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FULLY MODIFIED OLS FOR HETEROGENEOUS COINTEGRATED PANELS 

AND THE CASE OF PURCHASING POWER PARITY

I. Introduction

Methods for nonstationary time series panels, including unit root and cointegration tests, have

been gaining increased acceptance in recent empirical research.  The extension of conventional

nonstationary methods to panels with both cross section and time series dimensions holds

considerable promise for empirical research considering the abundance of data which is available

in this form.  In particular, nonstationary panel methods provide an opportunity for researchers to

exploit some of the attractive theoretical properties of nonstationary regressions while addressing

in a natural and obvious manner the small sample problems that have in the past often hindered

the practical success of these methods.  

For example, it is well known that superconsistent rates of convergence associated with

many of these methods can provide empirical researchers with an opportunity to circumvent more

traditional exogeneity requirements in time series regressions.  Yet, the low power of many of the

associated statistics has often impeded the ability to take full advantage of these properties in

realistic small samples.  By allowing data to be pooled in the cross sectional dimension,

nonstationary panel methods have the potential to improve upon these small sample limitations. 

Conversely, the use of nonstationary time series asymptotics provides an opportunity to make

panel methods more amenable to pooling aggregate level data.  Conventional panel methods that

were designed to employ short spans of stationary data have traditionally been of more limited use

in areas of study that rely on aggregate data, in large part because these methods typically require
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that any of the associated dynamics be homogeneous among individual members of the panel.  By

contrast, superconsistent rates of convergence can be exploited in nonstationary panel methods to

allow for practical implementations that permit relatively unrestricted heterogeneous dynamics

among differing members of the panel.

Initial methodological work on nonstationary panels focused on testing for unit roots in

univariate panels.  Quah (1994) derived standard normal asymptotic distributions for testing unit

roots in homogeneous panels as both the time series and cross sectional dimensions grow large. 

Levin and Lin (1993) derived distributions under more general conditions that allow for

heterogeneous fixed effects and time trends.  More recently, Im, Pesaran and Shin (1995) study

the small sample properties of unit root tests in panels with heterogeneous dynamics and propose

alternative tests based on group mean statistics.  In practice however, empirical work generally

involves relationships within multivariate systems.  Thus, Pedroni (1995a) studied the properties

of spurious regressions and tests for cointegration in heterogeneous panels and derived

appropriate distributions for these cases.  These allow one to test for the presence of long run

equilibria in multi-variate panels while permitting the dynamics and even the long run

cointegrating relationships to be heterogeneous across individual members.  Recent applications

of these panel tests for cointegration include Canzoneri, Cumby and Diba (1996) to productivity

and real exchange rates, Obstfeld and Taylor (1996) to international capital mobility, Pedroni

(1995b) to endogenous growth theory and Taylor (1996) to historical episodes of purchasing

power parity.

While these methods allow one to test for the presence of unit roots and cointegration in

nonstationary panels, it would also useful to be able to test hypotheses about the cointegrating
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vectors in such panels.  Pedroni (1995a) showed that the asymptotics and corresponding critical

values associated with tests for cointegration depended in a key way on whether or not the

cointegrated vectors could be assumed to be homogeneous across individual members of the

panel.  In other situations, economic theories may suggest a particular value of the cointegrating

vector in panels which one would like to compare with available data, as in the purchasing power

parity example that we consider.  The purpose of this paper, therefore, is to investigate the

properties of various estimators for such cointegrating vectors in panels with heterogeneous

dynamics and to propose feasible statistics that can be used to make reliable inferences about the

cointegrating vectors.

It is well known for the conventional single equation case that although ordinary least

squares estimates of cointegrating vectors are superconsistent, the corresponding distributions are

asymptotically biased and dependent on nuisance parameters associated with the serial correlation

properties of the data.  These difficulties are no less likely to persist for panels, and are likely to be

further complicated by potential heterogeneity in the dynamics.  Indeed, in related work, Kao and

Chen (1995) document the extent of this bias in a panel of cointegrated time series for the case in

which the dynamics are homogeneous.  They also investigate the possibility of adjusting for this

bias directly using a least squares dummy variable estimator, but find that the bias adjusted LSDV

estimator performs no better than the unadjusted estimator in finite samples.  Herein lies the

challenge for panel methods to be applicable to making inferences regarding cointegrating vectors

in realistic finite samples. As the cross section dimension increases, there is the potential for

systematic second order biases that are associated with the poor performance of estimators

designed for large time series samples to be compounded as they are averaged over the cross
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sectional dimension to the extent that they become substantial.  Therefore, an important additional

objective of this paper is to provide feasible statistics that minimize this problem in panels with

modest length in the time series dimension and to demonstrate their successful use in an empirical

application.

Specifically, we develop in this paper a pragmatic approach based on the fully modified

OLS principles that were first employed by Phillips and Hansen (1990) to deal with the problems

of asymptotic bias and nuisance parameter dependency associated with cointegrating vector

estimates in the conventional single equation case.  Fully modified techniques have since proven

successful in treating a host of issues relating to these difficulties and continue to gain further

appreciation following recent work by Phillips (1995), which demonstrates the attractive features

of such an approach in the context of nonstationary VARs with unknown cointegrating rank.  In

this paper, we find that an appropriately modified FMOLS estimator performs relatively well for

the purposes of making inferences in cointegrated panels with heterogeneous dynamics as the

cross sectional dimension grows large even for panels with relatively short time series dimensions. 

In particular, we show that an adjustment term which captures the potential contribution of

heterogeneity from the dynamics of the panel works to produce minimal size distortions in these

panel FMOLS statistics.

Finally, by way of illustration, we also provide a simple example of how the methods

developed here can be successfully applied toward resolving an empirical puzzle that has

developed in the recent purchasing power parity literature which employs nonstationary panel

methods to test for unit root and cointegrating relationships.  The PPP hypothesis has often been

a popular proving ground for new time series methods, and the current situation is no exception
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as recent developments in these methods have sparked renewed interest in the PPP question.   In

general, long run PPP has been relatively easy to evidence for exchange rates and price series that

span long periods of time, but has been considerably more elusive for the relatively shorter spans

of data available since the breakdown of the Bretton-Woods system in 1973, despite the fact that

a considerable body of literature predicts that the nominal exchange rate regime should not matter

for long run equilibrium real exchange rates.  This has left open the question as to whether this

might not simply be a consequence of the inherently low power of the tests that had been

previously employed.  Consequently, studies such as Frankel and Rose (1995), Oh (1994), Papell

(1995), and Wei and Parsley (1995) and Wu (1996) have in one way or another examined the

issue of whether purchasing power parity appears to hold under the recent float on the basis of

more powerful panel unit root tests of the real exchange rate.  The results have been somewhat

mixed, however, and Papell (1995) demonstrates in a series of simulation exercises that most of

the results of these studies are quite sensitive to the inclusion of different subsets of the panel.  

These panel unit root studies implicitly assume a homogeneous unit value for the implied

cointegrating vector between nominal exchange rates and aggregate price ratios.  But many

authors have argued that although there may be a tendency for these two variables to move

together in equilibrium over long periods, the relationship need not necessarily be one for one

under this more general interpretation of PPP. For example, Taylor (1988) offers the possibility

that transportation costs or measurement errors may induce a non unit coefficient, while Patel

(1990) suggests that differences in price indices between countries may be responsible.  Fisher and

Park (1991) consider the possibility that differential productivity shocks over time could produce

a non unit coefficient, even though the nominal variables would continue to move together in
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equilibrium over long periods of time.  In the context of panels, it is quite natural to imagine that

if these factors play a role in the data, they are also just as likely to be of varying significance

across differing countries, so that one should also be prepared for the possibility of heterogeneous

cointegrating relationships.  Using the methods developed in Pedroni (1995a), studies by

Canzoneri, Cumby and Diba (1996), Obstfeld and Taylor (1996),  Pedroni (1995a) and Taylor

(1996) all find strong support for this weaker version of PPP with heterogeneous slope

coefficients, and in some cases (Taylor, 1996) clearly reject stationarity of the real exchange rate. 

These results for weak PPP do not by themselves exclude the stronger version of course,

but they do suggest a fairly obvious interpretation for the mixed findings in tests of strong PPP

based on panel unit root tests of the real exchange rate.  Specifically, if the implicit maintained

hypothesis that the cointegrating vector is homogeneous and equal to one for all countries is

violated, even very slightly for only a small subset of countries, then because this mixes a few

integrated series in with the majority of stationary ones, this is likely to lead to an inability to

reject the null of a unit root for the panel at large.  Obviously, one way to resolve this issue is to

test the hypothesis regarding the cointegrating vector directly.  In doing so, we find this scenario

to be quite plausible since we find that the hypothesis of a homogeneous cointegrating vector

equal to one is robustly rejected when the methods of this paper are employed.  Thus, although

the data support the notion of weak PPP, the methods developed in this paper are able to

confidently reject the more restrictive notion of strong PPP for a panel of countries in the Post-

Bretton Woods period.

The remainder of the paper is structured as follows.  In the next section, we introduce the

econometric models of interest for heterogeneous cointegrated panels.  We then present a number
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(1)

of new asymptotic results for estimators designed to produce asymptotically unbiased and

nuisance parameter free distributions around the true values for the cointegrating vectors.  In

section III we consider the finite sample properties of these estimators and propose a feasible

FMOLS statistic that performs relatively well in finite panels with heterogeneous dynamics.  

Finally, in section IV we investigate the consequences of applying these new methods to the

purchasing power parity question for a panel of 20 to 25 countries with post Bretton Woods data.

II.  Asymptotic Results for Fully Modified OLS in Heterogeneous Cointegrated Panels

Consider the following prototypical cointegrated system for a panel of   members,

where the vector error process   is stationary with asymptotic covariance matrix  . 

Thus, the variables  are said to cointegrate for each member of the panel, with cointegrating

vector  if   is integrated of order one.  The terms  allow either variable to exhibit

idiosyncratic nonzero drifts for individual members of the panel.  In keeping with the

cointegration literature, we do not require exogeneity of the regressors.  As usual,  can in

general be an m dimensional vector of regressors, which are not cointegrated with each other. 

For simplicity, we will refer to  as univariate, although each of the results of this study

generalize in an obvious and straightforward manner to the vector case, unless otherwise
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indicated.

In order to develop asymptotic properties of estimators as both the cross sectional

dimension, N, and the time series dimension, T, grow large, we will make assumptions similar in

spirit to Pedroni (1995a) regarding the degree of dependency across both these dimensions.  For

the time series dimension, we will assume that the conditions of the multivariate functional central

limit theorems used in Phillips and Durlauf (1986) and Park and Phillips (1988), hold for each

member of the panel as the time series dimension grows large.  Thus, we have

Assumption 1.1 (invariance principle):  The process  satisfies a multivariate functional

central limit theorem such that the convergence for the partial sum  holds as

 for any given member, i, of the panel, where  is Brownian motion defined over the

real interval , with asymptotic covariance .

This assumption indicates that the multivariate functional central limit theorem, or invariance

principle, holds over time for any given member of the panel.  This places very little restriction on

the temporal dependency and heterogeneity of the error process, and encompasses for example a

broad class of stationary ARMA processes.  It also allows the serial correlation structure to be

quite different for different members of the panel.  The asymptotic covariance matrix,  varies by

cross section, and is given by  .  The off diagonal term 

 captures the endogenous feedback effect between  and ,  which is also permitted to be

idiosyncratic to individual members of the panel.

For the cross sectional dimension, by contrast, we will employ the standard panel data

assumption of independence.  Hence:
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Assumption 1.2 (cross sectional independence):  The individual processes are assumed to be

independent cross sectionally, so that .  More generally, the asymptotic

covariance matrix for a panel of dimension NxT is given as , which is block diagonal

positive definite with the ith diagonal block given by the asymptotic covariance for member i.

This type of assumption is typical of our panel data approach, and we will be using this condition

in the formal derivation of the asymptotic distribution of our panel cointegration statistics.  For

panels that exhibit common disturbances that are shared across individual members, it will be

convenient to capture this form of cross sectional dependency by the use of a common time

dummy, which is a fairly standard panel data technique.  For panels with even richer cross

sectional dependencies, one might think of estimating a full nondiagonal  matrix of  

elements, and then premultiplying the errors by this matrix in order to achieve cross sectional

independence.  Needless to say, this would require the time series dimension to grow much more

quickly than the cross sectional dimension, and in most cases one hopes that a common time

dummy will suffice. 

Next, we consider the properties of a number of statistics that might be used for a

cointegrated panel as described by (1) under these assumptions regarding the time series and cross

dimensional dependencies in the data.  The first statistic to consider is a standard panel OLS

estimator of the cointegrating relationship.  It is well known that the distribution of the single

equation OLS estimator is asymptotically biased and dependent on nuisance parameters associated

with the serial correlation structure of the data, and there is no reason to believe that this would

be otherwise for the panel OLS estimator.  The following proposition confirms this suspicion.
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Proposition 1.1 (Asymptotic Bias of the Panel OLS Estimator).  Consider a standard panel

OLS estimator for the coefficient  of panel (1), under assumptions 1.1 and 1.2, given as

Then, 

a) The estimator converges to the true value at rate , but in general the distribution under

the null for such an estimator will be asymptotically biased and dependent on nuisance

parameters associated with the dynamics of the underlying processes.

b) Only for the special case in which the regressors are strictly exogenous and the dynamics are

homogeneous across members of the panel can valid inferences be made from the distribution of

 or its associated t-statistic.

As the proof of proposition 1.1 makes clear, the source of the problem stems from the

endogeneity of the regressors under the usual assumptions regarding cointegrated systems.  While

an exogeneity assumption is perhaps common in many treatments of cross sectional panels, for

dynamic cointegrated panels such strict exogeneity is by most standards not acceptable.  It is

stronger than the standard exogeneity assumption for static panels, as it implies the absence of any

dynamic feedback from the regressors at all frequencies.  Clearly, the problem of asymptotic bias

and data dependency from the endogenous feedback effect can no less be expected to diminish in

the context of such panels, and Kao and Chen (1995) document this bias for a panel of

cointegrated time series for the case in which the dynamics are homogeneous.

For the conventional time series case, a number of methods have been devised to deal with

the consequences of such endogenous feedback effects.  For example, Phillips and Hansen (1990)
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propose a semi-parametric fully modified OLS estimator which eliminates the influence of this

feedback, and Park (1992) proposes a closely related canonical cointegrating regression approach. 

Johansen (1988, 1991) instead employs a parametric full information maximum likelihood

approach which jointly estimates these dynamics.   While the case with dynamic panels is in

general further complicated by the possibility of cross sectional heterogeneity of this feedback

effect, once these effects are accounted for, it will be possible to construct estimators that are

asymptotically unbiased along the lines of these conventional time series approaches.

While in principle it is possible to use a systems based approach along the lines of the

Johansen procedure, in practice such systems are likely to quickly become infeasible as the

number of cross sectional observations grow large, as one typically encounters in multi-country

macro panels.  Therefore, we use a more conventional panel data approach by allowing both the

time series and cross sectional dimensions to grow large in the spirit of Levin and Lin (1993) and

Pedroni (1995a), and then use a fully modified approach to treat the endogenous feedback effect

nonparametrically in the spirit of Phillips and Hansen (1990).  This has the further advantage of

producing very convenient statistics that are asymptotically unbiased, free of nuisance parameters

and normally distributed.  The following proposition establishes an important preliminary result.

Proposition 1.2 (Asymptotic Distribution of the Panel FMOLS Estimator).  Consider a panel

FMOLS estimator for the coefficient  of panel (1) given by

where  is the lower triangular decomposition of a consistent estimator of the idiosyncratic
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asymptotic covariance matrix    with  normalized such that , and

where   is given by    and the serial correlation adjustment parameter  is

given by .   Then, under assumptions 1.1 and 1.2, the

estimator   converges to the true value at rate , and is distributed as

under the null as  and .

Thus, the distribution is free of any nuisance parameters associated with the idiosyncratic serial

correlation pattern in the data.  Notice also that this fully modified panel OLS estimator is

asymptotically unbiased for both the standard case without intercepts as well as the fixed effects

model with heterogeneous intercepts.  The only difference is in the size of the variance, which is

equal to 2 in the standard case, and 6 in the case with heterogeneous intercepts, both for 

univariate.  More generally, when  is an m-dimensional vector, the specific values for v will also

be a function of the dimension m.  The associated t-statistics, however, will not depend on the

specific values for v, as we shall see.  

The fact that this estimator is distributed normally, rather than in terms of unit root

asymptotics as in Phillips and Hansen (1990), derives from the fact that these unit root

distributions are being averaged over the cross sectional dimension.   Specifically, this averaging

process produces normal distributions whose variance depend only on the moments of the

underlying Brownian motion functionals that describe the properties of the integrated variables. 

This is achieved by constructing the estimator in a way that isolates the idiosyncratic components

of the underlying Wiener processes to produce sums of standard and independently distributed
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Brownian motion whose moments can be computed algebraically, as the proof of the proposition

makes clear.  The estimators    and   , which correspond to the long run standard errors of

conditional process , and the marginal process  respectively, act to purge the contribution

of these idiosyncratic elements to the endogenous feedback and serial correlation adjusted statistic 

.

For the fixed effects model, we also require the usual constraint that   whenever

we use estimated means in place of true means to ensure that this does not affect the asymptotic

distribution.  The fact that the variance is larger for the fixed effects model in which

heterogeneous intercepts are included stems from the fact that in the presence of unit roots, the

variation from the cross terms of the sample averages  and  grows large over time at the same

rate T, so that their effect is not eliminated asymptotically from the distribution of  . 

However, since the contribution to the variance is computable analytically as in the proof of

proposition 1.2, this in itself poses no difficulties for inference.  Nonetheless, upon consideration

of these expressions, it also becomes apparent that there should exist a metric which can directly

adjust for this effect in the distribution.  In fact, as the following proposition indicates, it is

possible to construct a t-statistic from this fully modified panel OLS estimator whose distribution

will be invariant to this effect.

Corollary 1.2 (Asymptotic Distribution of the Panel FMOLS T-statistic).  Consider the

following t-statistic for the FMOLS panel estimator of  as defined in proposition 1.2 above. 

Then under the same assumptions as in proposition 1.2, the statistic is standard normal,
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as  and  for both the standard model without intercepts as well as the fixed effects

model with heterogeneous estimated intercepts.

As the proof makes apparent, because the numerator of the fully modified estimator  is a sum

of mixture normals with zero mean whose variance depends only on the properties of the

Brownian motion functionals associated with the quadratic , the t-statistic

constructed using this expression will be asymptotically standard normal.  This is regardless of the

value of v associated with the distribution of   and so will also not depend on the

dimensionality of   in the general vector case.  

Notice, however, that in contrast to the conventional single equation case studied by

Phillips and Hansen (1990), in order to ensure that the distribution of this t-statistic is free of

nuisance parameters when applied to heterogeneous panels, the usual asymptotic variance

estimator of the denominator is replaced with the estimator .  By construction, this

corresponds to an estimator of the asymptotic variance of the differences for the regressors and

can be estimated accordingly.  This is in contrast to the t-statistic for the conventional single

equation fully modified OLS, which uses an estimator for the conditional asymptotic variance

from the residuals of the cointegrating regression.  This distinction may appear paradoxical at

first, but it stems from the fact that in heterogeneous panels the contribution from the conditional

variance of the residuals is idiosyncratic to the cross sectional member, and must be adjusted for
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directly in the construction of the numerator of the  estimator itself before averaging over

cross sections.  Thus, the conditional variance has already been implicitly accounted for in the

construction of , and all that is required is that the variance from the marginal process  be

purged from the quadratic .  Finally, note that proposition 1.2 and its corollary 1.2

have been specified in terms of a transformation, , of the true residuals.  In the next section we

consider various strategies for specifying these statistics in terms of observables and study the

small sample properties of the resulting feasible statistics.

Before preceding to the small sample properties, we first consider one additional

asymptotic result that will be of use.  Recently Im, Pesaran and Smith (1995) have proposed using

a group mean statistic to test for unit roots in panel data.  They note that under certain

circumstances, panel unit root tests may suffer from the fact that the pooled variance estimators

need not necessarily be asymptotically independent of the pooled numerator and denominator

terms of the fixed effects estimator.  Pedroni (1995a) finds in fact that for the case in which

residuals are used to test for cointegration, this covariance is approximately -1.326 with the

numerator and 0.243 with the denominator for the standard model, and -0.238 and 0.026

respectively for the fixed effects model, and adjusts the computation of the asymptotic

distributions accordingly.  Notice, however, that the fully modified panel OLS statistics in

proposition 1.2 and corollary 1.2 here have been constructed without the use of a pooled variance

estimator.  Rather, the statistics of the numerator and denominator have been purged of any

influence from the nuisance parameters prior to summing over N.  The need for a group mean

estimator is further diminished for estimation of cointegrated panels under a fully modified OLS

approach given that this approach renders the numerator asymptotically centered around zero, so
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i22 y (

it y (

it ' (yit& ȳi) &
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that any asymptotic covariance between summed terms, of the numerator and denominator, for

example, do not play a role in the asymptotic distribution of   or  .  Nevertheless,

it is also interesting to consider the possibility of a fully modified OLS group mean statistic in the

present context.  

Proposition 1.3 (Asymptotic Distribution of the Panel FMOLS Group Mean Estimator). 

Consider the following group mean FMOLS t-statistic for  of the cointegrated panel (1).  Then

under assumptions 1.1 and 1.2, the statistic is standard normal, 

as  and  for both the standard model without intercepts as well as the fixed effects

model with heterogeneous intercepts, where  is the lower triangular decomposition of a

consistent estimator of the idiosyncratic asymptotic covariance matrix    with

 normalized such that  , and where  is given by    and

the serial correlation adjustment parameter  is given by .

Notice that the asymptotic distribution of this group mean statistic is also invariant to whether or

not the standard model without intercepts or the fixed effects model with heterogeneous

intercepts has been estimated.   Just as with the previous t-statistic of corollary 1.2, the

asymptotic distribution of this panel group mean t-statistic will also be independent of the

dimensionality of  for the more general vector case.  Thus, we have presented two different

types of t-statistics, the common panel OLS based fully modified t-statistic and the group mean

fully modified OLS t-statistic, both of which are asymptotically unbiased, free of nuisance

parameters, and invariant to whether or not idiosyncratic fixed effects have been estimated. 
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Furthermore, we have characterized the asymptotic distribution of the fully modified panel OLS

estimator itself, which is also asymptotically unbiased and free of nuisance parameters, although in

this case one should be aware that while the distribution will be a centered normal  the variance

will depend on whether heterogeneous intercepts have been estimated and on the dimensionality

of the vector of regressors.  In the remainder of the paper we investigate the small sample

properties of feasible statistics associated with these asymptotic results and consider their

application to the purchasing power parity question.

III.  Small Sample Properties of Feasible Panel Fully Modified OLS Statistics

In this section we investigate the small sample properties of the panel FMOLS estimators that

were developed in the previous section and propose two alternative “feasible” estimators

associated with the panel FMOLS estimators of proposition 1.2 and its t-statistic, which were

defined only in terms of the true residuals.  As we will see, the feasible panel FMOLS statistics

and the group mean FMOLS statistic perform differently under varying situations, each providing

a comparative advantage under certain circumstances.

One obvious candidate for a feasible estimator based on proposition 1.2 would be to

simply construct the statistic in terms of estimated residuals, which can be obtained from the initial

N single equation OLS regressions associated with the cointegrating regression for (1).  Since the

single equation OLS estimator is superconsistent, one might hope that this produces a reasonably

well behaved statistic for the panel FMOLS estimator.  The potential problem with this reasoning
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L̂21i

L̂22i

)xit

18

stems from the fact that although the OLS regression is superconsistent it is also asymptotically

biased in general.  While this is a second order effect for the conventional single series estimator,

for panels, as N grows large, the effect has the potential to become first order. 

Indeed, a similar principle holds true for the panel FMOLS group mean statistic defined in

proposition 1.3 .  In this case, it is true that the individual cross sectional fully modified OLS

estimators are each asymptotically unbiased prior to averaging for the panel.  However, in small

samples, the fully modified OLS statistic is well known to exhibit considerable bias under certain

circumstances.  Phillips and Hansen (1990), for example, report biases for samples with T=50

ranging from -0.267 and -1.102 depending on the dynamic properties of the data.  For the panel

FMOLS group mean statistic, this effect is likely to be exacerbated for the t-statistic, which

effectively acts to sum these biases over the N dimension in such cases.  Therefore, although the

superconsistency properties make the panel OLS and panel group mean estimators suitable for

point estimates, the potential for asymptotic or small sample bias with respect to the time series

dimension leads to more serious problems for inferences when these effects are accumulated in the

N dimension.

Another possibility might be to construct the feasible panel FMOLS estimator for

proposition 1.2 in terms of the original data series   along the lines of

how it is done for the conventional single series case.  However, this turns out to be correct only

in very specialized cases.  More generally, for heterogeneous panels, this will introduce an

asymptotic bias which depends on the true value of the cointegrating relationship and the relative

volatility of the series involved in the regression.  The following proposition makes this

relationship precise.
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Proposition 2.1 (Feasible Panel FMOLS)  Under the conditions of proposition 1.2 and

corollary 1.2, consider the panel FMOLS estimator for the coefficient  of panel (1) given by

where   

and   and  are defined as before.  Then the statistics   and    constructed

from this estimator are equivalent to the ones defined in proposition 1.2 and corollary 1.2 .

This makes it difficult to construct a feasible point estimator along these lines, since any such

estimator would in general depend on the true value of the parameter that it is intended to

estimate.  On the other hand, this does not necessarily prohibit the usefulness of the estimator in

proposition 2.1 for the purposes of inference regarding cointegrating relationships in such panels. 

For the purposes of a feasible point estimator, a simple panel OLS or group mean FMOLS

estimator is more than adequate.  What is lacking is a reasonable estimator that can be used to

make valid inferences regarding a particular null hypothesis regarding the true value of .  In this

case, proposition 2.1 can be used to construct the panel FMOLS statistics    and 

 , which turn out to be relatively well behaved for heterogeneous panels.

Before proceeding to the Monte Carlo simulation results that compare the small sample

properties of these various statistics, consider again the precise form of modification entailed in

the panel version of the FMOLS estimator.  The modification differs from the standard single

series in two ways.  First, it includes the estimators  and  that premultiply the numerator

and denominator terms to control for the idiosyncratic serial correlation properties of individual
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cross sectional members prior to summing over N.  Secondly, and more importantly, it includes in

the transformation of the dependent variable    an additional term .  This

term is eliminated only in two special cases: (1) The elements  and  are identical for all

members of the panel, and do not need to be indexed by i .  This corresponds to the case in which

the serial correlation structure of the data is homogeneous for all members of the panel.  (2) The

elements  and  are perhaps heterogeneous across members of the panel, but for each panel

.  This corresponds to the case in which asymptotic variances of the dependent and

independent variables are the same.  Conversely, the effect of this term increases as (1) the

dynamics become more heterogeneous for the panel, and (2) as the relative volatility becomes

more different between the variables  and   for any individual members of the panel.  For

most panels of interest, these are likely to be important practical considerations.  On the other

hand, if the data are known to be relatively homogeneous or simple in its serial correlation

structure, the imprecise estimation of these elements will decrease the attractiveness of this type

of estimator relative to one that implicitly imposes these known restrictions.  

Consequently, each of these statistics is likely to perform differently under varying

circumstances in small samples.  Fortunately, as we will see, it is often the case that under those

circumstances where one of the statistics is less likely to perform well in very small samples, the

others tend to do well.  Furthermore, as we demonstrate in the purchasing power parity example

of the next section, for a typical real data example, we can expect to be reasonably confident

about our choice of statistics.

We next study these properties in a series of Monte Carlo simulations. To facilitate an

ease of comparison along these lines of interest, we consider as a starting point a few Monte
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(2)

Carlo simulations analogous to the ones studied in Phillips and Loretan (1991) and Phillips and

Hansen (1990) based on their original work on FMOLS estimators for conventional single

equations.  Thus, following these authors, we consider the following dynamics for the

cointegrated panel (1) under assumptions 1.1 and 1.2, for which we model the vector error

process  in terms of a vector moving average process

where the elements of   and  are permitted to vary according to the experiment.  In order to

accommodate the potentially heterogeneous nature of these dynamics among different members of

the panel, we have indexed these parameters by the subscript i.  We will then allow these

parameters to be drawn from uniform distributions according to the particular experiment.

We consider first as a prototypical benchmark case an experiment which captures much of

the richness of the error process studied in Phillips and Loretan (1991) and yet also permits

considerable heterogeneity among individual members of the panel.  In particular, Phillips and

Loretan (1991), following Phillips and Hansen (1990), fix the following parameters

,  ,   and then permit  and  to

vary.  The element  is particularly interesting since a nonzero value for this parameter reflects

an absence of even weak exogeneity for the regressors in the cointegrating regression associated

with (1), and is captured by the term  in the panel FMOLS statistics.  For our heterogeneous

panel, we therefore set ,  and draw the remaining parameters from the

following uniform distributions which are centered around the parameter values set by Phillips and

Loretan (1991), but deviate by up to 0.4 in either direction for the elements of  and by up to
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0.85 in either direction for .  Thus, in our first experiment, the parameters are drawn as

follows: , , ,  and

.  This specification achieves considerable heterogeneity across individual

members and also allows the key parameters  and  to span the set of values considered in

Phillips and Loretan’s study.  In this first experiment we restrict the values of  to span only

the positive set of values considered in Phillips and Loretan for this parameter, and will consider

negative values for the diagonals of  in subsequent experiments.  Finally, since we are also

interested in the consequences of heterogeneous fixed effects, we allow the regression intercept

parameter  to be drawn from . We initially consider a panel of dimension 

 to correspond to the modest sized panels that are likely to be of greatest

interest for these methods.  Other dimensions are also examined in subsequent experiments.

The results are reported in Table I, where we denote the feasible panel FMOLS statistics

constructed from estimated residuals as  and the feasible panel FMOLS statistics constructed

with the panel adjustment term for   as in proposition 2.1 as .  We denote the group mean

FMOLS statistics as   , and the simple panel OLS statistics as .  The asymptotic

covariances were estimated individually for each member i of the cross section using the Newey-

West estimator with 5 lags, and all results are based on 10,000 draws for each panel.  The first

two rows of the table report the actual sizes for the 5% and 10% nominal sizes of the test

statistics, and the next two rows report the bias and standard error of the same statistic.  As we

would expect, the bias is considerable for the standard panel OLS estimator and its t-ratio, both of

which we know to be biased even asymptotically.  In panels, this effect is made worse by 

the fact that the bias is aggregated over the cross sectional dimension.  This has the consequence 



N ' 50 , T ' 100

2i , Qi

$̂NT & $ t$̂NT
$̃(

NT & $ t$̃(NT
$̂(

NT & $ t$̂(NT
$̄(

NT & $ t$(

>it

' 2 0 " i ~ (2 0, .0 Q11 ' Q i ' .0

21i U( 0. ,0.85 2i 11i 0. , 2 i ' .4 221 ' 0 4 , 22i 0.

211 ~ U &0 1, .7 212 ~ U 0. ,0 8) 21i U( .0 0. ) 2 i ~ (0 2, .0

Si i '

$NT $ T

T N $NT

Table I.  Monte Carlo Simulations for    

Fixed Effects Model with Heterogeneous Parameters, 

                         Panel OLS             Residual FM           Adjusted FM           Group Mean

 5 % size  0.720  0.620  0.880  0.921  0.147  0.174  0.558  0.240

10 % size  0.781  0.701  0.944  0.964  0.230  0.263  0.622  0.329

    Bias  3.030  2.414 -6.986 -3.041 -2.006 -0.873 -1.944 -1.112

 Std Error  1.835  1.443  1.964  0.761  2.618  1.134  2.661  1.168

Notes: Based on 10,000 replications of cointegrated system (1) with errors  given by

the vector MA process (2) with parameters , , ,

, and  centered around 

such that , , , . The lag

truncation for the Newey-West kernel estimator of  was set at . All distributions for

 have been standardized by .

of driving the actual size of the nominal 10% critical value to approximately 78% for the

standardized estimator and to 70% for the associated t-ratio for a sample of dimension N=50,

T=100.  Thus, if we attempt to use the standard OLS estimator to make inferences in these type

of panels, we will almost always tend to reject the null, even when it is true. On the other hand,

notice that for the purposes of a point estimator, this bias is still relatively small.  Dividing the bias

of the standardized statistic by    gives 0.004 as the bias of the panel OLS estimator,   ,

for this sample.  As N grows larger, the size distortion for the standardized statistics will grow,

but the bias for the point estimator will further diminish.  We can expect this bias to be associated

predominately with two features of any panel; (1) the extent to which strict exogeneity of the
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regressors is violated and (2) the degree of heterogeneity of the associated dynamics.

Next, consider the group mean panel FMOLS statistics.  We know that in contrast to the

panel OLS statistic, these will be unbiased asymptotically and invariant to the dynamics of the

data.  On the other hand, we also know from the Monte Carlo studies of Phillips and Hansen and

others, that the conventional single equation FMOLS estimator can be substantially biased in small

samples.  For the group mean panel FMOLS estimator, this small sample bias associated with the

small T dimension has the potential to become worse as the number of cross sections grow large. 

On this basis, we can expect the problem to diminish as the time series dimension becomes

sufficiently large to eliminate the small sample bias.  For the Monte Carlo simulation reported in

Table I, we see that the bias is -1.112 for the group mean t-statistic, which amounts to a 33% size 

for the nominal 10% critical value.  Still, for the purposes of a point estimate, the

superconsistency of this estimator again accounts for a relatively small bias, giving -0.002 as an

even smaller bias than the simple panel OLS estimator.  These biases for the point estimates are

notably smaller than the small sample biases reported in Phillips and Hansen for either the single

equation OLS or the single equation FMOLS.  This stems from the fact that the rate of

convergence is  times faster for the panel.

Next, consider the properties of the feasible FMOLS estimators associated with

proposition 1.2 that are based on estimated residuals.  For Table I, our intuition proves to be

correct regarding the small sample properties of these estimators.  In this example the t-statistic

has a bias of -3.041 and an actual size of 96% at the 10% nominal level, which is even worse than

the panel OLS t-statistic.  For this statistic, the reasoning behind the bias is again similar, though

the mechanism is somewhat different than the others.  Specifically, it is the fact that the individual
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member’s estimator is asymptotically biased, and this has the consequence of creating a systematic

relationship between the estimated residuals and the regressors, which does not exist for the true

residuals.  Thus, even though the individual member’s estimator is superconsistent, as will be the

estimate of the residuals, they do have a second order bias that produces this relationship with the

regressors in the cross product of the numerator.   Even though this effect is second order for a

single member, when it is accumulated over all of the members of the cross section, it has the

potential to becomes first order.  Table I reports the results for the case in which the individual

member’s residuals are estimated using OLS, but the effects are quantitatively very similar when

the individual member residuals are estimated using a single equation FMOLS estimator, since the

small sample biases are very similar for T=100.

Finally, we consider the consequences of constructing the feasible panel FMOLS estimator

in accordance with the result in proposition 2.1.  This is equivalent to imposing the null for the

coefficient of interest  and estimating the other parameters.  For the fixed effects model, the

intercepts are unknown, and must be implicitly estimated.  This is accomplished by demeaning the

data in the modification for .  Thus, it is not the case that proposition 2.1 imposes known

residuals, and of course the estimated residuals may still be biased in small samples.  However, in

contrast to the previous estimator, the form of this bias does not create the same type of

systematic correlation between the residuals and the regressors in this case, and is equivalent to

empirically demeaning the stationary cointegrating relationship, which generally amounts to a

much smaller bias effect.  Thus, by including the heterogeneous panel FMOLS adjustment term

, the effect is to create an estimator whose finite sample bias is relatively small

in most cases even when the N dimension is comparable to the T dimension of the panel and there
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is considerable persistence and feedback in the data.  The resulting bias is -0.873 for the t-statistic

and the actual size at the 10% level in this case is approximately 26%, which is an improvement

over the group mean statistic for this example.

Table I.B of the appendix reports the consequences of varying both the time series and

cross sectional dimensions of the panel for this experiment.  In particular, we consider

combinations of N and T, where N takes on values of 20 and 50 and where T takes on values of

20 and 100.  It is interesting to note that for this experiment, the size properties of the feasible

statistic based on proposition 2.1 remain fairly stable.  There is slight rise in the size distortion as

N increases relative to T, but this is expected, since we require the ratio N/T to be small in order

to allow estimated means in the fixed effects model.  In the extreme case, when N=50, T=20, this

statistic does about as well as the group mean statistic, but in all other cases it slightly

outperforms it.  Most remarkable, however, is that in this experiment the properties of the feasible

statistic based on estimated residuals and the panel OLS start out reasonable for very small N, but

rapidly deteriorate as N grows larger.  In subsequent experiments, we will show that even with

very small N dimensions, as expected from proposition 2.1, the properties of the panel OLS will

rapidly deteriorate when the values of  and  differ more substantially from one another, as

turns out to be the case with the PPP example.  Given the relative stability of the feasible FMOLS

based on proposition 2.1 and the group mean FMOLS t-statistics, these clearly appear to be the

preferred choice for data sets that correspond to the characteristics of this experiment.

Before proceeding to the purchasing power parity example, we first consider a number of

other experiments, which help to illustrate the circumstances under which these two statistics are

likely to prove more fragile in small samples.  In particular it is well known that semi-parametric
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estimators such as FMOLS do not perform as well in the presence of negative moving average

coefficients.  Thus, in Table II.B we report the properties of these statistics under various

scenarios with negative MA coefficients.  As it turns out, however, these panel FMOLS statistics

still do remarkably well in the presence of negative MA coefficients under a variety of

circumstances.  The first table reports results for the a simulation with similar parameters as in

Table I, except that  and  are constructed to include some negative coefficients. 

Specifically, they are drawn from uniform distributions with  and

.  For this case, all of the t-statistics do fairly well, and in fact considerably

better than the conventional single equation FMOLS statistics.  

As it turns out, even if there are negative moving average coefficients present for some

members of the panel, as long as there are a sufficient number of others with positive coefficients,

the statistics still do very well.  This turns out to be a characteristic of the purchasing power parity

data as well in the next section, and one might arguably claim that this property will tend to

characterize many real world panel data sets.  The situation in which some of these statistics run

into more trouble for small samples is when a much greater proportion of the individual members

of the panel have large negative moving average coefficients.  The third experiment in the table,

makes this clear.  In this case the values for  are constructed to be negative for all members of

the panel.  All other parameters are the same as in the first case, but  is drawn from

.  In this case, the bias for the group mean t-statistic and the feasible FMOLS t-

statistic of proposition 2.1 rise substantially, to 3.006 and 3.804 respectively and the size

distortions become large.   Interestingly, the situation is much better in the second experiment in

which both  and  are all constructed to be negative.  In this case the group mean and
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adjusted FMOLS of proposition 2.1 do just as well as in the first experiment.  On the other hand,

in the fourth experiment, with  all positive and  all negative, they again exhibit substantial

bias.  Notice however, that in all of these cases the feasible FMOLS statistics based on estimated

residuals do fairly well and are quite stable.  Thus, in summary, it can be said that all of the

statistics do fairly well in small samples even with negative moving average coefficients as long as

large negative moving average coefficients are not too pervasive among too many members of the

panel.  In the event that this is the case, then the feasible panel FMOLS statistic based on

estimated residuals reliably outperforms the others.  In the next section, we consider the

properties of these statistics in the context of a data set that is used for the purchasing power

parity example, and then apply the statistics to test the hypothesis that strong PPP holds for a

panel of countries for the post Bretton Woods period.

IV.  The Case of Purchasing Power Parity

In general, the hypothesis of long run purchasing power parity indicates that nominal exchange

rates and aggregate price ratios should move together over long periods of time.  Under what is

termed "strong" purchasing power parity, this relationship is expected to be such that the variables

move one for one in the long run, so that the cointegrating vector is equal to one in a bivariate

relationship.  Alternatively, under what is termed "weak" purchasing power parity, these nominal

variables may tend to move together in the long run, so that there exists a cointegrating

relationship, but they need not move directly one for one.  This is likely to be the case under a

number of different scenarios.  For example, although there may be an equilibrium mechanism by
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(3)

indices, or the presence of transportation costs, or other types of real disturbances may lead to a

nonunitary relationship.  See for example Fisher and Park (1991), Patel (1990) or Taylor (1988)

and must be estimated since it will generally be unknown.  In this case, PPP is often tested in

cointegration.

variables is unity implies that one can also interpret this as meaning that the real exchange is

hypothesis using raw panel unit root tests with mixed results.  Using the methods developed in

Pedroni (1995a) and Taylor (1996) all find strong support for this weaker version of PPP with

if the true cointegrating vector is not homogeneous as assumed in a raw panel unit root test of the

we test this hypothesis of strong PPP in a more direct fashion by testing directly by means of the

Thus, the parameter of interest is 

where  is the log aggregate price ratio
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in terms of the CPI between the two countries.   All data are from the IFS, and are for the post

Bretton-Woods period 1974-1993, and thus include 20 years of annual and monthly time series

observations for 20 to 25 countries.  The results are contained in Table II below.  The truncation

lag  for the Newey-West estimator of the asymptotic covariance matrix was permitted to vary

by individual country for the single equation estimators as well as the panel estimators, and was

chosen according to the data determined selection scheme suggested in Newey and West (1994). 

Whereas the data from a few of the countries are able to reject the hypothesis that  is

equal to one, for the most part, even though the individual point estimates are often far from one,

the single equation tests are unable to reject this hypothesis.  When the data are pooled together,

on the other hand, the panel OLS estimate of the  ranges depending on the frequency of the data

and whether aggregate time dummy effects are included, from 1.04 to 1.09, which might be

considered fairly close to one.  On the other hand, when we use the adjusted feasible panel

FMOLS t-ratio statistic of proposition 2.1, we see that by pooling the data we are able to sharpen

our inferences considerably, and in fact conclude with well over 90% confidence that this value is

statistically different than 1.0, based on the asymptotic distribution of this statistic. To check

against the possibility that these results are driven primarily by the strong rejections of a few

outlier countries, we computed the pooled statistics with common time dummies again after

omitting those three countries which individually showed the strongest ability to reject null.  For

the annual data, the three strongest rejections are France, India and Pakistan.  Since Pakistan is

not present in the full panel of monthly data, Chile was substituted as the next strongest rejection

among available countries for the monthly data.  While the nominal values for the corresponding

statistics diminished after these outliers were omitted, the panel statistics were still able to reject 
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Table II.  Individual and Panel FMOLS Tests for Strong PPP for Post Bretton Woods Period
based on IFS annual and monthly (in parentheses) data, 1974-1993.

Country     (intercept)     (slope)      (slope)     (t-ratio)   (lags)

Belgium -3.63   (-3.66) 0.13   (0.47) -0.69   (0.32) -2.15   (-1.73) 1   (4)  

Denmark -1.98   (-2.01) 1.23   (1.42) 1.58   (1.56) 0.73    (1.91) 1   (3)  

France -1.89   (-1.92) 1.64   (1.71) 2.22   (2.03) 3.94    (5.80) 1   (5)  

Germany -0.67   (-0.70) 0.72   (0.70) 0.92   (0.79) -0.22  (-1.68) 1   (3)  

Ireland 0.35   (  ---- ) 0.75   (  --- ) 1.08   (  --- ) 0.40   (  --- ) 2  ( - )  

Italy -7.22   (-7.22) 0.83   (0.88) 1.08   (0.97) 0.55  (-0.46) 1   (4)  

Netherlands -0.79   (-0.82) 0.69   (0.69) 0.60   (0.69) -1.03  (-2.40) 1   (2)  

Sweden -1.81   (-1.80) 1.23   (1.25) 1.07   (1.22) 0.15   (1.15) 1   (4)  

Switzerland -0.51   (-0.54) 1.01   (1.17) 1.16   (1.27) 0.43   (1.96) 2   (4)  

U.K. 0.53   (-0.53) 0.63   (0.69) 0.60   (0.68) -1.02   (-2.90) 1   (3)  

Canada -0.20   (-0.20) 1.29   (1.43) 1.09   (1.42) 0.15   (2.13) 1   (3)  

Japan -5.15   (-5.19) 1.88   (1.85) 1.75   (1.76) 2.25   (4.36) 2   (6)  

Greece -4.60   (-4.57) 1.02   (1.03) 0.91   (1.02) -1.19   (0.52) 1   (4)  

Iceland -3.50   (  ---- ) 0.99   (  --- ) 1.04   (  --- ) 1.21   (  --- ) 1  ( - )  

Portugal -4.78   (-4.77) 0.99   (1.02) 1.08   (1.05) 0.97   (1.33) 2   (3)  

Spain -4.74   (-4.74) 0.83   (0.86) 0.98   (0.93) -0.09  (-0.83) 7   (4)  

Turkey -6.06   (-5.93) 1.11   (1.09) 1.10   (1.10) 2.19   (5.20) 1   (7)  

Australia -0.10   (  ---- ) 1.44   (  --- ) 1.43   (  --- ) 1.69   (  --- ) 2  ( - )  

N. Zealand -0.41   (-0.38) 0.90   (1.19) 0.88   (1.11) -0.68   (3.02) 1   (3)  

S. Africa -0.41   (  ---- ) 1.16   (  --- ) 1.00   (  --- ) 0.00   (  --- ) 1  ( - )  

Chile -4.93   (-4.84) 1.04   (1.18) 1.11   (1.23) 1.39    (9.05) 1   (8)  

Mexico 1.33    (1.45)  1.03   (1.04) 0.99   (1.03) -0.29   (3.20) 1   (5)  

India -2.40   (-2.37) 2.23   (2.12) 2.04   (2.08) 6.99   (7.90) 1   (4)  

Pakistan -6.57   (  ---- ) 0.94   (  --- ) 0.86   (  --- ) -0.93   (  --- ) 1  ( - )  

Korea -2.63   (-6.56) 2.89   (0.97) 2.93   (0.92) 4.68  (-1.17) 1   (5)  

 

Panel (25/20) 1.05   (1.09) 1.15   (1.16) 1.87   (6.37)  4.02   (8.13)

    w. T dums 1.04   (1.09) 1.04   (1.12) 2.65 (14.50)  3.42 (15.89)

Panel (22/17) 1.05   (1.07) 1.06   (1.10) 1.66   (3.84)  3.76   (8.77)

Notes:  Estimated regression is (3) in the text.  The null hypothesis for the t-ratio is .  The
last row of the table reports panel estimates excluding the following outliers:  France, India, and Pakistan
for annual data, and France, India and Chile for monthly data (see text for discussion).  Bottom of last
column contains panel group mean t-statistics.
 

with at least 90% confidence in all cases. 

As we have seen in the previous section, however, the small sample properties can often

vary considerably from the asymptotic distributions depending on the dimensionality of the panel
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as well as the degree of heterogeneity and complexity of the serial correlation properties of the

data.  Based on the Monte Carlo simulations reported in the previous section, we might expect

the adjusted panel FMOLS statistic of proposition 2.1 and possibly the group mean statistic to be

relatively well behaved in the type of panel data that we use.  In order to confirm this, a simulation

was conducted based on the first order vector moving average representation of the differenced

data for this panel.  The results are reported in Table III for simulations based on the

parameterizations of both the annual and monthly data.  The heterogeneous intercepts are also

based on estimates from the data, and the value of  is set to  under the null. 

As anticipated, the panel OLS estimator is poorly behaved.  This is not surprising based on

the predictions of proposition 2.1.  The estimated parameters for the MA coefficients (not

reported), show that there is both a substantial degree of heterogeneity in the dynamics as well a

sizeable difference in the relative volatility between the left hand and right hand side variables, in

which case we know that the panel OLS estimator will be ill behaved.  The residual based panel

FMOLS estimator also does less than ideal in these simulations.  The systematic relationship

between the regressors and the residuals that is created by the small sample bias of the individual

member residual estimation causes the standard error to be too low, giving 0.32 for the monthly 

and 0.85 for the annual.  This leads to the potential for the statistic to seriously under reject. 

Finally, we note that the t-statistics for the feasible FMOLS statistic  from proposition 2.1 and

the panel FMOLS group mean statistic   from proposition 1.3 both do well in the annual and

especially the monthly data based simulations.  The monthly based Monte Carlo results are

virtually identical for the two, producing biases of only -0.06 and -0.03 respectively, and actual

sizes of 13.8% and 13.5% respectively.  For the annual data, the two statistics differ somewhat in 
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Table III.  PPP Data Based Simulations

Annual Based, N=25, T=20

                         Panel OLS             Residual FM           Adjusted FM           Group Mean

 5 % size  0.774  0.000  0.183  0.247  0.192  0.239  0.949  0.237

10 % size  0.809  0.000  0.305  0.381  0.273  0.323  0.957  0.321

    Bias -1.391 -0.004  3.094  1.389 -1.178 -0.536  5.872  0.082

 Std Error  7.800  0.025  1.949  0.851  3.503  1.573  32.353  1.653

Monthly Based, N=20, T=246

                         Panel OLS             Residual FM           Adjusted FM           Group Mean

 5 % size  0.911  0.000  0.017  0.003  0.078  0.074  0.938  0.077

10 % size  0.925  0.000  0.075  0.038  0.140  0.138  0.948  0.135

    Bias -8.635 -0.001  2.602  1.070 -0.146 -0.063 -2.223 -0.031

 Std Error  14.587  0.002  0.941  0.320  2.679  1.106  25.683  1.109

Notes: Heterogeneous parameters are based on the idiosyncratic first order vector MA

representations for the differenced PPP data.  Intercepts are based on estimated values

and the null is set at .  The number of lags is set to3 for the annual and 7 for the

monthly data.  Simulations are based on 10,000 replications each. All statistics are

defined as in Table I.

that  has a small downward bias of -0.536 while  has a minimal upward bias of  0.082. 

This explains the differences reported for the test results in Table II, where the group mean

statistics are consistently somewhat larger in value than the feasible panel FMOLS statistics.  For

the annual data, the small downward bias implies that the reported values for  represent a

potentially stronger rejection than one would believe based on the asymptotic distribution, and for

the monthly data, with minimal biases, critical values based on the asymptotic distributions turn
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out to be very representative of the small sample values.  Thus, the data based simulations further

confirm the strength of the rejection of the strong purchasing power parity hypothesis which calls

for a common unit cointegrating vector.

V. Concluding Remarks

We have explored in this paper methods for testing and making inferences about cointegrating

vectors in heterogeneous panels based on fully modified OLS principles.  When properly

constructed to take account of potential heterogeneity in the idiosyncratic dynamics and fixed

effects associated with such panels, the asymptotic distributions for these estimators can be made

to be unbiased and free of nuisance parameters.  Furthermore, Monte Carlos simulations have

been used to show how various feasible statistics constructed on the basis of these principles will

tend to behave under varying scenarios for the error processes.  Finally, by applying these

methods to a panel of IFS data for the post Bretton Woods periods we find evidence to support

the idea that although weak PPP appears to hold, the stronger form of PPP does not, and results

from raw panel unit root tests on the real exchange rate are likely to be misleading.  

Needless to say, much additional theoretical and simulation work remains to be done in

the area of nonstationary panels, and the PPP example is intended only as a simple illustration of

how these methods can be expected to prove fruitful in applied areas of interest.  Even for the

PPP example, there are many other facets still to be explored, such as the consequences of

relaxing the symmetry restriction of the bivariate regression form for the aggregate price ratio. 

While the asymptotic distributions for each of the t-statistics in this study will not be affected by

the number of left hand side regressors, the small sample properties are likely to depend on this as
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well.  Other important extensions for this line of research include the possibility of developing

efficient methods that account for richer and more direct cross sectional dependencies and even

intra-panel cointegrating relationships that hold across different members of the panel which are

likely to be of interest in applications such as the PPP example.  Finally, while the PPP result is in

itself interesting, the panel FMOLS techniques developed in this study should prove to have wide

applicability to any of a number of different applications involving cointegrated panels.  Based on

an initial version of this paper, Canzoneri, Cumby and Diba (1996) have already demonstrated the

successful application of these methods to an empirical test of the Balassa-Samuelson Hypothesis

for a panel of OECD countries.  It will be interesting to see if these panel FMOLS methods fair

equally well in other scenarios.
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MATHEMATICAL APPENDIX

Proposition 1.1:  We establish notation here which will be used throughout the remainder of the

appendix.  Let   where   and .  Then by virtue of

assumption 1.1 and the functional central limit theorem, 

for all i, where   refers to the demeaned discrete time process and  is

demeaned vector Brownian motion with asymptotic covariance .   This vector can be

decomposed as where  is the lower triangular Cholesky of  and 

 is a vector of demeaned standard Brownian

motion, with  independent of .  Under the null hypothesis, the statistic can be written in

these terms as

Based on (A1), as , the bracketed term of the numerator converges to

the first term of which can be decomposed as
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In order for the distribution of the estimator to be unbiased, it will be necessary that the expected

value of the expression in (A4) be zero.  But although the expected value of the first bracketed

term in (A5) is zero, the expected value of the second bracketed term is given as  

Thus, given that the asymptotic covariance matrix, , must have positive diagonals, the

expected value of the expression (A4) will be zero only if , which

corresponds to strict exogeneity of regressors for all members of the panel.  Finally, even if such

strict exogeneity does hold, the variance of the numerator will still be influenced by the

parameters   which reflect the idiosyncratic serial correlation patterns in the individual

cross sectional members.  Unless these are homogeneous across members of the panel, they will

lead to nontrivial data dependencies and a failure of the conditions for the appropriate central

limit theorems if they are not properly purged from the data prior to summing over N.

Proposition 1.2: Continuing with the same notation as above, the fully modified statistic can be

written under the null hypothesis as

Thus, based on (A1), as , the bracketed term of the numerator converges to
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which can be decomposed into the elements of    such that

and

where the index r has been omitted for notational simplicity.  Thus, if a consistent estimator of

 is employed, so that and consequently  and , then

where the mean and variance of this expression are given by

respectively.  Now that this expression has been rendered void of any idiosyncratic components

associated with the original , then by virtue of assumption 1.2 and a standard central

limit theorem argument, 

as .  Next, consider the bracketed term of the denominator of (A3), which based on (A1), as

, converges to
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(A15)

(A16)
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Thus,  

which has finite variance, and a mean given by

Again, since this expression has been rendered void of any idiosyncratic components associated

with the original , then by virtue of assumption 1.2 and a standard law of large numbers

argument,

as .  Thus, by iterated weak covergence and an application of the continuous mapping

theorem,  for this case where heterogeneous intercepts have been

estimated.  Next, recognizing that   and  as , and

setting  for the case where   gives as a special case of  (A13) and

(A17) the results for the distribution in the case with no estimated intercepts. In this case the

mean given by (A12) remains zero, but the variance in (A13) become ½ and the mean in (A17)

also becomes  ½.  Thus,  for this case. 
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Corollary 1.2:  In terms of earlier notation, the statistic can be rewritten as:

where the numerator converges to the same expression as in proposition 1.2, and the root term

of the denominator converges to the same value as in proposition 1.2.  Since the distribution of

the numerator is centered around zero, the asymptotic distribution of   will simply be the

distribution of the numerator divided by the square root of this value from the denominator. 

Since 

by (A13) and (A17) regardless of whether or not  are set to zero, then 

irrespective of whether   are estimated or not.

Proposition 1.3:  Write the statistic as:

Then the first bracketed term converges to

by virtue of the independence of  and .  Since the second bracketed term

converges to 
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then, taken together,  for  , (A21) becomes a standardized sum of i.i.d. standard normals

regardless of whether or not  are set to zero, and thus  by a standard

central limit theorem argument irrespective of whether   are estimated or not.

Proposition 2.1:  Insert the expression for  into the numerator and use

 to give

Since , the last term in (A24) reduces to , thereby giving the

desired result.
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Table I.B:  Fixed Effects Model with Heterogeneous Dynamics
 Benchline Model Centered Around:

   

 5 % size  0.720  0.620  0.880  0.921  0.147  0.174  0.558  0.240

10 % size  0.781  0.701  0.944  0.964  0.230  0.263  0.622  0.329

    Bias  3.030  2.414 -6.986 -3.041 -2.006 -0.873 -1.944 -1.112

 Std Error  1.835  1.443  1.964  0.761  2.618  1.134  2.661  1.168

  

 5 % size  0.682  0.535  0.772  0.874  0.270  0.344  0.568  0.332

10 % size  0.741  0.630  0.880  0.933  0.359  0.431  0.627  0.423

    Bias  2.814  2.077 -6.206 -2.924 -2.576 -1.214 -1.597 -1.069

 Std Error  1.872  1.374  1.933  0.856  3.427  1.606  2.963  1.661

 5 % size  0.339  0.153  0.081  0.083  0.215  0.234  0.720  0.322

10 % size  0.419  0.231  0.170  0.189  0.301  0.328  0.767  0.422

    Bias  0.395  0.262  2.704  1.153  2.608  1.111  3.482  1.408

 Std Error  2.014  1.344  1.425  0.570  2.743  1.154  2.871  1.169

  

 5 % size  0.345  0.131  0.180  0.264  0.224  0.286  0.688  0.410

10 % size  0.428  0.203  0.301  0.399  0.309  0.376  0.738  0.494

    Bias  0.179  0.119  3.137  1.445  1.875  0.861  3.046  1.484

 Std Error  2.075  1.282  1.899  0.835  3.500  1.609  3.289  1.650

Notes:  Based on 10,000 replications of cointegrated system (1) with errors  given by the vector MA

process (2) with parameters , , , ,

, , , . The lag truncation for

the Newey-West kernel estimator of  was set at when T=100 and when T=20 .  All

distributions for  have been standardized by . 
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Table II.B:  Fixed Effects Model with Heterogeneous Dynamics
Consequences of Negative Moving Average Coefficients, N=50,T=100

Centered Around: 

 5 % size  0.294  0.141  0.034  0.045  0.145  0.171  0.561  0.191

10 % size  0.380  0.220  0.097  0.130  0.225  0.256  0.622  0.278

    Bias  0.309  0.219 -2.365 -1.033 -1.818 -0.796 -1.846 -0.860

 Std Error  1.854  1.317  1.285  0.545  2.699  1.175  2.831  1.203

Centered Around: 

 5 % size  0.603  0.485  0.022  0.029  0.130  0.152  0.531  0.153

10 % size  0.673  0.574  0.065  0.084  0.208  0.239  0.599  0.230

    Bias -2.416 -1.878  1.766  0.768 -1.751 -0.765 -1.599 -0.675

 Std Error  1.855  1.431  1.484  0.636  2.609  1.133  2.698  1.170

Centered Around: 

 5 % size 0.600 0.434 0.075 0.102 0.773 0.811 0.991 0.938

10 % size 0.670 0.531 0.198 0.247 0.850 0.875 0.994 0.964

    Bias 2.427 1.744 2.926 1.274 6.912 3.006 8.747 3.805

 Std Error 1.857 1.321 1.302 0.544 2.869 1.188 2.984 1.211

Centered Around: 

 5 % size  0.996  0.992  0.214  0.278  0.999  1.000  1.000  1.000

10 % size  0.998  0.996  0.431  0.516  1.000  1.000  1.000  1.000

    Bias  7.270  5.496  3.816  1.662 14.376  6.255 19.093  7.651

 Std Error  2.147  1.507  1.261  0.513  3.342  1.234  3.629  1.238

Notes:  Based on 10,000 replications of cointegrated system (1) with errors  given by the vector MA

process (2) with parameters , , , .  The

elements of   were drawn from uniform distributions centered around the indicated values with deviations

of 0.4 in either direction. The lag truncation for the Newey-West kernel estimator of  was set at . 

All distributions for  have been standardized by .   


