,t−1),(3.3)

2. Choose a positive number b (< T ) which will be our block length. Let

k = b(T − 2)/bc + 1 be our block number. Then, randomly sample

i0, i1, . . . , ik−1 i.i.d. from uniform distribution on the set {1, 2, . . . , T −
b}.

3. Set u∗1 = u1 and construct the rest of the bootstrap series {u∗t}Tt=2 in

the following way:

u∗t = u∗t−1 + δ∗t for all t,

where we set δ∗t = δ̂im+s with m = b(t− 2)/bc and s = t−mb− 1.

4. Calculate the MB test statistic from the pseudo series {u∗t}Tt=1.

MB∗ =
1

2T
tr(Ω̂∗û(Σ̂

−1
û )∗).

2Although our algorithm starts by assuming that we have a detrended series, we need

to detrend yt through (3.1) in practice. And then, in step 4, before we obtain MB∗, we

set y∗t = u∗t and detrend y∗t to obtain the new u∗t , which we use to construct MB∗. For

more discussions on detrending bootstrap unit root tests, refer to Smeekes, S. (2009). In

the mathematical proofs, we assume that there is no deterministic component. However,

for the Monte Carlo simulation, we apply these modified steps to account for the p = 0

case.
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5. Repeat steps 2-4 for however many times one wants. Say that we re-

peated the steps B times. Then, we have {MB∗j}Bj=1. Under the null

of r = N2, the empirical distribution from {MB∗j}Bj=1 provides a con-

sistent approximation to the true asymptotic distribution of the MB

statistic. We choose the critical value c∗α of the bootstrap test as the

α-quantile of the ordered {MB∗j}Bj=1. If the MB constructed in (3.2) is

smaller than c∗α, we reject the null of r = N2.

Paparoditis, E. and D. Politis (2003) show that the residual-based block

bootstrap (RBB), for which we need to estimate the coefficient in front

of ui,t−1 in step 1 instead of fixing it as 1, retains higher power than the

differenced-based block bootstrap (DBB) in time series. However, Palm et

al. (2008) show through simulation that the DBB exhibits smaller size dis-

tortion than its residual counterpart. Hence, we adopt the DBB method in

this paper for two reasons. First, the DBB does not require the estimation

of any coefficient, which is in line with the nonparametric characteristic of

our main test statistic in concern. Second, reduction in size distortion is a

bigger gain than the loss of power in panel unit root tests. Tests using panel

data generally retain high power such that the loss of power using DBB

method is acceptable. However, size distortion is often an important issue

in panel time series. Thus, the DBB method is suited better for a panel unit

root test.

4. ASYMPTOTIC PROPERTIES

In this section, we establish the asymptotic validity of the boostrap test.

First, we introduce the asymptotic distribution of the original MB test

statistic.

Theorem 1 Let Assumption 1 hold. Then, under the null hypothesis H0 :
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r = N2 > 0,

1

2T
tr(Ω̂ûΣ̂

−1
û )⇒ tr

(∫ 1

0

Qp
2(s)Qp

2(s)′ds

(∫ 1

0

W p
2(r)W p

2(r)′dr

)−1
)
,

where Qp(s) =
∫ s

0
W p(r)dr and

W p(s) = W (s)−
∫ 1

0
W (r)(F p

r)
′dr
(∫ 1

0
F p
r(F

p
r)
′dr
)−1

F p
s. Note that the sub-

script 2 refers to the fact that the distributions are resulted from ŵ2t.

Critical values for the MB test are provided in Pedroni et al. (2010). The

following shows that the invariance principle holds for the bootstrapped

series.

Lemma 2 (Invariance Principle) Let Assumption 1 and 2 hold and let yt

be generated under H0 : r = N2 > 0. Then, as T →∞,

1√
T

brT c∑
t=1

e∗t ⇒ B(r) in probability.

This lemma and the existence of moments are sufficient to show that the

limiting distribution of the bootstrap rank test statistic corresponds to the

limiting distribution of the original test statistic.

Theorem 2 Let Assumption 1 and 2 hold and let yt be generated under

H0 : r = N2 > 0. Then, as T →∞,

MB∗ ⇒ tr

(∫ 1

0

Qp
2(s)Qp

2(s)′ds

(∫ 1

0

W p
2(r)W p

2(r)′dr

)−1
)

in probability.

This theorem verifies that the MB test statistic constructed using the

bootstrapped series is a valid test statistic under the null hypothesis. We

now explore the asymptotic properties under the alternative hypothesis. The

below asymptotic distribution of TMB is presented in Pedroni et al.(2010)
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Theorem 3 Let Assumption 1 hold and let yt be generated under HA :

r = 0. Then, as T →∞,

TMB⇒ tr

(∫ 1

0

Bp
1(s)Bp

1(s)′dsΣ−1
v1v1

)
,

such that MB converges to 0 under HA : r = 0.

In order to satisfy the sufficient conditions for the consistency of the boot-

strap test, it is required to show that unlike the original test statistic, the

bootstrap test statistic converges to a distribution under the alternative hy-

pothesis. By the discussion in Section 5.2. of Paparoditis, E. and D. Politis

(2003), however, the DBB method makes the bootstrap test statistic incon-

sistent under the alternative hypothesis. The failure of convergence origi-

nates from the fact that the invariance principle for the bootstrapped series

constructed with the DBB method no longer holds under the alternative

hypothesis. As the invariance principle does not hold under the alternative,

HA : r = 0, MB∗ degenerates as T → ∞. Then, as MB∗ degenerates along

with MB under the alternative hypothesis, the critical value obtained from

the empirical distribution of {MB∗j}Bj=1 could be lower than MB such that

we would fail to reject the false null hypothesis. The inconsistency of the

bootstrap test statistic under the alternative hypothesis and the resulting

loss in power are the costs we must pay in order to reduce the size distortion

as we have discussed before.

It is also important to consider other alternative hypotheses. That is,

we need to consider the alternative hypotheses of 0 < r < N2. Under

these alternative hypotheses, the MB statistic converges to the distribution

described in Theorem 1 but with a smaller dimension which corresponds to

the rank of the long run covariance matrix under the alternative hypotheses.

Consequently, the test statistic does not diverge nor degenerate under the

alternative hypotheses, indicating that the MB statistic is inconsistent under

HA : 0 < r < N2. Thus, we do not investigate other alternative hypotheses.
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We have established that the bootstrap test statistic is partially valid.

We will now explore the small sample performance of the bootstrap test

under the full rank null hypothesis and under the alternative hypothesis of

stationarity across all units.

5. SMALL SAMPLE PERFORMANCE

We investigate the small sample properties of the bootstrap test through

Monte Carlo simulations. Both the size and power properties are evaluated

under the null hypothesis of unit root across all units against the alternative

hypothesis of stationarity across all units. Various types of dynamic and

cross-sectional dependency are considered.

5.1. Monte Carlo setup

In this section, we describe how our sample is simulated. It is imperative

that the simulated samples exhibit various cross-sectional dependence struc-

tures. Unless otherwise indicated, the notations we use here are identical to

the ones used in Section 2. Without loss of generality, we impose that the

stationary units are ordered first. We follow the simulation design described

in Pedroni et al. (2010) and modify it slightly to compare our results with

both Palm et al. (2010) and Pedroni et al. (2010). Consider the following

setup:

αp = 0,A1 =

IN1

0

 ,A2 =

 0

IN2


v1,t

v2,t

 =

ρIN1 0

0 0

v1,t−1

v2,t−1

+ γt,

where |ρ| < 1 and γt is a randomly generated N -dimensional error vector.

Note that the definition of A1 and A2 ensures y1,t = v1,t and ∆y2,t = v2,t.

The cross-sectional and dynamic dependence will be generated by the error
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vector γt in a following way:

γt = Θγt−1 + εt, εt ∼ N(0,Σ)

Θ = diag(θ1, . . . , θN), θi ∼ U(−0.3, 0.3) or θi = 0 ∀i,

where Σ is constructed as in Chang, Y. (2004) to ensure that Σ is symmetric

positive definite. Note that each matrix is N ×N .

1. Generate a diagonal matrix D containing eigenvalues λ1, . . . , λN as

its diagonal elements with λ1 = r, λi ∼ U(r, 1) for i /∈ {1, N}, and

λN = 1.

2. Generate a random matrix U ∼ U(0, 1) and define P = U (U ′U)−1/2.

3. Finally, let Σ = PDP ′.

The choice of r depends on whether or now we want cross-sectional depen-

dency in our sample. If r = 1, the matrix D becomes an identity matrix

such that εt is independent across the cross-sectional dimension while if

r = 0.1, εt is cross-sectionally dependent. Note that the choice of θi governs

the serial correlation in our sample. γt becomes serially uncorrelated when

θi = 0 ∀i while θi ∼ U(−0.3, 0.3) makes γt become serially correlated. We

consider two simple settings.

• Setting 1: Samples generated under the null hypothesis. That is, N1 =

0, N2 = N with various combinations of dynamic and cross-sectional

dependency.

• Setting 2: Samples generated under the alternative hypothesis. That

is, N1 = N , N2 = 0 with various combinations of dynamic and cross-

sectional dependency.

Since the sets of time and cross-sectional dimensions that were considered

in Palm et al. (2010) and Pedroni et al. (2010) are different, we use two

different sets of T and N to allow for the direct comparison with each paper.

To compare our results with Palm et al. (2010), we consider T = 25, 50, 100

and N = 5, 25. Furthermore, to compare our results with Pedroni et al.
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(2010), we consider T = 100, 200 and N = 10, and consider the DGP with

constant (p = 0). As in Palm et al. (2010), the fixed block length b is chosen

as b = d1.75T 1/3e. The results are based on 1000 Monte Carlo simulations

and 400 bootstrap replications with α = 0.05. Note that we first generate

100 presample values for the errors of each unit with ε0 = 0 which are fixed

throughout the simulation. Also, note that the size and power values for the

tests from Palm et al. (2010) and Pedroni et al. (2010) are taken from their

respective papers.

5.2. Simulation results

The size results of the bootstrap test under the Setting 1 are summarized

in Table I and the power results are reported in Table II. The following

provides a summary of the information we have gathered from these two

tables.

1. As expected with bootstrapping a pivotal statistic, the new bootstrap

test exhibits good size. Regardless of the choice of T and of the exis-

tence of cross-sectional dependence, the size is close to 0.05 for a small

N . But when N gets larger, the size gets smaller than 0.05, indicating

that the new test has some under-size issues. However, the under-size

problem is more desirable than the over-size problem present in many

asymptotic tests that are considered in the simulation study of Palm

et al. (2010). The good size property can be explained by the use of the

DBB method as opposed to the RBB method and by the asymptotic

refinement provided by the bootstrap.

2. Unlike the good size property, the new test retains relatively poor

power. However, power of the test does improve and converge to 1 as

N and T get larger and as ρ gets smaller3. It might seem surprising

3Recall that ρ determines the “degree” of stationarity within the stationary units. If

ρ gets closer to 1, the test could fail to distinguish the stationary series from the unit
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TABLE I

Size at α = 5%

T N MBboot τp τg

No dependence

25 5 0.040 0.024 0.020

50 5 0.046 0.031 0.024

100 5 0.054 0.032 0.032

100 25 0.001 0.009 0.014

Contemporaneous dependence

25 5 0.054 0.026 0.022

50 5 0.062 0.033 0.028

100 5 0.050 0.040 0.031

100 25 0.002 0.013 0.015

T N MBboot MB

Contemporaneous but no dynamic

100 10 0.025 0.059

200 10 0.027 0.055

Contemporaneous and dynamic

100 10 0.016 0.063

200 10 0.036 0.053

TABLE II

Power at α = 5%

ρ = 0.9

T N MBboot τp τg

No dependence

25 5 0.148 0.507 0.354

50 5 0.419 0.757 0.810

100 5 0.747 0.929 0.974

100 25 0.990 1.000 1.000

Contemporaneous dependence

25 5 0.142 0.508 0.357

50 5 0.371 0.630 0.648

100 5 0.767 0.943 0.985

100 25 0.992 1.000 1.000

ρ = 0.95

T N MBboot MB

Contemporaneous and dynamic

100 10 0.648 0.836

200 10 1.000 1.000

that the new bootstrap test exhibits reasonable power when the test

is asymptotically inconsistent under the alternative hypothesis. The

test still works in practice since the invariance principle under the

alternative hypothesis actually holds for k →∞, although it does not

hold for T →∞, as explored by Paparoditis, E. and D. Politis (2003)

for a time series case. They explain that the unit root tests based on

the DBB method can still work in practice even though the power is

a bit worse than that of the tests based on the RBB method.

3. The presence of serial or cross-sectional correlation does not seem to

alter the size and power of the new bootstrap test.

root series as the rank of the covariance matrix Ω∆u will get closer to full.
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Table I suggests that the size property of the new bootstrap test is more

desirable than the size property of τp and τgm introduced by Palm et al.

(2010). In fact, the new test retains a good size property even when T = 25

for which the tests considered by Palm et al. (2010) show poor size. They

comment that the poor size of their tests arises from the property of BIC

criteria, which tend to select too many lags when T = 25. Unlike their tests,

however, the rank test does not require any lag-selection process so that it

is free of the size distortion when T is small. The asymptotic rank test

by Pedroni et al. (2010) generally retains good size. Like most asymptotic

tests, however, its size increases above 0.05 whenN increases4. As mentioned

above, size of the new bootstrap test actually decreases as N gets larger.

As discussed in Palm et al. (2010), the choice of block length b can have a

big impact on the performance of any test based on block bootstrap method.

This is due to the fact that the growth of b is essential for the bootstrap

validity. If the block length is too small, the bootstrapped panel series would

fail to capture the entire dependence structure present in the original panel

series. On the other hand, if the block length is too big, the bootstrap test

statistics might not mimic the true distribution of the original test statistic

as there would not be enough variations within the bootstrap test statistics.

Palm et al. (2010) proposes the Warp-Speed calibration method for choosing

a block length. However, they remark that the block length chosen by the

calibration method is not optimal with respect to size or power. Hence, we

used the simple fixed block length, which depends on T , in our simulation

study.

4Although the values are not reported in the tables here, the size of the MB test

increases from 0.063 to 0.081 when N increases from 10 to 20 for T = 100 with the

presence of both contemporaneous and dynamic dependence.
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6. CONCLUSION

This paper considers the use of block bootstrap to improve the perfor-

mance of the MB rank test developed by Pedroni et al. (2010). We have

shown that the new bootstrap test based on the rank test is asymptotically

valid under the null hypothesis. Furthermore, even if the test is inconsistent

under the alternative hypothesis, the Monte Carlo simulation results sup-

port that the test actually retains reasonable power. The simulation results

also support that the new bootstrap test has a better size property than

the original rank test.

Like the original rank test, the bootstrap rank test can deal with various

types of cross-sectional dependency. In fact, the size and power properties

of the new test are robust to the existence of cross-sectional or dynamic

dependence. Hence, the new test is ideal when the size distortion is a big

concern due to the presence of cross-sectional dependency and large N . The

lack of power of the new test can be overcome by either increasing N or T ,

and neither would have significant impact on the good size property of the

new test.

APPENDIX A: MATHEMATICAL PROOFS

Proof of Lemma 1: By Assumption 1, it follows from the standard in-

variance principle result that (Phillips and Solo (1992) and Phillips and

Moon (1999)),

1√
T

brT c∑
t=1

εt ⇒ Σ1/2
ε W (r).

We now decompose ∆wt into over-differenced and correctly-differenced parts.

Recall that ψi = [ψ1,i,ψ2,i]
′ where ψ1,i contains the coefficients for the first

N1 units while ψ2,i contains the coefficients for the latter N2 units. Note that
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ψ1,i and ψ2,i satisfy Assumption 1.Let ψ+
i = [ψ1,i, 0]′. Then, by definition,

∆wt =
∞∑
j=0

(
ψjεt−j −ψ+

j εt−j−1

)
.

By Theorem 3.15 of Phillips and Solo (1992),

1√
T

brT c∑
t=1

(
∞∑
j=0

ψjεt−j

)
⇒ ψ(1)Σ1/2

ε W (r),

and

1√
T

brT c∑
t=1

(
∞∑
j=0

ψ+
j εt−j−1

)
⇒ ψ+(1)Σ1/2

ε W (r),

such that

1√
T

brT c∑
t=1

∆wt ⇒
(
ψ(1)Σ1/2

ε −ψ+(1)Σ1/2
ε

)
W (r).

Let ψ̃i = [0,ψ2,i]
′. Then,

(
ψ(1)Σ1/2

ε −ψ+(1)Σ1/2
ε

)
W (r) = ψ̃(1)Σ1/2

ε W (r).

The same result can be derived using ψ̃i and ψ+
i . First, note that

1√
T

brT c∑
t=1

∆εt =
1√
T

(
εbrT c + ε0

)
= Op

(
1√
T

)
→ 0.

Then, the result directly follows as below:

1√
T

brT c∑
t=1

∆wt =
1√
T

brT c∑
t=1

(
∞∑
j=0

ψ̃jεt−j +
∞∑
j=0

ψ+
j ∆εt−j

)
⇒ ψ̃(1)Σ1/2

ε W (r).

We now need to verify that ψ̃(1)Σ
1/2
ε = Ω

1/2
∆w. Recall that by definition,

Ω∆w = lim
T→∞

1

T
E

[(
T∑
t=1

∆wt

)(
T∑
t=1

∆wt

)′]
.
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Observe the following:

Ω∆w = lim
T→∞

1

T

T∑
s=1

T∑
t=1

E[∆ws∆w
′
t]

= lim
T→∞

1

T

T∑
s=1

T∑
t=1

E

[
∞∑
i=0

(
ψiεs−i −ψ+

i εs−i−1

)( ∞∑
j=0

(
ψjεt−j −ψ+

j εt−j−1

))′]

= lim
T→∞

1

T

T∑
s=1

T∑
t=1

∞∑
i=0

∞∑
j=0

(ψiE[εs−iε
′
t−j]ψ

′
j −ψ+

i E[εs−iε
′
t−j]ψ

′
j

−ψiE[εs−iε
′
t−j](ψ

+
j )′ +ψ+

i E[εs−iε
′
t−j]ψ

′
j)

=
∞∑
i=0

∞∑
j=0

(
ψiΣεψ

′
j −ψ+

i Σεψ
′
j −ψiΣε(ψ

+
j )′ +ψ+

i Σε(ψ
+
j )′
)

= ψ(1)Σεψ(1)′ −ψ+(1)Σεψ(1)′ −ψ(1)Σε(ψ(1)+)′

+ψ+(1)Σε(ψ(1)+)′

=
(
ψ(1)−ψ+(1)

)
Σε

(
ψ(1)−ψ+(1)

)′
,

which verifies that Ω
1/2
∆w = ψ̃(1)Σ

1/2
ε . Q.E.D.

Similarly, we can show that Σ∆w =
∑∞

j=0(ψjΣεψ
′
j −ψ+

j+1Σεψ
′
j −ψjΣε

×(ψ+
j+1)′ + ψ+

j Σε(ψ
+
j )′). In order to prove Theorem 2, we first need to

prove Lemma 2. The following lemmas, which are the modified versions of

the lemmas from Palm et al. (2010), build upon each other to establish the

proof of Lemma 2.

Lemma A.1 Let Assumptions 1 and 2 hold. Then, if

1√
T

b(k−1)rc∑
m=0

b∑
s=1

(eim+s − E∗[eim+s])⇒ B(r) in probability,

then,

1√
T

brT c∑
t=1

e∗t ⇒ B(r) in probability.



PANEL NONPARAMETRIC RANK TESTS USING BLOCK BOOTSTRAP 19

Proof of Lemma A.1: For simplicity, let 1√
T

∑brT c
t=1 e

∗
t be S∗T (r). We first

obtain e∗t from δ∗t . Recall the definition of δ∗t .

δ∗t = δ̂im+s.

Applying the orthogonal matrix A′ to δ̂im+s, we get,

e∗t = A′δ̂im+s = êim+s.

Then, we can express S∗T (r) in terms of êim+s.

S∗T (r) =
1√
T
w1 +

1√
T

Mr∑
m=0

B∑
s=1

êim+s,

where Mr = b(brT c− 2)/b]c and B = min{b, brT c−mb− 1}. Note that the

way Mr and B are determined follows directly from the bootstrap algorithm.

We can simplify the above summation as the following:

S∗T (r) = Op(
1√
T

) +
1√
T

Mr∑
m=0

b∑
s=1

êim+s −
1√
T

b∑
s=B+1

êiMr+s.(A.1)

Paparoditis, E. and D. Politis (2003) show the following:

sup
0≤r≤1

∣∣∣∣∣ 1√
T

b∑
s=B+1

êj,iMr+s

∣∣∣∣∣ = Op(
1√
k

),

for each individual j. Then, in order to investigate the asymptotic behavior

of S∗T (r), our only concern is the second term in the equation (A.1). Using

the definitions of δ̂t in (3.3) and et, we can rewrite the second term into a

more meaningful expression:

1√
T

Mr∑
m=0

b∑
s=1

êim+s =
1√
T

Mr∑
m=0

b∑
s=1

(
eim+s −

1

T − 1

T∑
h=2

eh

)
.

Observe that 1
T−1

∑T
h=2 eh is a consistent estimator of the mean of the dif-

ference of wt. Then, since eim+s’s are randomly drawn from the centered
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differences of wt, the estimator should converge, uniformly in r, to the ex-

pectation of eim+s as T →∞. That is,

1√
T

Mr∑
m=0

b∑
s=1

(
E∗ [eim+s]−

1

T − 1

T∑
h=2

eh

)
→ 0.

Finally, note that using b(k − 1)rc where k = b(T − 2)/bc+ 1 as the upper

limit of the summation is asymptotically equivalent to using Mr as the

upper limit of the summation. Hence, if

1√
T

b(k−1)rc∑
m=0

b∑
s=1

(eim+s − E∗[eim+s])⇒ B(r) in probability,

then,

S∗T (r) = Op(
1√
T

) +
1√
T

Mr∑
m=0

b∑
s=1

(
eim+s −

1

T − 1

T∑
h=2

eh

)
+Op(

1√
k

)

⇒ B(r) in probability.

Q.E.D.

The above Lemma A.1 implies that it is sufficient to investigate the

asymptotic behavior of 1√
T

∑b(k−1)rc
m=0

∑b
s=1(eim+s − E∗[eim+s]) instead of

S∗T (r) itself.

Lemma A.2 Let H∗m = 1√
b

∑b
s=1(εim+s − E∗[εim+s]) and let Assumptions

1 and 2 hold. Then,

1. E∗[H∗m] = 0,

2. E∗[H∗mH
∗
m
′] = Σε + op(1),

3. As T →∞,

1√
T

b(k−1)rc∑
k=0

b∑
s=1

(εim+s − E∗[εim+s])⇒ Σ1/2
ε W (r) in probability.

Proof of Lemma A.2: Refer to the proofs of Lemma A.3 and Lemma

A.4 of Palm et al. (2008). Q.E.D.
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Lemma A.3 Let Assumptions 1 and 2 hold and let yt be generated under

H0 : r = N2 > 0. Then, as T →∞,

1√
T

b(k−1)rc∑
m=0

b∑
s=1

(eim+s − E∗[eim+s])⇒ ψ̃(1)Σ1/2
ε W (r) in probability.

Proof of Lemma A.3: We begin by decomposing et into eIt and eIIt .

Let eIt = [e1,t, 0]′ and eIIt = [0, e2,t]
′ where e1,t ∈ RN1 and e2,t ∈ RN2 . Note

that each vector is still N -dimensional. Then,

1√
T

b(k−1)rc∑
m=0

b∑
s=1

(eim+s − E∗[eim+s])

=
1√
T

b(k−1)rc∑
m=0

b∑
s=1

(
eIim+s − E∗[eIim+s]

)
+

1√
T

b(k−1)rc∑
m=0

b∑
s=1

(
eIIim+s − E∗[eIIim+s]

)
= C∗T + D∗T .

We analyze C∗T and D∗T separately. The convergence of D∗T to B(r) follows

from the proof of Lemma A.5. of Palm et al. (2008). For the ease of the

verification, we present the adapted version of the proof. We first decompose

D∗T using Beveridge-Nelson decomposition (BN) which is possible under

Assumption 1.

1√
T

b(k−1)rc∑
m=0

b∑
s=1

(
eIIim+s − E∗[eIIim+s]

)
=

1√
T

b(k−1)rc∑
m=0

b∑
s=1

ψ̃(1) (εim+s − E∗[εim+s])

− 1√
T

b(k−1)rc∑
m=0

(
(ψ(L)εim+b − E∗[ψ(L)εim+b])(ψ(L)εim − E∗[ψ(L)εim ])

)
,

where ψj =
∑∞

h=j+1 ψ̃h. We first show that the second term is o∗p(1). By
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the Markov inequality, for any given ε > 0,

P ∗

∣∣∣∣∣∣ 1√
T

b(k−1)rc∑
m=0

(
ψ(L)εim+η − E∗[ψ(L)εim+η]

)∣∣∣∣∣∣ > ε


≤ 1

ε2
E∗

∣∣∣∣∣∣ 1√
T

b(k−1)rc∑
m=0

(
ψ(L)εim+η − E∗[ψ(L)εim+η]

)∣∣∣∣∣∣
2

,

for η = 0, b. Using the fact that the blocks are independent, we get

E∗

∣∣∣∣∣∣ 1√
T

b(k−1)rc∑
m=0

(
ψ(L)εim+η − E∗[ψ(L)εim+η]

)∣∣∣∣∣∣
2

=
1

T

b(k−1)rc∑
m1=0

b(k−1)rc∑
m2=0

E∗

(
∞∑
j=0

ψj(εim1+η−j − E∗[εim1+η−j])

)′

×

(
∞∑
j=0

ψj(εim2+η−j − E∗[εim2+η−j])

)

=
1

T

b(k−1)rc∑
m=0

E∗

∣∣∣∣∣
∞∑
j=0

ψj(εim+η−j − E∗[εim+η−j])

∣∣∣∣∣
2

.

By Minkowski’s inequality,

1

T

b(k−1)rc∑
m=0

E∗

∣∣∣∣∣
∞∑
j=0

ψj(εim+η−j − E∗[εim+η−j])

∣∣∣∣∣
2

≤ 1

T

b(k−1)rc∑
m=0

(
∞∑
j=0

∣∣ψj

∣∣ (E∗ [|εim+η−j − E∗[εim+η−j]|2
]
)1/2

)2

≤ 4k

T

(
∞∑
j=0

∣∣ψj

∣∣)2

max
j

1

T − b

T−b∑
t=1

|εt+η−j|2,

which holds uniformly in r and for η = 0, b. Note that the second inequality

was derived directly by taking the maximum of the average of ε with a
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change of variable. By Assumption 1,

∞∑
j=0

∣∣ψj

∣∣ <∞,
1

T − b

T−b∑
t=1

|εt+η−j| = Op(1),

where the first inequality holds as
∑∞

j=0 j
∣∣∣ψ̃j

∣∣∣ < ∞ which is shown in

Phillips and Solo (1992). Thus, for η = 0, b,

1

ε2
E∗

∣∣∣∣∣∣ 1√
T

b(k−1)rc∑
m=0

(
ψ(L)εim+η − E∗[ψ(L)εim+η]

)∣∣∣∣∣∣
2

= Op(b
−1),

which holds uniformly in r. Hence,

1√
T

b(k−1)rc∑
m=0

(
(ψ(L)εim+b − E∗[ψ(L)εim+b])(ψ(L)εim − E∗[ψ(L)εim ])

)
= o∗p(1).

Then, by the third result of Lemma A.2,

D∗T ⇒ ψ̃(1)Σ1/2
ε W (r) in probability.

We conclude our proof by showing that C∗t degenerates to 0 as T → ∞.

Note first that we can rewrite eIt as ∆w1,t. Then,

C∗T =
1√
T

b(k−1)rc∑
m=0

b∑
s=1

(∆w1,im+s − E∗[∆w1,im+s])

=
1√
T

b(k−1)rc∑
m=0

(w1,im+b −w1,im − E∗[w1,im+b −w1,im ])

=
1√
T

b(k−1)rc∑
m=0

(w1,im+b − E∗[w1,im+b])

− 1√
T

b(k−1)rc∑
m=0

(w1,im − E∗[w1,im ])

= C∗T,b + C∗T,0.
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By the definition of w1,t and by the above analysis, for η = 0, b,

C∗T,η =
1√
T

b(k−1)rc∑
m=0

(ψ+(L)εim+η − E∗[ψ+(L)εim+η]).

By the proof of Lemma 8.5 of Paparoditis, E. and D. Politis (2003), we have

√
T√
k
C∗T,η = O∗p(1) as k →∞,

indicating that the left-hand side is bounded in the limit as k → ∞ in

probability5. By the definition of b, the above implies that uniformly in r,

C∗T,η = O∗p(
1√
b
) as b→∞,

which holds for η = 0, b. Then, by Assumption 2, for η = 0, b

C∗T,η ⇒ 0 in probability.

Hence,

1√
T

b(k−1)rc∑
m=0

b∑
s=1

(eim+s − E∗[eim+s])⇒ ψ̃(1)Σ1/2
ε W (r) in probability.

Q.E.D.

The above result implies that increasing block length as T grows larger is

crucial in order for C∗T,η to degenerate. As Palm et al. (2008) discusses the

issue in detail, in finite samples, we expect C∗T,η term, which represents the

stationary portion, to affect the covariance matrix of the Brownian motion

in the limiting distribution. Thus, the test will perform well only if we have

moderately large sample size and the block length.

5In fact, by Lemma 8.5 of Paparoditis, E. and D. Politis (2003),
√
T√
k
C∗T weakly con-

verges to a Brownian motion involving the variance of w1,t as k →∞.
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Proof of Lemma 2: Let Assumptions 1 and 2 hold. By Lemma A.3 and

by the proof of Lemma 1,

1√
T

b(k−1)rc∑
m=0

b∑
s=1

(eim+s − E∗[eim+s])⇒ B(r) in probability.

Then, by Lemma A.1,

1√
T

brT c∑
t=1

e∗t ⇒ B(r) in probability.

Q.E.D.

We have verified that 1√
T

∑brT c
t=1 e

∗
t converges to a Brownian motion involv-

ing the long run variance matrix of et = ∆wt. However, we have not verified

that the variances constructed by e∗t agree with the original variances. The

next lemma shows that variances of e∗t correctly mimic the original vari-

ances.

Lemma A.4 Let Assumption 1 and 2 hold and let yt be generated under

H0 : r = N2 > 0. Then, as T →∞,

1. Ω∗∆w = Ω∆w + op(1),

2. Σ∗∆w = Σ∆w + op(1).

Proof of Lemma A.4: For notational simplicity, we again use et in-

stead of ∆wt. By definition,

Ω∗e =
1

T

(
E∗

[(
T∑
t=1

e∗t

)(
T∑
t=1

e∗t

)′]
− E∗

[
T∑
t=1

e∗t

]
E∗

[
T∑
t=1

e∗t

]′)
.

We would like to analyze 1
T

∑T
t=1 e

∗
t first. By the proof of Lemma A.1,

1

T

T∑
t=1

e∗t =
1

T

k−1∑
m=0

b∑
s=1

(eim+s − E∗[eim+s]) + o∗p(1).
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Thus, when we put the expected value sign in front of it, the first term

disappears and only the second little o-notation in probability stays. Hence,

Ω∗e =
1

T
E∗

[(
k−1∑
m=0

b∑
s=1

(eim+s − E∗[eim+s])

)

×

(
k−1∑
m=0

b∑
s=1

(eim+s − E∗[eim+s])

)′ + op(1).

We now analyze the term
∑k−1

m=0

∑b
s=1(eim+s−E∗[eim+s]). Using the Beveridge-

Nelson decomposition and following the argument used in Lemma A.3, we

arrive at the equality (the terms that are similar to C∗T,η can be grouped

together in the little o-notation),

1√
T

k−1∑
m=0

b∑
s=1

(eim+s − E∗[eim+s])

=
1√
T
ψ̃(1)

k−1∑
m=0

b∑
s=1

(εim+s − E∗[εim+s]) + o∗p(1).

Plugging the right-hand side into the long-run variance formula, we get

Ω∗e =
1

T
ψ̃(1)E∗

[(
k−1∑
m=0

b∑
s=1

(εim+s − E∗[εim+s])

)

×

(
k−1∑
m=0

b∑
s=1

(εim+s − E∗[εim+s])

)′ ψ̃(1)′ + op(1).

By the second result of Lemma A.2 and using the fact that the blocks are in-

dependent (such that the product of terms from different blocks disappears

in expectation),

1

T
ψ̃(1)E∗

[(
k−1∑
m=0

b∑
s=1

(εim+s − E∗[εim+s])

)

×

(
k−1∑
m=0

b∑
s=1

(εim+s − E∗[εim+s])

)′ ψ̃(1)′ + op(1)

= ψ̃(1)Σεψ̃(1)′ + op(1).
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Thus, we confirm that Ω∗e = Ωe + op(1).

Next, we want to confirm the equivalence of the contemporaneous vari-

ances. By definition,

Σ∗e =
1

T

T∑
t=1

(
E∗ [e∗t (e

∗
t )
′]− E∗ [e∗t ]E

∗ [e∗t ]
′) .

By the proof of A.1, similar to the above analysis,

Σ∗e =
1

T

k−1∑
m=0

b∑
s=1

E∗ [(eim+s − E∗[eim+s])(eim+s − E∗[eim+s])
′] + op(1).

As in the proof of Lemma A.3, let et = eIt +eIIt . Once we expand the above

expression using this decomposition and apply the proof of Lemma A.6 of

Palm et al. (2008), we finally confirm that,

Σ∗e = Σe + op(1).

Q.E.D.

We have shown that the bootstrap invariance principle holds and that

the bootstrapped moments are equivalent to the asymptotic moments. We

can then easily prove the convergence in probability of the bootstrap MB

statistic to the asymptotic distribution introduced in Theorem 1.

Proof of Theorem 2: The proof of the theorem is identical to the

proof of the convergence of MB statistic provided by Pedroni et al. (2010).

Lemma 2 and Lemma A.4 provide the sufficient conditions for their proof.

Lemma A.5 Let Assumption 1 and 2 hold and let yt be generated under

HA : r = 0. Then, as T →∞,

1√
T

brT c∑
t=1

e∗t ⇒ 0 in probability.
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Proof of Lemma A.5: The proof is identical to the analysis of C∗T term

in the proof of Lemma A.3. The only difference is that we use εt instead of

εIt , and use ψ(L) instead of ψ+(L). Q.E.D.

The above lemma concludes that the bootstrapped MB test statistic un-

der the alternative degenerates.

Q.E.D.
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