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Abstract

Is the assumption that people automatically know their own prefer-
ences innocuous? We present a theory and an experiment that study
the limits of preference discovery. Our theory shows that if tastes
must be learned through experience, preferences for some goods will
be learned over time, but preferences for other goods will never be
learned. This is because sampling a new item has an opportunity
cost. Learning is less likely for people who are impatient, risk averse,
low income, or short-lived, and for consumption items that are rare,
expensive, must be bought in large quantities, or are initially judged
negatively relative to other items. Preferences will eventually stabi-
lize, but they need not stabilize at true preferences. A pessimistic
bias about untried goods should increase with time. Agents will make
choice reversals during the learning process. Welfare loss from sub-
optimal choices will decline over time but need not approach zero.
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Results from an online experiment show that learning occurs as pre-
dicted and with the expected biases, but with even more error than
our theory suggests. Overall, our results imply that undiscovered pref-
erences could confound interpretation of choice data of all kinds and
could have significant welfare and policy implications.
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1 Introduction

“You do not like them. So you
say. Try them! Try them! And
you may.”

Green Eggs and Ham
Dr. Seuss

Do you know what you like? Neoclassical microeconomic choice theory is
grounded in the assumption that people choose according to a stable ranking
that represents their true preferences. However, as discussed in Plott (1996),
it is possible that people don’t know their tastes until they discover them
through consumption experience. When preferences are not fully discovered,
people may make choices that don’t maximize utility. If this is the case,
some standard results of neoclassical microeconomic theory come into ques-
tion. In this paper, we start from an assumption that preferences must be
learned from experience, and, using a model of preference discovery and an
experiment simulating preference learning, we explore implications for choice
patterns and welfare, focusing on the extensive margin: what is and is not
learned.

Consider an encounter with a new food. For example, one of this paper’s
authors had not eaten celeriac until a few years ago. She a priori believed
it untasty. When she tried it, she discovered that she likes it. Experience
yielded a more accurate assessment of her preferences, and she now enjoys
a more efficient level of celeriac consumption. Still, because of her initial
misperception, she might have missed out on a lifetime of celeriac apprecia-
tion had she not been induced to try it—indeed, she is likely missing out on
other delicious vegetables due to mistaken beliefs and a lack of experience.
Our model and experiment show that the need to learn preferences through
experience can generally cause persistent welfare loss.

The idea of tastes that are not fully known to the decision-maker has
received a small amount of attention in economics but much more in psy-
chology, so our work is informed by past studies from both fields. Preference
discovery has been little studied in either field because psychological models
often do not feature stable underlying preferences (Ariely et al, 2003; Lichten-
stein and Slovic, 2006), while models in economics typically implicitly assume
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stable preferences that are known to the decision-maker.1

Preferences might not need to be discovered through experience if people
can simply predict what they will like. As discussed by Kahneman et al
(1997), Scitovsky (1976) argued that people are bad at predicting their utility
from a prospective choice. Becker (1996) argued the opposite, and indeed,
Kahneman and Snell (1990) note that, when experiences are familiar and
immediate, people seem fairly good at predicting utility. Many results from
psychology and economics support Scitovsky’s claim, however. Loewenstein
and Adler (1995) find people fail to predict changes in their own tastes,
and Wilson and Gilbert (2005) review extensive evidence showing systematic
errors in forecasting happiness.

A few papers have studied preference discovery from an economic perspec-
tive, but they all focus on the intensive margin (the updating process) while
we focus on the extensive margin (what is and is not learned). Several theo-
retical studies explore the process by which people will sample consumption
items if they must learn them from experience, including Easley and Kiefer
(1988), Aghion et al (1991), Keller and Rady (1999), Piermont et al (2016),
and Cooke (2017). However, these all focus on the experimentation and up-
dating process, and each either includes assumptions that ensure full learning
by making learning effectively costless, or does not focus on the complete-
ness of learning.2 Armantier et al (2016) use theory and a lab experiment to
study preference discovery as well, and in that sense their study is closest to
ours. However, they, too, focus on the experimentation and updating pro-
cess, testing different theories of learning, and do not consider the potential
incompleteness of learning.

Plott (1996) noted that feedback should help the learning process, so we
can find suggestive evidence about preference discovery in lab experiments
that demonstrate unstable choices that are ameliorated over time by feed-
back. For example, van de Kuilen and Wakker (2006) find that repeated

1We distinguish between learning about objective circumstances and learning about
one’s own tastes, which Braga and Starmer (2005) refer to as “institutional learning”
and “value learning” respectively. Our focus is on value learning, so we assume the agent
knows the objective features of all goods. Institutional learning is best separately modeled,
e.g., in experimental consumption models (Kihlstrom et al, 1984) or the two-armed bandit
problem (Rothschild, 1974).

2Brezzi and Lai (2000) show, in another theoretical study, that learning when facing
a multiple-armed bandit will be incomplete, but it is for a different reason (discounting)
than what we study.
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trials without feedback do not reduce Allais paradox violations, but with
feedback, the violations decrease. Weber (2003) finds that repeated plays of
a strategic game exhibit more apparent learning when feedback is provided.

Other economic experiments on repeated choice with feedback provide
further suggestive evidence of preference discovery. Preference instability
may be a marker of preference discovery, and there is a large literature de-
bating the importance and interpretation of “preference reversals,” e.g., Cox
and Grether (1996). Noussair et al (2004) find that with repeated choice, peo-
ple can converge to a true induced value. Similarly, errors and biases often
decline with repeated choice, as observed in the gap between willingness-to-
pay and willingness-to-accept, non-dominant bidding behavior, and strategic
games (Coursey et al, 1987; Shogren et al, 1994, 2001; List, 2003).

By the same token, preference stability over longer periods is sometimes
taken as evidence that discovery is not happening, though we argue it should
not be. While studies like Eckel et al (2009) show that preferences are af-
fected by outside conditions (mediated by psychological affect), other studies
(including Andersen et al, 2008 and Dasgupta et al, 2017) look over longer
time periods and find some evidence of stability and some evidence that
preferences depend on conditions in predictable ways.3 However, our theory
shows that eventual stability in choices is expected even with preference dis-
covery, and need not indicate fully discovered preferences: if you stop trying
new things, you stop learning and your choice behavior appears stable.

Our contribution is to develop and test a theory that integrates preference
discovery, as described in Plott (1996), into a neoclassical microeconomic
framework, focusing on the extensive margin: what items an agent will and
will not learn her tastes for. We maintain the assumption of stable underlying
preferences but allow for a need to learn them through experience.

Our model is of a sophisticated agent: she knows for each consumption
item whether she has already learned her tastes for it, and she maximizes a
discounted stream of expected net benefits, so as a result she will intentionally
sample some goods with the goal of learning. However, learning has an
opportunity cost, and since the benefits of learning are finite, learning will
not be complete. We show that in finite time, the agent will exhibit choice
reversals as she learns her preferences. We also demonstrate that she will

3Chuang and Schechter (2015) find, in developing country contexts, very little stability
in preferences within a person over years, except in survey measures of self-reported social
preferences. However, their interpretation is that the experimental measures they study
are not good measures of preferences in these contexts.

5



learn her preferences over time for many goods, thus reducing her welfare
loss from bad choices. However, she may not fully learn her preferences.
Learning failure is more likely for people who are impatient, risk averse, have
low income, or have a short lifespan, and for preference objects that are
initially undervalued relative to other goods, expensive, rare, or that require
a large minimum purchase. We also show that a more diffuse expectation
about the good’s parameters could make the good more or less likely to be
learned, depending on the implied likelihood that the good is better than the
outside options. Less formally, we discuss that as the agent lives and learns,
she should become more pessimistic, since optimistic errors in prior beliefs
are more likely to be corrected than pessimistic errors.

In an online experiment, we directly test most of our theoretical predic-
tions, finding support for all that we test. There is ample evidence that
subjects are intentionally learning, but the learning process is fraught with
error. This suggests that practical considerations beyond our model would
make preference learning even more difficult, thus amplifying the concerns
we raise about unstable preferences and welfare loss. Nevertheless, we find
support for our main predictions about tastes that remain unlearned and
welfare loss that declines but not to zero. We also observe the biases we
expected: subjects retain pessimistic errors as life progresses, and fail to try
those goods exhibiting characteristics predicted by the model. Our results
also show that unlearned goods and welfare loss appears to be persistent, as
we predict.

This paper proceeds as follows. First, we informally outline our model’s
setup and results. (The full workings of the theory are contained in appen-
dices.) We then describe the experiment design. Our experiment results
follow, and we conclude.

2 A Model of Preference Discovery

We propose a model in which a sophisticated agent, whom we call Alice,4 is
born not knowing her preferences but must learn them through experience.
Our goal is to study not the updating process but the extensive margin: when
goods are tried and, by extension, in what cases preferences are never learned.
We set up a model that makes it as easy as possible for Alice to learn her

4By assonantal coincidence, Cooke (2017) also calls his preference-discovering agent
Alice.
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preferences. We do this to show that, if we also make reasonable assumptions
that create an opportunity cost for trying new things, incomplete learning is
the result. This section outlines the assumptions and results of the model.
The formal model is set up in Appendix A, with results in Appendix B and
proofs in Appendix C.

Alice is a rational expected utility maximizer. She consumes goods that
give her utility according to a utility function. Her inborn preferences are
stable, but until she has learned her preferences for each good, she doesn’t
know precisely how consumption of that good translates into her utility. We
operationalize this by assuming she has some probability distribution for the
parameter value for each good. However, we assume that when she consumes
a bundle, she instantly learns how much utility she got from each good she
consumes in a meaningful quantity (a concept we will explain more fully
below).

For convenience, Alice has an additively separable well-behaved utility
function with one parameter per good, and we assume that the goods are
non-stochastic in the sense that each gives her deterministic utility. We also
assume that once she learns preferences, she never forgets them. More com-
plicated goods, utility functions, or temporal patterns should simply make
it harder to learn preferences. Since our goal is to give learning its best shot
so we can highlight its failures, this simplest model makes our point most
strongly.

The preference learning process proceeds as Alice tries goods throughout
her life. There is a finite universe of goods; in each time period, each good
is available with some fixed probability and there is an outside option that
is always available. We assume Alice has some fixed income each period and
prices are constant over time.

Thus, in each period, Alice chooses the bundle that maximizes the present
value of her stream of expected utility. If she is myopic, she will choose a
bundle that maximizes current-period expected utility; if she is forward-
looking, she is willing to sacrifice a finite amount of current period expected
utility to try an as-yet-untried good that would not be in the myopic bundle
if the potential gain from learning preferences is high enough. The cost of
doing so is the best utility she could have otherwise gotten from spending
the money she’s using to purchase the as-yet-untried good. The benefit is
the potential stream of utility from consuming the new good in the future if
it turns out to be good; if it does not turn out to be good, she need never
consume it again, so this stream is positive-biased. As a result, Alice might
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choose to consume enough of a good to learn her taste for it even if her prior
belief is that, in expectation, it is not the best use of her resources. This is
experimental consumption (Kihlstrom et al, 1984).

One more assumption is crucial to the results that follow. To learn her
taste for a good, Alice must consume a non-vanishingly small quantity of that
good. If she could learn from consuming any arbitrarily small quantity of
a good, the opportunity cost to trying a new good would be approximately
zero, because she could sample such a small quantity that the cost would
be vanishing so that any positive benefit would justify it. But in reality,
having an atom of an apple on your tongue does not teach you your taste for
apples, so we assume that the minimum sampling for a meaningful learning
experience is finite.

Built from these assumptions, our theory yields the results in Table 1.
The first proposition trivially says that if Alice can’t afford to consume a

good, she’ll never learn it. Proposition 2 lays out two sides of a coin: if a good
has a mean prior that is better than the always-available outside option, then
Alice will eventually try it if she lives long enough, but if it does not, she may
or may not try it. The third proposition lists characteristics of the agent and
the good that make eventual learning less likely because they influence either
the opportunity cost of sampling the good or the present value of the expected
future gains from learning it. The preference stability noted in Proposition
4 is like that noted in studies like Andersen et al (2008) and Dasgupta et al
(2017), and relates as well to the decline in choice reversals (Proposition 5b)
and welfare loss (6b) over time. However, as noted in Proposition 6c, people
can continue to lose welfare forever because there are some goods they will
simply never try. We argue less formally that this bias is asymmetric in that
where errors persist, they are negative.

As we note in Table 1, our experiment tests most of the predictions of
the theory. We did not intend to test the obvious Proposition 1 (unafford-
able goods are not tried), and we did not include elicitations of risk and
intertemporal preferences so we did not test Propositions 3a and 3d about
the influence of those kinds of preferences. We did not vary prices, so did not
test Proposition 3h (that more expensive goods are less likely to be tried), as
this should follow from the same process as Proposition 3c (that agents with
lower income are less likely to try a good). However, we tested and found
support for all of the other results of our model.

Other models could also yield some of these results. However, the most
important point that is particular to our model is that welfare loss can persist,
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Table 1: Theory Results

Theory Result Description Experimental Result

Proposition 1 Unaffordable goods are never learned not tested
Proposition 2a Goods with priors better than outside

option are eventually learned
(partially tested in
tests of 3a-k)

Proposition 2b A good will never be tried if the oppor-
tunity cost of a meaningful taste out-
weighs the expected gain from future
optimized consumption

(partially tested in
tests of 3a-k)

Proposition 3 A good is less likely to be learned if:
Proposition 3a The agent is more impatient not tested
Proposition 3b The agent has a shorter lifetime Some support Sec. 4.3
Proposition 3c The agent has a smaller income (for

normal goods)
Supported Sec. 4.3

Proposition 3d The agent is more risk averse not tested
Proposition 3e The good’s mean prior is low Supported Sec. 4.3
Proposition 3f Given a low prior mean, the agent’s

belief is less diffuse
Supported Sec. 4.3

Proposition 3g Given a high prior mean, the agent’s
belief is more diffuse

Supported Sec. 4.3

Proposition 3h The good is more expensive not tested
Proposition 3i The minimum “nibble” size to learn

the good is larger
not tested

Proposition 3j The good appears less frequently Supported Sec. 4.3
Proposition 3k Other goods seem more attractive Supported Sec. 4.3

Proposition 4 Preferences eventually become stable Supported Sec. 4.4
Informal result The average parameter belief error be-

comes negative (pessimistic) over time
Supported Sec. 4.4

Proposition 5a Choice reversals occur Supported Sec. 4.2
Proposition 5b The rate of choice reversals declines to

zero over time
Supported Sec. 4.2

Proposition 6a Unlearned preferences may cause wel-
fare loss

Supported Sec. 4.5

Proposition 6b Welfare loss weakly declines over time Supported Sec. 4.5
Proposition 6c Welfare loss need not approach zero as

time passes
Supported Sec. 4.5
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so Proposition 6c is in that way our most important result. Also, Proposi-
tions 4 (that preferences appear to become stable eventually even so) and
5a and 5b (that choice reversals occur but decline over time) are important
connections to existing literature. In addition, the elements of Proposition
3 are important in that they provide a set of testable hypotheses about the
learning process that are unique to the need for preferences to be learned.

3 Experiment Design

We present an experiment in which individuals face a decision environment
based on our model above. The experiment tests the extensive margin of
preference learning (what is and is not learned) using induced values for
fictitious goods instead of actual consumption of goods. We do this to avoid
satiation, to ensure subjects are at the same level of preference learning at
the start of the experiment, and because homegrown preferences for actual
goods will vary significantly across people, be complicated by preferences for
moderation and the potential for variation in access to complementary and
substitute goods, and be difficult to observe, thus limiting our ability to test
the model’s precise predictions.

In the experiment, the subject plays through a series of T rounds. In
each round t, she has a budget y to spend and is confronted with a basket of
available goods, which are randomly chosen from the universe of N goods:
each good i appears in each round with probability qi. She has an induced
utility function that is converted to dollars to determine her experiment
earnings. The utility function has fixed parameters. The subject starts out
not knowing these parameters but is given noisy guesses about them. Each
guess is updated to the true value when she has sufficient experience with
that good.

Specifically, her utility is linear in the goods:
u(x1, x2, ..., xN) = zx1 + β̂2x2 + . . .+ β̂NxN .
The values β̂i for the goods are randomly chosen for each subject, and

they remain fixed for that subject for all rounds. There is a numeraire good
x1 that is available in all rounds. It gives a known return z and costs 1
per unit. Half of the non-numeraire goods appear with low probability and
the rest with high probability. The goods have fixed prices pi = 1 and she
has a fixed income y. She cannot save or borrow across rounds. A nibble
(minimum meaningful consumption experience) is mi = 1 for all goods.
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While she makes her decision in each round t, she sees her true or guessed
value βti for each available good. When the experiment starts, these are the
priors (guessed values) we assign to her, and as she learns values over the
course of the experiment, priors are replaced with true values. We generate
each prior by adding an independent random disturbance to the true value.
For each subject and each good, the random disturbance is drawn from a
discrete uniform distribution over [−σ,+σ]. We call these “starting guesses”
and tell the subject that each starting guess value is her true value plus a
positive or negative random number, so that it is related to, but generally
not the same as, the true value.

In each round, from the set of available goods, the subject must choose a
bundle that costs y or less. This decision is time-limited by our software: if
she does not choose an affordable bundle within a minute then she consumes
zero of all goods, earning zero for the round. After the round, the software
tells her what her total utility is in that round and reminds her what bundle
she chose. For each good, it also tells her what its value or her guess of its
value is. The software automatically updates with the correct value each
good of which she consumed at least mi in that round. Since we do not seek
to study the subjects’ ability to infer parameters of multivariate functions
but, rather, whether and when some goods will be tried, our design reduces
the “learning” problem to a “tasting” problem.

The subject’s earnings in a round come from her utility in that round.
After all rounds of the experiment are complete, the subject sees a summary
of her earnings in each round and the sum of those rounds’ earnings in points
and in dollars. She then is presented with a short questionnaire about herself
and about the experiment. Her total earnings for the experiment are the sum
of her earnings in all rounds, converted to dollars with a conversion rate c,
plus an additional $0.50 for completing the questionnaire.

As shown in Table 2, we experimentally vary income y, lifetime T , and
noisiness in priors σ, so that our experiment has eight cells. Across all cells,
all subjects have the same number of goods, likelihood of each good ap-
pearing, numeraire value, maximum disturbance size, conversion rate, and
distribution from which values are drawn.

We gave each good the name of a fake fruit and we called the numeraire
good “bread” to make the experiment more engaging and game-like while still
limiting their importation of beliefs and tastes from outside the experiment.
See Appendix D for full instructions.

We programmed the experiment in oTree (Chen et al, 2016) and deployed
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Table 2: Experiment Parameters

Variable Description Fixed or varied?

N Number of goods in the universe Fixed: 10
qi Probability good i appears in a round Fixed: 25% or 50%
pi Price of good i Fixed: 1
y Income Experimentally: 3 or 6
T Lifetime (number of rounds) Experimentally: 10 or 20
z Value of numeraire good Fixed: 65
βi True value of good i Random integer in [50, 80]
σ Max disturbance in “starting guesses” Experimentally: 25 or 49
mi Meaningful consumption experience Fixed: 1
c Conversion rate, points to dollars Fixed: 1000

it on Amazon’s Mechanical Turk (mTurk). Subjects were screened on being
US-based and having successfully completed a large number of past mTurk
tasks.

4 Experiment Results

We ran the experiment in February 2018. In all, 1,252 potential subjects
signed up to participate, of which 646 completed the experiment.5 Table 3
shows the number of subjects in each treatment condition. Among these 646
subjects, subjects earned an average of 4,797 experimental points, or $4.80
plus a $0.50 participation payment. The first quartile of earnings was $3.50
and the third quartile was $7.34.6

Our analysis proceeds as follows. First, in Section 4.1, we validate the
experiment and model by showing that subjects choose according to their

5Problems with the server caused fatal timeouts for some potential subjects. Of the
606 who did not complete the experiment, 547 (90.3%) had made no choices by the time
they stopped. Most of these likely had server timeouts.

6The post-experiment questionnaire asked a comprehension question that posed a sim-
plified version of the experiment’s choice problem. 82.43% of subjects answered correctly.
Including only those who answered correctly produces qualitatively identical results except
that the Mann-Whitney test for the effect of noise on efficiency becomes insignificant and
the effect of noise on efficiency becomes significant at the 10% level in the Tobit regression
for T = 10. This paper reports results from the full sample of subjects.
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Table 3: Number of Subjects in Each Treatment Cell

Lifetime T = 10 Income y = 3 Income y = 6

Noise σ = 25 76 91
Noise σ = 49 85 95

Lifetime T = 20 Income y = 3 Income y = 6

Noise σ = 25 74 71
Noise σ = 49 76 78

beliefs often, but not always, with some deviations consistent with learning
and others consistent with error. We next, in Section 4.2, show that choice
reversals exist and decline with time, as predicted in Proposition 5. We then
show in Section 4.3 that most, but not all, goods are tried, with evidence
supportive of Proposition 2 and all of the elements of Proposition 3 that
our experiment can test. Then in Section 4.4 we show how this engenders
different degrees of eventual preference learning. Next, we show that be-
lieved preferences become increasingly stable, as shown in Proposition 4. We
demonstrate the pessimism bias predicted in our informal hypothesis. Fi-
nally, in Section 4.5 we show that welfare loss occurs and declines over time,
but importantly, as predicted in Proposition 6, it does not decline to zero.

4.1 Consistency with Believed Preferences

To show the extent to which subjects choose according to their believed pref-
erences, we construct a dummy variable for each subject for each round,
and we give it a value of 1 if the subject chose the bundle that maximizes
believed utility. The subject’s believed utility is based on the parameters of
goods they have learned up to that round, and the point estimates (“starting
guesses”) they have for goods they have not yet tried. For goods that are not
yet learned, the assumption that a rational person will maximize utility by
maximizing current-period expected value based on these parameter point
estimates is only strictly true for risk neutral people, as risk averse or risk
loving people will have a bias against (or, respectively, in favor of) untried
goods; and experimental consumption by definition will cause people to di-
verge as well, but this is a starting point for our analysis; we will discuss
divergences from this simple myopic optimization below.
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Pooled across all treatments and rounds, people maximize believed ex-
pected earnings in this way 61.0 % of the time. In round 1, subjects choose
in accordance with their believed preferences at a rate of 43.2% for T = 10
and 41.8% for T = 20. At the end of experimental lifetimes, that value is
65.4% in round 10 for T = 10 and 69.2% in round 20 for T = 20, a significant
increase (within-subject sign-rank test: p < 0.001 in both cases, nT=10 = 347,
nT=20 = 299).7

Recall that experimental consumption explains some choices that don’t
maximize believed preferences. Since experimental consumption has no fur-
ther value in the final round, why would a subject make a non-myopic-
maximizing choice in her last round? One potential reason is that subjects
who are risk averse may choose a learned good with a lower parameter value
over an as-yet-unlearned good with a higher “starting guess” to avoid un-
certainty. Subjects who are risk loving may do the opposite, choosing an
as-yet-unlearned good with a lower “starting guess” over a learned good
with a higher parameter value.

Neither risk preferences nor experimental consumption can explain non-
maximizing choices among goods that have already been learned. In 21% of
all choices we observe, subjects choose a good they have tried before with a
lower known value than another available good with a higher value (in some
cases also forgoing untried available goods with higher “starting guesses”).
These choices likely indicate error. As noted above, these errors decline
significantly over time. Further, the magnitude of most of these errors is
small: of these choices, 63.7% choose a good that’s only dominated by a
small amount (between 1 and 9 units of absolute value). This means that in
92.3% of all choices, an error cannot be identified (although they may choose
something with a lower prior) or we identify only a “small” error.

Further, subjects who make non-myopically-maximizing choices in the
final period do not seem to suffer in our study: on average, those who behave
inconsistently achieve 95.13% efficiency while those who behave perfectly
consistently achieve 94.96% efficiency (not statistically different, p = 0.908).8

7Subjects made other non-maximizing choices as well. Of 103,950 good-round pairs,
subjects chose a value between 0 and 1 (less than a meaningful consumption experience)
322 times (or 0.31% of the time), and a value less than 0 a total of 14 times (0.01% of the
time). 99.63% of the time, subjects chose an integer between 0 and 6.

8Choices inconsistent with believed preferences have little impact on our experiment’s
results. Excluding subjects who make these non-myopic-maximizing choices yields qual-
itatively similar results with only a few changes: In Table 4, the difference in efficiency
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These results show that subjects are engaging in some optimizing choice
as proposed in our model, but that they are quite a bit less sophisticated
than our hypothetical Alice. To the extent to which error enters into our
subjects’ decision process, that introduces noise that makes it harder for us
to detect the empirical results we find in the remainder of this paper.

We made no theoretical predictions about the effects of treatment vari-
ables (T , y, and σ) on subjects’ tendency to choose in a way consistent
with current beliefs, except that we point out that experimental consump-
tion depends on current period sacrifice and discounted expected potential
gain therefrom (Lemma 3(iv)). In Table 4, for tests pooled across rounds,
we see that subjects with longer lifetimes and lower incomes made fewer
choices that are myopically inconsistent with their beliefs. If experimental
consumption happens more in early than in later rounds, then a longer life-
time should give more rounds (as compared to a shorter lifetime) in which
little experimenting is happening, thus explaining why longer lifetimes are
associated with choices more consistent with beliefs. Higher income yielding
more choices inconsistent with beliefs could happen because higher incomes
should yield more experimentation, as argued in the proof of Proposition 3.
We return to the rest of the results in Table 4 later in this section.

We can seek evidence that some choices that diverge from maximizing
believed utility are experimental consumption by regressing the dummy for
deviation from believed preference maximization on factors that should affect
the value of experimental consumption. Table 5 shows OLS results. (Logit
and probit results are similar.) Belief-inconsistent choices increase with re-
maining lifetime and endowment and decrease with overall lifetime. These
results are consistent with subjects making inconsistent choices early as they
discover their preferences, and then increasing consistency as their under-
standing of their preferences improves. We return to the rest of Table 5 in
the next subsection.

across income levels becomes marginally significant (p = 0.090), while the difference in
efficiency across noise levels ceases to be statistically significant (p = 0.118). In Table 5,
the number of remaining rounds becomes significant at p < 0.001 in the second model,
while in the third model, noise becomes marginally significant (p = 0.064) as does income
(p = 0.063).
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Table 4: Nonparametric Tests of Treatment Effects on Learning Outcomes

Lifetime T
Choices

inconsistent
with beliefs

Full discovery Efficiency

10 0.444 0.159 0.846
20 0.358 0.502 0.896

p-value 0.000 0.000 0.000

Income y
Choices

inconsistent
with beliefs

Full discovery Efficiency

3 0.375 0.270 0.878
6 0.432 0.361 0.861

p-value 0.001 0.013 0.355

Noise σ
Choices

inconsistent
with beliefs

Full discovery Efficiency

25 0.405 0.340 0.876
49 0.404 0.296 0.863

p-value 0.941 0.237 0.035

All variables are aggregated to the subject level. N ’s can be inferred from Table 3. “Full
discovery” captures whether a subject has tried every good by the end of the experiment.

“Choices inconsistent with beliefs” is the proportion of rounds in which a subject’s
choices do not maximize expected utility given beliefs. “Efficiency” is the utility achieved

as a proportion of the maximum achievable. p-values are from Mann-Whitney tests.
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Table 5: Drivers of Utility Maximization Deviations and Choice Reversals

Non-maximizing
choice

Choice reversal
(all rounds)

Choice reversal
(rounds > 5)

Remaining
rounds

0.017***
(0.001)

0.000
(0.001)

0.006***
(0.002)

Lifetime T = 20
-0.170***
(0.015)

-0.037**
(0.016)

-0.081***
(0.000)

Noise σ = 49
-0.003
(0.014)

0.009
(0.014)

0.027
(0.017)

Income y = 6
0.053***
(0.014)

0.050***
(0.014)

0.050***
(0.017)

Constant
0.340***
(0.016)

0.296***
(0.017)

0.295***
(0.019)

R2 (overall) 0.0399 0.0044 0.0087
n subjects 646 646 646
n subject-rounds 9,450 8,804 6,220

Robust standard errors in parentheses. *** p < .01, ** p < .05, * p < 0.1. Random
effects OLS panel regressions at the subject-round level with errors clustered at the

subject level. For treatment variables, we use dummies that are equal to 1 for the higher
value.
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4.2 Choice Reversals

Now we turn to choice reversals. For each subject in each round, we infer
whether her choice contradicted the ranking implied by a past choice, and
we call this contradiction a choice reversal. In other words, if goods A and
B were available in round 1 and the subject chose more of A than of B, but
in round 2 when both were available she chose more of B than of A, that is
a choice reversal. In the theory, we used a more limiting definition of choice
reversals; we use a slightly different definition here because in our subjects’
finite experimental lifetimes, the odds of the exact basket of available goods
reappearing are quite small, so we would have little power to observe the
kind of reversals we describe in our theory in a reasonably rich experiment.

Proposition 5 held that choice reversals would be observed and would
decline over time. We test this prediction in the latter two columns of Table
5, using OLS panel regressions at the subject-round level. In the experiment,
each subject needs some time to build up a choice profile that can be contra-
dicted. In the first round, it is impossible to observe a choice reversal because
there is nothing to contradict. If the sets of goods available in rounds 1 and
2 are disjoint, then it is also impossible to witness a choice reversal in round
2. For this reason, the second column presents a regression model that in-
cludes all rounds except the first, and the third column includes only rounds
6 and up (when half or a quarter of the subjects’ lifetimes have passed) to
allow a choice profile to be established. This third column is our preferred
specification.

While the specification in Table 5 that includes all rounds does not show
an effect of remaining rounds on choice reversal rate, our preferred specifi-
cation (which excludes the first five rounds) does. The latter indicates that
choice reversals decline over time, as predicted, and the former indicates that
this is confounded by the mechanical difficulty in observing reversals in early
rounds.

We made no theoretical predictions about the relationship between our
treatment variables and choice reversals. However, we show in Table 5 that
a longer lifetime reduces the rate of choice reversals, while a higher income
increases the rate of choice reversals. Thus, the same experimental factors
that drive inconsistent-with-belief choices also drive choice reversals, giving
further evidence of experimentation.
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4.3 Trying Goods

Next, we examine subjects’ tendency to try goods. Most subjects try most,
but not all, goods that they have the opportunity to try. Figure 1 plots
over time the proportion of all goods that are chosen in at least a nibble
(the minimum quantity to learn) as well as the proportion tried of all goods
that have appeared (and thus could be chosen). The raw proportion of total
goods tried increases at a decreasing rate until it levels off at around 87% ap-
proaching Round 20. The proportion of possible goods tried shows a similar
trend. By the end of 20 rounds, subjects had been presented with 99.85%
of all possible goods on average, and 89.52% of subjects were presented with
all 11 goods at some point.

Tendency to try more goods as time progresses (but at a decreasing rate)
is not proof of our model, as even random choice would yield this outcome,
so we move on to more interesting results.

If subjects were myopic, i.e., if there was no experimental consumption,
life length would not affect tendency to try goods, in which case the T = 10
and T = 20 lines would coincide, but they do not. Those with shorter
lifetimes try more of the available goods in the first round (p < 0.001, rank-
sum test at subject level), but have tried a smaller proportion of the available
goods in the tenth round, which is the last round for the subjects with shorter
lifetimes but only half-way through for those with longer lifetimes (again
p < 0.001, rank-sum test at subject level). This crossing of the lines is not
consistent with a perfectly forward-looking model of learning, which predicts
that people with longer lifetimes get a higher benefit for trying new goods
early in their lifetime: specifically, while our theory does predict the fact
that the T = 20 line is steeper than the T = 10 line, it does not predict that
the T = 10 line starts at a higher intercept. We confirm this pattern using
regression methods below.

For both lifetime lengths, both curves end far short of 100%. For subjects
with a lifetime of 10 rounds, 15.85% try every good by the last round. This
increases to 50.17% for subjects with a lifetime of 20 rounds. These values
differ, p < 0.001, based on a rank-sum test at the subject level. While
subjects in our experiment have finite experimental lifetimes, the fact that
learning seems to flatten out is supportive of Proposition 2’s implication that
some goods will never be tried even in infinite time.

Our Proposition 3 predicted that agents with longer lifetimes and larger
incomes would be more likely to learn their preferences, and the nonpara-
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Figure 1: Percent of Goods Learned by Round
The vertical axis the proportion of all goods (or of goods that have appeared) that

subjects have by the given round chosen at least mi = 1 unit of, averaged across subjects.

metric tests in Table 4 confirm these predictions.
Proposition 3 also gave characteristics that should predict whether a good

is tried. In Table 6, we report a panel regression with one observation per
subject per good per round, where the outcome variable is a dummy indi-
cating whether this subject has learned their preference for this good as of
this round, i.e., whether by this round she has tried it in at least the mini-
mum size needed to learn. We show results from an OLS regression; results
are similar for logit and probit. These regressions include the numeraire as
a good.9 Our preferred specification is III, which includes the numeraire
and round-Lifetime interactions (which we discuss below), but results are
consistent across specifications.

We find again that subjects with longer lives and larger incomes try more
goods. In Model II, we see that subjects have tried more goods as time
passes, which appears to account for the effect of the longer lifetime; this
is not one of our key results but is a reasonable sanity check. In Model III
we examine time trends in the learning process by separately estimating the

9Recall that the numeraire value is known with certainty and thus is always “learned.”
Results are similar excluding the numeraire. We also considered a version of specification
III that used individual period dummies and found qualitatively the same result.
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Table 6: Factors driving whether a good is learned

I II III

Lifetime T = 20 0.145∗∗∗ -0.0142
(0.014) (0.014)

Income y = 6 0.0653∗∗∗ 0.0654∗∗∗ 0.0654∗∗∗

(0.014) (0.014) (0.014)
Noise σ = 49 0.155∗∗∗ 0.155∗∗∗ 0.155∗∗∗

(0.045) (0.045) (0.045)
Prior 0.00678∗∗∗ 0.00678∗∗∗ 0.00678∗∗∗

(0.001) (0.001) (0.001)
Prior x σ -0.00238∗∗∗ -0.00238∗∗∗ -0.00238∗∗∗

(0.001) (0.001) (0.001)
True value -0.00141∗∗∗ -0.00141∗∗∗ -0.00141∗∗∗

(0.001) (0.001) (0.001)
Average of -0.00554∗∗ -0.00554∗∗ -0.00554∗∗

other values (0.003) (0.003) (0.003)
Probability of 0.422∗∗∗ 0.423∗∗∗ 0.423∗∗∗

appearance (0.019) (0.019) (0.019)
Round 0.0319∗∗∗ 0.0549∗∗∗

(0.001) (0.001)
L: T = 20 -0.0134
First 10 rounds (0.014)
L: T = 20 0.448∗∗∗

Last 10 rounds (0.019)
L: T = 20 0.00449∗∗

Round x First 10 rounds (0.002)
L: T = 20 -0.0463∗∗∗

Round x Last 10 rounds (0.001)
Constant 0.351∗ 0.176 0.0490

(0.195) (0.195) (0.195)

R2 (overall) 0.1250 0.2013 0.2190
n subjects 646 646 646
n subject-goods 7,106 7,106 7,106
n subject-good-rounds 103,950 103,950 103,950

Robust standard errors in parentheses. ∗∗∗ p < .01, ∗∗ p < .05, ∗ p < 0.1
Random effects OLS panel regressions at the subject-good-round level with errors

clustered at the subject level. For treatment variables, we use dummies that are equal to
1 for the higher value. Model III includes two dummies for the Lifetime T = 20

treatment group, one for the first ten periods and one for the last ten. It also includes
interactions of these dummies with the round.
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intercept and the time trend during the first ten rounds for the two Lifetime
treatments using additional dummy variables and their interactions with the
round. The coefficient on the “Round x First 10 rounds” term indicates that
those with a longer life try goods more quickly than do those with shorter
lifetimes (p = 0.014 on the slope interaction coefficient). They do not appear
to try a larger number of goods at the outset (p = 0.353 on the the “First 10
rounds” dummy-intercept) despite, in principle, a higher payoff to learning.
In other words, we have no theoretical explanation for why people with a
longer lifetime don’t try more goods in the first round as compared to people
with a shorter lifetime; however, after that, people in the longer-lifetime
treatment do have a faster rate of learning as predicted by Proposition 3(b).

We also find evidence consistent with the theoretical predictions that
goods are more likely to be learned if they have a higher prior belief (as pre-
dicted by Proposition 3(e)) or probability of appearance (Proposition 3(j)).
The value of other goods decreases the likelihood that a given good has been
tried (Proposition 3(k)).

Consider now the interaction between noise and priors. The prior can
range from 1 to 129. Based on Specification III, the effect of noise ranges
between 0.155 + (−0.00238) ∗ 1 = 0.153 for the lowest possible prior and
0.155 + (−0.00238) ∗ 129 = −0.152 for the highest possible prior. This con-
firms our prediction (from Proposition 3(f) and (g)) that goods with low
priors would be more likely to be tried with more noise, and goods with high
priors would be more likely to be tried with less noise (which prediction was
conditional on the agent being risk averse). This result is very particularly
tied to our model of learning.

4.4 Learning Benchmarks, Stability, and Pessimism

This tendency to try some but not all goods has predictable ramifications
for the levels of discovery that our subjects achieve. We define full discovery
as the state in which the agent has learned her preferences for all goods. We
define full relevant discovery as the state of having learned all goods that
are better than the numeraire; if one achieves this benchmark then one will
not lose welfare because of misunderstood preferences. By the end of the
experiment, only 25.94% achieve full relevant discovery for T = 10 while
57.86% achieve full relevant discovery for T = 20. A weaker benchmark is
full voluntary discovery, a state in which the agent has learned all goods
with priors better than the numeraire; from this state, the agent can still
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Figure 2: Achievement of Learning Benchmarks

lose welfare from misunderstood preferences, but when she is in this state,
her believed values, including her knowledge gained from consumption and
her “starting guesses” for untried goods, provide no basis to try new goods
and exit the state. Only 59.37% achieve full voluntary discovery for T = 10,
while 89.30% achieve full voluntary discovery for T = 20. Figure 2 shows the
proportion of subjects who reach full discovery, full relevant discovery, and
full voluntary discovery over time.

Recall that an agent who has achieved full voluntary discovery may stop
trying goods she has not already learned. We declare a subject a candidate
for persistent welfare losses if she has reached full voluntary discovery but not
full relevant discovery. This is a relatively conservative definition, since given
the flattening out of the learning curve, we infer that some subjects who have
not achieved full voluntary discovery by our definition may be unwilling to
sample new goods. This may be in part due to risk aversion. At the end
of their experimental lives, 35.45% of subjects with T = 10 and 32.78% of
subjects with T = 20 are candidates for persistent welfare loss. These are not
significantly different (p = 0.476 from a subject-level rank-sum test). This
implies that a sizable proportion of subjects, regardless of their experimental
lifespan, may have reached a point at which they are done experimenting in
spite of incomplete learning.
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The leveling off of the learning curves in Figures 1 and 2 supports the idea
that believed preferences eventually become stable even in our subjects’ finite
experimental lifetimes, as argued in Proposition 4 for infinite time, but we
can test that hypothesis explicitly. We construct a variable for each subject
for each round (starting at round 2) that indicates how many parameters
changed between this round and the preceding round. While the average
number of changes in rounds 2-6 is 0.911 for T = 10 and 0.972 for T = 20,
the average number of changes in round 10 for T = 10 is 0.219 and in round
20 for T = 20 is 0.033. The difference is significant in both cases (sign-rank
test at the subject level: p < 0.001 in both cases). Of the 299 subjects
with T = 20, 289 (96.67%) chose no new goods in the final round, and 274
(94.81%) chose no new goods in the final two rounds.

We have shown, then, that subjects in our experiment are learning their
preferences but are not learning them completely over the course of finite
but long lifetimes. We hypothesized that this would lead to a pessimistic
bias over time because positive misperceptions would be more likely to be
corrected by experience. We test this by constructing a variable for each
subject for each round that averages the subject’s parameter belief errors,
where each error is her current believed value minus her true value. In round
1, this error averages -0.156 across all subjects. This, as expected, is not
significantly different from zero (t-test p = 0.551). At the end of subjects’
experimental lifetimes, this value is significantly negative: -2.893 in round 10
for T = 10 and -2.038 in round 20 for T = 20. These values are significantly
different from zero (t-test p < 0.001 in both cases). This is another result
that is particular to our model.

Figure 3 shows how this pessimism evolves. The average error declines
quickly as positive errors correct themselves faster than negative ones. The
average error then levels off and starts to climb as subjects choose goods with
small negative errors, correcting these errors. If we measure the bias among
only undiscovered goods (thus eliminating the zero errors from the average),
the average error is an even larger negative number. As a result, subjects’
average beliefs about goods they have never tried steadily diverge from the
true value, and display a persistent pessimistic bias.

4.5 Efficiency

Finally, we turn to the welfare implications of the learning process and its
failures. We calculate an efficiency measure for each subject for each round
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Figure 3: Average Error in Beliefs
The vertical axis is the mean error by round: the difference between subjects’ prior value

and true value, averaged across goods.

as the utility achieved in that round divided by the maximum she could have
achieved if she had chosen according to her true preferences. Averages of this
measure by treatment pooled across rounds are shown in Table 4. Longer
lifetimes and lower noise in priors both yield higher efficiency, which accords
with theory and results we have already shown about learning in those cases.
Income does not affect efficiency (and we did not predict that it would).

To look at how welfare evolves across rounds in the different treatments,
we run a panel Tobit regression at the subject-round level, which we report in
Table 7. As time passes, efficiency loss declines, as predicted in Proposition 6.
The effect of time is nonlinear, however: efficiency improves at a decreasing
rate over time. Once we control for round number, life length ceases to have
an effect, and in our regression, we see that the effect of income is only
significant for T = 20.

A declining welfare loss is not particularly surprising and could have ob-
tained as a result of other processes, as long as those processes involve op-
timization. The most important point from our theory is that this welfare
loss need not decline to zero even as time approaches infinity. While our ex-
periment subjects are not infinitely-lived, as we show in Section 4.4, choices
become quite stable by the end of our subjects’ experimental lifetimes, par-
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Table 7: Determinants of Efficiency

Pooled T = 10 T = 20

Lifetime T = 20
0.003

(0.020)

Income y = 6
-0.028
(0.019)

-0.011
(0.027)

-0.048*
(0.027)

Noise σ = 49
-0.025
(0.019)

-0.034
(0.027)

-0.016
(0.027)

Round
0.057***
(0.002)

0.072***
(0.008)

0.058***
(0.003)

Round2 -0.001***
(0.0001)

-0.003***
(0.0007)

-0.001***
(0.0001)

Constant
0.698***
(0.021)

0.666***
(0.031)

0.702***
(0.027)

Number censored at 0 554 242 312
Number censored at 1 3,979 1,063 2,916
n subjects 646 347 299
n subject-rounds 9,450 3,470 5,980
χ2 1,607.14 464.17 1,093.86

Robust standard errors in parentheses. *** p < .01, ** p < .05, * p < 0.1. Tobit panel
regressions at subject-round level with bootstrapped standard errors.
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ticularly for those in the T = 20 treatment, and yet subjects do not discover
their preferences for all goods that are better than the numeraire; therefore,
if welfare is still being lost in the last period, this would confirm our most
important theoretical result. Indeed, we find that in period 10 of the T = 10
treatment, efficiency is 90.7% and in period 20 of the T = 20 treatment,
efficiency is 95.4%. Thus, we have shown that our warning that unlearned
preferences could cause loss forever is borne out by our experiment.

5 Conclusion

Most work in economics implicitly or explicitly assumes that people know
what they like. We argue that if self-knowledge is not endowed at birth but
rather achieved through experience, as suggested by the discovered prefer-
ence hypothesis of Plott (1996), then even the most rational and sophisticated
people may fail to learn all of their preferences. At the heart of this failure is
the fact that learning has an opportunity cost, and thus complete learning is
irrational. In this paper, we develop a formalized theory to identify factors
that enable or impede learning for certain people or certain consumption
items. We start from a premise that preferences must be learned through
experience, and we focus on the extensive margin of learning, that is, which
goods are learned, rather than the intensive margin of the updating process.
We show that in some cases, tastes for some items will never be learned, and
welfare will therefore be lost. The results of an online experiment support
the predictions of our model, and show that even in our simplistic setting,
rationality errors make learning outcomes even worse than our theory pre-
dicts.

Our model shows that people may not fully learn their preferences even
under the most congenial circumstances. With more realistic assumptions,
preference discovery would be even less likely, thus making the problems we
point out even more egregious. Some such complications include: if multiple
consumption experiences are required for the agent to learn her true pref-
erences for a good; if the agent can only observe the aggregate utility from
the consumption bundle rather than from each good individually; or if the
agent may forget her preferences for a good after learning them. If goods
are stochastic rather than deterministic, this could make preferences harder
to learn as well, perhaps by adding another parameter to learn or by re-
quiring more experience to learn the preference. If learning is not separable,
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this might make learning easier by letting each consumption experience have
spillovers but also should create more parameters (such as coefficients that
govern relationships between goods), thus increasing the dimensionality of
the learning problem and making it harder, so the net effect is ambiguous.

Preference discovery processes can explain choice instabilities observed in
observational and laboratory studies of behavior, especially in cases of items
that are unlikely to have been “consumed” often by the agent. Moreover,
stable choice behavior does not indicate that agents are choosing according
to their true underlying preferences: they may simply have stopped experi-
menting. While goods in our study could be bought in continuous quantities,
if choice items are discrete and have large consequences (like houses, jobs, or
life partners), learning problems are likely to be worse; the analogy in our
model is to goods that have a larger “nibble” (minimum consumption size).
Another element that would render learning particularly challenging is an
agent’s inability to directly assess a good’s value even when she “consumes”
it, as might be the case for credence goods, donations to charity, and en-
vironmental valuation. Indeed, the situations we suggest are most likely to
give rise to learning failure correlate to the contexts that Thaler and Sunstein
(2008) argue cause people to make bad decisions: cases where the agent is
inexperienced and poorly informed, and where she will receive little feedback.

The preference discovery process must be studied in more detail and in
more settings to understand how factors internal and external to the agent
affect learning and thus welfare loss. It is possible that an agent’s mental
simulation of consumption can allow some learning without consumption,
and if so, that would alleviate some of the issues we highlight. On the other
hand, we made many assumptions to make learning very easy, and those are
unlikely to hold, which would exacerbate learning problems.

In contexts in which learning one’s preferences through direct experience
is very difficult, our model and experimental results indicate that losses could
persist; if the choices are important, like choices regarding a house or a job,
the losses could be large, and, as Thaler and Sunstein (2008) note, policy-
relevant. If agents are aware of the problems we identify, for important
decisions, they may turn to other processes or criteria instead of discounted
expected utility maximization based on beliefs. For example, people may
reduce a complex housing decision to a simpler problem about their beliefs
about the value of an asset appreciating over time. Future research could
identify whether people do this and whether it seems to be welfare-enhancing,
and could study whether specific nudges can help the preference learning
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process or can effectively replace it.
If we must learn through experience to know our own preferences, the

implications are large. On the one hand, this model can provide new insights
on how to get people to try new things, whether in the case of a company
marketing a product or a government or non-profit promulgating a green
technology. On the other hand, it shows that cross-sectional choice data
from any experimental or observational setting may be contaminated by un-
stable parameters. Worse, choices that appear stable and rational may not
reflect what is actually best for the individual making the decision. A tenet
undergirding most economics-based policy advice is that people know what’s
best for them; but if we have undiscovered preferences, that might not be
true.
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A Axiomatic Model of Preference Discovery

We begin by building a simple model of decision-making for an agent named
Alice. Throughout the model, we make many unrealistic simplifying assump-
tions. These are intended to make the learning process relatively trivial. For
example, as we describe shortly, we assume a pathologically primitive utility
function so there is very little to learn. We do this because we are interested
in the cases in which Alice fails to learn her preferences; any failures we
highlight in our simple model will be made worse by more complex, realistic
assumptions. That is, we give preference discovery its best shot so we can
highlight its failures.

All proofs are in Appendix C.

A.1 Alice’s Tastes

Alice has tastes over N ∈ N goods, i = 1, . . . , N . Alice makes a consumption
choice in each of the T ∈ N time periods, t = 0, . . . , T , in her life: she
chooses a bundle from the subset of goods that are available goods in that
time. We use xi to denote a quantity of good i, and xti as the quantity of
good i consumed at time t. We use fruits as our examples of consumption
items; thus, in each period, imagine that some random basket of fruits is
available to choose from.

We use the term “goods” quite generally, as some might be “bads” and
they may represent goods, services, experiences, or attributes. We limit
our consideration to deterministic goods: within a type of good, units are
undifferentiated and identical in quality.

We assume that Alice has an underlying preference ordering % over bun-
dles x = (x1, . . . , xN) (where each xi ≥ 0) of these goods, and that this
ordering obeys the standard assumptions of rational preferences.

Axiom 1. Rational Preferences.
Preferences are continuous, reflexive, complete, and transitive.

We can therefore represent Alice’s tastes with a utility function u(.).10

Alice knows the form of u(.), but may not know its precise shape. In partic-

10We use a utility function for convenience; our conceptual points about preference
learning can also be made using just preference rankings, as we did in an earlier version
of this paper, titled “Discovered Preferences for Risky and Non-Risky Goods.”
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ular, we assume she knows the functional form of her utility function but not
necessarily its parameters. Her utility is determined by consumption levels
as well as N1 ≥ N parameters that can be arranged in a vector β. We denote
the true parameters of u(.) by β̂ ∈ RN1 , so that her true utility is u(x; β̂).

We assume that Alice’s true utility function determines the utility she
realizes from consumption, and we assume that this true utility function and
its parameter vector β̂ are time-invariant:

Axiom 2. Stability of True Preferences.
At any time t ≥ 0, the agent’s realized utility from consuming a bundle of
goods x is u(x; β̂).

However, at any time t, Alice may not know all of her true parameter
values. Instead, she has beliefs about these true values. These beliefs are
not point estimates because she is sophisticated enough to know she has
not yet learned her tastes: her beliefs are probability distribution functions
over possible values. Therefore, we represent Alice’s time-t preferences with
a (N1-dimensional) random variable, denoted by βt. This random variable
has a continuous sample space, which is a subset of RN1 . We let B denote
the set of all random variables that assign a positive probability to possible
preference vectors in the neighborhood of the true preferences β̂. That is,
more formally,

B =
{
β | ∀ε ∈ RN1 with ε > 0 : P

(
β ∈ (β̂ − ε, β̂ + ε)

)
> 0
}
. (1)

The random variable β is characterized by a N1-dimensional probability
density function (p.d.f.) f (β)(b) : RN1 → R+

0 . We use b ∈ RN1 to denote
potential outcomes of the random variable β, that is, potential parameter
vectors. Thus, Alice’s expected utility from consuming bundle x at time
t—given her current preference beliefs in the form of the random variable
βt—is

Eu(x; βt) =

∫
RN1

f (βt)(b) · u(x; b)db .

The p.d.f. of Alice’s true beliefs β̂ is f̂(.) = ∆(β̂), where ∆ denotes the
Dirac delta function, so that f̂(b) has infinite weight for b = β̂—such that
P(b = β̂) = 1—but f̂(b) = 0 for all other b.
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Alice’s prior beliefs about her preferences before she has had any experi-
ence are reflected in the random variable β0 ∈ B and described by the joint
p.d.f. f (β0)(b). These prior beliefs are exogenous and need not be correct;
Wilson and Gilbert (2005) review the evidence that people routinely err in
forecasting their utility.

Thus, for each fruit, Alice has true preferences that are exogenous pa-
rameter values and she has priors that are exogenously-given probability
distribution functions over parameters. While both of these are determin-
istic, her preferences at any time t are, as we will show, not deterministic
because the process of encountering fruits (and thus potentially learning her
true values) is random.

Next, we assume that Alice’s utility function is additively separable:

Axiom 3. Separability of Utility.

For all i, j ∈ {1, . . . , N} with i 6= j, and for all b ∈ RN1: ∂2u(x;b)
∂xi∂xj

= 0.

As a result of Axiom 3, Alice has a sub-utility function ui(.) that deter-
mines her utility from each good i, and we can state Alice’s utility as:

u(x; b) = u1(x1; b1) + . . .+ uN(xN ; bN) .

Thereby, for i = 1, . . . , N , the real-valued vector bi is a potential realization
of the (possibly multi-dimensional) random variable βi ∈ Bi pertaining to the
sub-utility function Alice has for good i, and Bi is the set of all random vari-
ables of the dimension of β̂i that assign a positive probability to (the neigh-
borhood of) β̂i, akin to Equation (1). Now we can form the overall parameter
vector, random variable space, and outcome vector as β = (β1, . . . , βN) ∈ B,
B = B1 × . . . × BN , and b = (b1, . . . , bN), respectively. We denote the p.d.f.

of the random variable βti by f
(βti )
i (.).

We assume preferences for each item are (weakly) monotonic, but we
allow some goods to give positive and some to give negative marginal utility.
We do not restrict Alice’s beliefs about a good to the positive or negative
domain: before she has tried it, she may think that a kumquat is likely to
be good but has a chance of being bad. We assume preferences are (weakly)
convex, which implies a (weakly) concave utility function for each good.

Axiom 4. Shape of Utility Function.
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For each i ∈ {1, . . . , N}, the good-i sub-utility function ui (.) is twice differ-
entiable, weakly monotonic, and weakly concave. That is, for all b ∈ RN1 and
all i ∈ {1, . . . , N}:

(i) Monotonicity: Either d ui(xi;bi)
d xi

≥ 0 for all xi ≥ 0, or d ui(xi;bi)
d xi

≤ 0 for
all xi ≥ 0.

(ii) Concavity: d2 ui(xi;bi)
(d xi)2

≤ 0 for all xi ≥ 0.

We further simplify our analysis by restricting each βi to be one-dimensional
(which implies that N1 = N):

Axiom 5. Single Parameter Sub-Utility Functions.
For each good i ∈ {1, . . . , N}, ui(.) is characterized by a single parameter.

Lastly, we make two additional assumptions for ease of exposition: First,
we normalize utility derived from each good to zero if the good is not con-
sumed, so ui(0; bi) = 0 for all i and all bi ∈ R. Second, we specify that larger
parameter values always imply (weakly) larger utility; that is, for each good

i, ∂ui(xi;bi)
∂bi

≥ 0.

A.2 Alice’s World

At discrete times t = 0, . . . , T , Alice has access to a random subset, de-
noted by Gt, of the universe of goods. It is from the goods in Gt that Alice
constructs her consumption bundle at time t. The likelihood that good i is
available at time t is time-invariant and independent of the availability of any
other good. We denote this probability by qi := P(i ∈ Gt) and we require
that 0 < qi < 1 for i = 2, . . . , N .

In addition to ordinary goods i = 2, . . . , N , there is also a numeraire
good, which we index with i = 1. The numeraire good is present at all times,
so that q1 = 1. The other special feature of the numeraire good is that Alice
knows with certainty that it provides a constant marginal utility of z > 0.
The numeraire good can be thought of as the option to consume nothing, or
as some standby good (like bread) that is always available.

At each time t, Alice is endowed with income y, and that income does
not change over time. Money cannot be transferred across time periods. The
price per unit of good i is also time-invariant and is denoted by pi > 0.
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A.3 Experience and Preference Learning

As noted above, Alice’s utility is determined by her true utility function,
governed by true parameters β̂, but Alice may not always know her true
parameters and instead at time t she chooses according to a utility function
parameterized by random beliefs βt (with density function f (βt)(.)), starting
from prior beliefs β0. Alice learns about her tastes by consuming the goods
and updates these parameters accordingly.

We make several assumptions about the preference updating process.
First, we assume that there exists a “nibble size” or minimal consumption
experience mi for each good i such that if Alice consumes at least this nibble,
she accurately perceives her utility from the good, but if she consumes less,
she does not. This is like assuming that if Alice gets an atom of an apple
on her tongue, it does not inform her about her taste for apples, but if she
eats at least a mouthful she learns her taste for apples fully.11 Second, we
assume that Alice can perceive the separate sub-utilities from each good of
which she consumes at least a nibble, rather than only perceiving the utility
of the bundle, making the consumption items more like different foods on a
plate than like inseparable attributes of a product.

Axiom 6. Experience of Utility.
If she consumes a bundle with xi units of good i, Alice gets utility ui(xi; β̂i)
from good i in addition to any other utility she earns at the same time. If
xi ≥ mi, she accurately perceives her utility ui(xi; β̂i). If xi < mi, she does
not perceive how much utility she got from good i nor the utility she got from
the overall bundle.

The requirement that Alice have at least minimal consumption of a good
to perceive how she likes it, combined with the existence of a numeraire good
that is always available, ensures that the opportunity cost for learning an un-
tried good is non-zero and non-vanishing. If no good was (like the numeraire)
available with probability 1 in each time, the opportunity cost of consuming
a good would sometimes be zero. If we did not require at least a nibble to
learn, then Alice could learn her tastes by purchasing an infinitesimally small

11What does it mean for Alice to consume a small amount of a good, not know how
much utility she gained, but still in some sense earn that utility? Our interpretation of
mi is that it is finite but very small, so that the utility gained is also very small.
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quantity of each good when it appears for a negligible cost, so she would al-
ways fully learn her preferences, as happens in the theories of Easley and
Kiefer (1988) and Aghion et al (1991). We make these assumptions because
opportunity cost is intuitively important in extensive margin consumption
decisions (whether to consume) like those we study.

Thus, given more-than-minimal consumption of a good, Alice perceives
its value to her unerringly. We assume this immediate and perfect assessment
because our focus is on cases in which her learning might be incomplete as
a result of failure to try goods rather than the dynamics by which learning
progresses; we do not study the updating process but rather the case of items
that are never sampled, since with most reasonable learning processes, goods
that are sampled will eventually be learned.

Axiom 5 implies a unique mapping between utility received from a good
and the parameter value for that good. Because of that implication and
Axiom 6, Alice should update her beliefs about her preferences based on the
utility she experienced in time period t from any previously undiscovered
good i of which she consumed at least mi units.

We disallow spillovers in learning by assuming that consumption of one
good is uninformative for learning the parameters associated with other
goods, so that tasting an apple does not help learn preferences for oranges.

Axiom 7. Separability of Learning.
Experiencing a good has no effect on the agent’s perceived parameters of any
other good.

Axiom 7 implies that for all i 6= j and for all times s and t, βti and βsj
vary independently from each other. That is, a change in βti does not lead
to a change in βsj . As a result, for all β ∈ B:

f (β)(b) = f
(β1)
1 (b1) · . . . · f (βN )

N (bN) for all b = (b1, . . . , bN) ∈ RN . (2)

Moreover, once learned, parameters are not forgotten.

Axiom 8. Persistent Memory.

If for some time t, f
(βti )
i ≡ f̂i, then f

(βsi )
i ≡ f̂i for all s ≥ t .

Together, Axiom 7 and Axiom 8 ensure that believed parameters for some
good i only change with experience with good i. This implies that:
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Lemma 1. Updating of Preferences.
For each good i ∈ {2, . . . , N}:

(a) If xti < mi, then f (βt+1
i ) ≡ f (βti ).

(b) If xti ≥ mi for any t, then f (βsi ) ≡ f̂i for all s ≥ t+ 1.

(c) For all t, f
(βt)
i ∈

{
f
(β0
i )

i , f̂i

}
.

That is, if Alice doesn’t have at least a nibble of the good, her believed
preferences will not change, and if she does, then her believed preferences will
become forever stable at her true preferences. Since her preferences start at
her priors and can only change to her true values, her believed preferences
will always be her prior or her true value.

A.4 Alice’s Optimization Problem

At each time t ∈ {0, . . . , T}, Alice decides how much to consume of each good
i ∈ Gt. We denote the time-t consumption bundle by xt = (xt1, . . . , x

t
N).

If Alice existed for only one period, or was fully myopic so that she only
considered one time period at a time, she would face the following static
expected utility maximization problem:

U(f (βt), Gt) := max
xti for i∈Gt

Eu(xt; βt) = max
xti for i∈Gt

∫
RN

f (βt)(b)
∑
i∈Gt

ui(x
t
i; bi)db ,

subject to ∑
i∈Gt

pi · xti ≤ y ,

xti ≥ 0 for all i ∈ Gt , and
xti = 0 for all i /∈ Gt .

(3)

That is, Alice’s myopic choice problem is akin to an optimal atemporal
consumption decision with multiple goods and a linear or quasi-linear utility
function (due to the constant marginal utility of the numeraire good). For in-
stance, if one available good j (say, jackfruit) has for all possible consumption
quantities a higher expected marginal sub-utility per dollar than the other
available goods, then Alice chooses to consume only that good (xtj = y/pj
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and xti = 0 for all i 6= j). If instead the expected marginal utilities per
dollar of multiple goods are overlapping for the relevant regions, then the xti
values for each of these goods are given by equating the marginal (expected)
sub-utilities per dollar of all purchased goods.

Essentially, Alice will never buy a banana if the maximum marginal sub-
utility she expects to get from it (which, given concavity, occurs for the first
marginal taste of banana, xi = 0) is not greater than the marginal utility
she expects from a bundle of other goods excluding this one; and as in the
standard choice problem, the marginal utility of money equals the marginal
utility of each good that is consumed in positive quantity at its optimized
quantity divided by its price.

If Alice is not myopic, she maximizes the present value of her stream of
expected utilities, using a per-period discount factor δ. This encapsulates the
standard assumption of additive separability of utility across time periods.
In most models of intertemporal choice, time periods are linked through the
ability to shift money back and forth in time. In this model, time periods are
instead linked because a costly consumption investment can yield information
that can be used later.

Axiom 9. Discounted Expected Utility.
When choosing a bundle in time t, Alice maximizes the present value of her
stream of expected utility over time.

We represent the time-t present value of Alice’s expected utility stream,
based on optimal intertemporal consumption choices at all times according
to Axiom 9, by a value function V t(.). Her optimization problem can then
be stated recursively as:

V t(f (βt), Gt) = max
xti for i∈Gt

Eu(xt; βt) + δ · Et
[
V t+1(f (βt+1), Gt+1) | f (βt)

]
, (4)

subject to the optimization conditions (3), the parameter updating process
specified by Lemma 1, and (for finite T ) the terminal condition V T (f (β), G) =
U(f (β), G). Et[X] denotes the expected value of the random variable X based
on the information available at time t, that is f (βt). Recall that goods appear
probabilistically, so in time t Alice must consider not just the uncertainty she
has over her own tastes but also the likelihood that any particular basket of
goods G will appear in each future period. At time t, Alice generally does not
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know her future parameter vector βt+1—or, equivalently, the corresponding
p.d.f. f (βt+1)—but she knows that if at time t she samples an unlearned good,
its parameters will update. She also does not know what basket Gt+1 will be
available to her, but she knows the likelihood of each possible basket.

Because Alice optimizes her discounted stream of utility, she is willing
in each period to forego some current expected utility if in expectation it
gives her an increase in discounted future utility that is at least as large as
the expected utility foregone now. This increase will come from learning
her tastes for a previously-unlearned good. This is only a sacrifice if the
unlearned good appears unattractive in a myopic optimization problem. We
call this act of sacrificing current expected utility for future expected utility
by consuming a new good i experimental consumption of good i: choosing
xi = mi when xi < mi maximizes myopic utility. When Alice experimentally
consumes good i, she will never choose more than nibble size mi because that
minimizes the expected costs of learning.

Imagine that in time t Alice has not yet learned her taste for mangosteen

(good i).12 We define for i ∈ Gt with f
(βti )
i ≡ f

(β0
i )

i :

Ui(f
(βt), Gt) := Eui(mi; β

0
i ) + max

xtj for j∈Gt\{i}

∑
j∈Gt\{i}

Euj(x
t
j; β

t
j) ,

subject to ∑
j∈Gt\{i}

pj · xtj ≤ y − pi ·mi ,

xtj ≥ 0 for all j ∈ Gt \ {i} , and
xtj = 0 for all j /∈ Gt \ {i} .

Ui(.) is Alice’s time-t expected utility from consuming a nibble of good i
and allocating the rest of her money optimally among the remaining goods:
trying just enough mangosteen to learn about it and making a bundle that
is otherwise myopically optimizing. The time-t loss of current-period utility
from experimental consumption of mangosteen is therefore U(.)−Ui(.). This
is only a loss if mangosteen appears unattractive to Alice based on her priors;
since Alice has clear incentive to learn her taste if it does not, we focus on
the case in which it is a loss.

12We will explore experimental consumption for one good at a time for ease of exposition;
the same concepts would apply if, as is possible, Alice chooses to experimentally consume
multiple goods in the same period.
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Alice’s benefit (valued at time t+1) from experimentally consuming good
i is:

φt+1
i (f (βt)) := Et

[
V t+1(f (β′), Gt+1) | f (βt)

]
− Et

[
V t+1(f (β′′), Gt+1) | f (βt)

]
,

(5)
where

β′ = (βt+1
1 , . . . , βt+1

i−1 , β̂i, β
t+1
i+1 , . . . , β

t+1
N ) , and

β′′ = (βt+1
1 , . . . , βt+1

i−1 , β
t
i , β

t+1
i+1 , . . . , β

t+1
N ) .

Alice only benefits from experimental consumption of i if she does not yet

know her preferences for it (that is, if f
(βti )
i 6≡ f̂i), and thus she still holds her

prior, so f
(βti )
i ≡ f

(β0
i )

i . If she does know her preferences for good i, φt+1
i = 0,

by definition. In general, the benefit from experimental consumption will
always be non-negative since at worst, Alice can choose not to consume the
good in future periods, as the following lemma shows.

Lemma 2. Characteristics of φt+1
i .

Ceteris paribus, for all i ∈ {2, . . . , N} and t ∈ {0, . . . , T}:

(a) φt+1
i (.) ≥ 0.

(b) If T <∞, then for all β ∈ B: φt+1
i (f (β)) is a non-increasing function in

t.

(c) If T =∞, then for all β ∈ B: φt+1
i (f (β)) is constant in t.

We can now identify the conditions for experimental consumption:

Lemma 3. Conditions for Experimental Consumption.
At time t, with current preference beliefs f (βt), the agent chooses experimental
consumption of good i if all of the following conditions are met:

(i) i ∈ Gt .

(ii) pi ·mi ≤ y.

(iii) f
(βti )
i 6≡ f̂i.

(iv) U(f (βt), Gt)− Ui(f (βt), Gt) < δ · φt+1
i (f (βt)).
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The first three conditions state that for Alice to experimentally consume a
myopically-unattractive good i, imust be available, she must be able to afford
a nibble of it, and she must not have discovered her preferences for it yet.
Given these, she will try it if the discounted expected benefit from learning
her parameter for the good exceeds the cost of learning: that is, the myopic
loss from forgoing other goods that appear more attractive right now is less
than the expected discounted stream of benefits from better optimization.

Given experimental consumption of some good i, the quantities chosen
of other goods like j will generally not be myopically optimizing: since Alice
is spending some money to experimentally taste mangosteen, she will spend
less overall on apples and bananas.

We can also observe that if Alice does not choose to consume good i when
she encounters that good alone (accompanied by no other good except the
numeraire), she will never learn her taste for it unless her preferences for other
goods change. The caveat about other tastes not having changed is needed
because if Alice’s believed preferences for other goods change, good i may
suddenly seem more appealing in comparison and experimental consumption
of this good may become worthwhile.

Lemma 4. Minimal Consumption Set.
If Alice has not learned her preferences for good i prior to time t, if Gt =
Gi = {1, i}, and if Alice chooses not to consume at least a nibble of good i
at time t, then she will not discover her preferences for good i as long as her
preferences for all other goods remain the same.
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B Theory Results

Now that we have constructed the model components, we can proceed to
study the model’s implications for preference discovery.

B.1 Preference Learning

Let us first explore what goods Alice will and will not learn her tastes for in
any given time and as time approaches infinity. We define Lt ⊆ {1, . . . , N} as
the set of all goods for which Alice has learned her preferences prior to time

t. That is, i ∈ Lt if and only if f
(βti )
i ≡ f

(β0
i )

i . Because of our assumptions,
L0 = {1} (only the numeraire good has been learned) and Lt+1 ⊇ Lt for all
t. We denote the probability that Alice has learned her preferences for good
i by time t as rti := P(i ∈ Lt).

Let us define some learning benchmarks. Full discovery is the state Alice
achieves if she learns her preferences for all goods, so that she has achieved
full discovery at time t if i ∈ Lt ∀i ∈ {1, . . . , N}. Full relevant discovery
at time t means that by t she has learned her tastes for all goods that are
truly weakly better (at least for the first bite) than the numeraire good, so

i ∈ Lt for all i ∈ {1, . . . , N} for which
d ui(xi;β̂i)

dxi

∣∣∣∣
xi=0

> z · pi
p1

. If Alice achieves

full relevant discovery then she may still have some unlearned preferences,
but they will not affect her wellbeing since all will be goods she wouldn’t
optimally consume. Lastly, full voluntary discovery is the state in which she
has learned all the goods that she would ever voluntarily consume at least a
nibble of; which goods fall in this category will depend on Alice’s preferences
and the factors that influence φ. We do not define full voluntary discovery
here in a formal, general sense since we will only refer to it in our experiment
results section, where the definition is straightforward.

First, it is obvious that Alice will never, even as t → ∞, learn her pref-
erences for any good if a nibble of it is too expensive for her to afford. For
example, Alice may never consume the pricey Densuke watermelon.

Proposition 1. Unaffordable Goods.
For i 6= 1, i /∈ LT if pi ·mi > y.

Next, given enough time, Alice will learn the true values of two classes
of goods. One class comprises goods for which the current-period expected
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marginal utility per dollar based on the prior achieves a value above the
marginal utility per dollar of the numeraire good: mangoes may look rel-
atively tasty, so they will be eventually tried. Other goods, like perhaps
(for Alice) the mangosteen, are more prospective: goods with lower expected
marginal utility can only be discovered through experimental consumption,
and that can only occur if the discounted future expected utility gains from
learning her true preferences outweigh the expected current-period utility
loss from consuming more of this good than is myopically optimal.

Proposition 2. Goods That Will and Will Not Be Learned.
Consider good i ∈ {2, . . . , N} such that pi ·mi ≤ y.

(a) For T =∞, good i will eventually be learned if

dEui (xi; β
0
i )

dxi

∣∣∣∣
xi=mi

> z · pi
p1
.

That is, for such goods, rti → 1 as t→∞.

(b) Good i will never be learned if both of these conditions are met:

(i)
dEui(xi;β0

i )
dxi

∣∣∣∣
xi=mi

< z · pi
p1

, and

(ii) max
G∈G , β∈B′

i

δ · φ1
i (f

(β))− U(f (β), G) + Ui(f
(β), G) < 0,

where

G = {G ⊆ {1, . . . , N} : 1 ∈ G} , and

B′i = {β ∈ B : βi = β0
i and βj ∈ {β0

j , β̂j} for all j 6= i} .

Proposition 2 part (b)(i) states that it is not myopically optimal to con-
sume at least a nibble of good i, and part (b)(ii) states that the myopic
utility loss from experimentally consuming good i is larger than the dis-
counted stream of gains from improved information for any allowable set of
believed preferences and any realized availability of other goods.

A good can meet condition (b)(i) but not (b)(ii). These might or might
not be learned, depending on the realized availability of and priors for other
goods. For example, Alice might have a relatively low prior for rhubarb and a
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moderately low (but better than the numeraire) prior for kumquats. If Alice’s
true taste holds kumquats in even higher regard, then if Alice encounters
rhubarb alone before learning her taste for kumquats, her opportunity cost
for learning is relatively low and she may taste a nibble of rhubarb. But
if she learns her taste for kumquats before encountering rhubarb alone, the
potential net benefits of learning will change, and could render experimental
consumption of rhubarb unattractive.

To return to our learning benchmarks, Proposition 2 implies that Alice
generally need not achieve full discovery of her preferences. Given that we
place no restrictions on the priors or true values of the goods, this implies
that she generally need not achieve full relevant discovery, either, since some
untried goods could have true values that would make them worth consuming.

We now consider what characteristics of the good itself, the other goods,
or the agent foster incomplete learning. The determinants come down to
the good’s availability, factors that influence the opportunity cost of trying
the good when it is available (U(.) − Ui(.)) and factors that determine the
expected benefit of learning the good’s value (φt+1

i ).

Proposition 3. Factors That Influence Discovery.
Ceteris paribus, Alice is less likely to learn her preferences for a good i ∈
{2, . . . , N} by time T under either of the following conditions:

(a) She discounts future consumption more heavily (smaller δ).

(b) She has a shorter lifespan (smaller T ).

(c) She has less income (smaller y), given that i is a normal good.

(d) She is more risk averse.

(e) She has a bad prior perception of the good (that is, her prior p.d.f. f
(β0
i )

i

is shifted further to the left).

(f) She has more confidence in her belief (i.e., less dispersion in f
(β0
i )

i ), given
that she has poor priors for the good that make consumption of at least
a nibble an unattractive choice relative to the numeraire.

(g) She has less confidence in her belief (i.e., more dispersion in f
(β0
i )

i ), given
that she is risk averse and has a positive average prior, in the sense that
the per-dollar marginal utility of good i, parameterized with the mean of
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f
(β0
i )

i , exceeds the per-dollar marginal utility of the numeraire—that is, if
d ui(xi;E[β0

i ])
dxi

∣∣∣∣
xi=mi

> z · pi
p1

.

(h) The good is more expensive (larger pi).

(i) A larger nibble is required to constitute a meaningful learning experience
(larger mi).

(j) The good appears less frequently (smaller qi).

(k) Other goods appear more attractive (larger β̂j or f (β0
j ) shifted further to

the right for some j 6= i).

Some of these cases coincide with cases pointed out in Thaler and Sunstein
(2008) as being ripe for behavioral errors. Specifically, Thaler and Sunstein
(2008) note that people will tend to make poor choices “in contexts in which
they are inexperienced and poorly informed, and in which feedback is slow
or infrequent” (p. 7). The general point of our model is that people will
make errors when they are inexperienced in the sense of having unlearned
preferences if their priors are incorrect. But as time progresses and Alice
has the opportunity to learn, she will continue to tend to be inexperienced
with rare goods (Proposition 3(j)), or goods she’d buy rarely because they
are expensive (Proposition 3(h)), or goods that require more consumption
to learn (Proposition 3(i)). In our model, being poorly informed is eventu-
ally self-correcting unless Alice is poorly informed in the negative direction
(Proposition 3(e)).

The personal characteristics associated with never learning her prefer-
ences are also associated with populations that are already disadvantaged;
this is a concern because, as we show later, undiscovered preferences cause
welfare loss, thus burdening these people further.

From our earlier discussion we can also conclude that Alice’s preference
parameters will stabilize, albeit not necessarily at her true preferences.

Proposition 4. Eventual Preference Stability.

If T =∞, then P
(
f
(βsi )
i ≡ f

(βti )
i ∀ s ≥ t

)
→ 1 as t→∞.
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Recall that studies such as Andersen et al (2008) and Dasgupta et al
(2017) find some support for stability of preferences over time; our theoretical
prediction shows those results are not evidence against preference discovery.

We also suggest the hypothesis that as Alice learns her preferences over
time, she becomes increasingly pessimistic. We do not offer a formal proof
of this, but the intuition is as follows.

Alice’s priors for some goods make them look better than they are: goods

i for which the true β̂i lies to the left within the distribution f
(β0
i )

i ; let us call
this optimistic error. There are also goods for which Alice’s prior makes them
look worse than they are: goods j for which the true β̂j lies to the right within

the distribution f
(β0
j )

j ; let us call this pessimistic error. For goods whose true
value and prior probability distribution of parameters are both very low, so
that marginal expected utility per dollar is well below the numeraire, neither
kind of error will be corrected: Alice never learns whether rotten mango is
less disgusting than rotten guava or vice versa. On the other hand, goods
with high priors will see errors of both signs corrected: if ambrosia and nectar
both appear delicious but she thinks ambrosia is worse than it is and nectar
is better than it is, in each case, she’ll taste the good eventually and will sort
out her true values.

However, for goods nearer to the threshold at which consumption be-
comes myopically optimal, the sign of the error matters. For a given true
parameter value, an optimistic bias will make a good more likely to be tried
and learned than will a pessimistic bias, by the logic in Proposition 3(e).
By the same token, goods with a pessimistic bias will be less likely to be
ever tried, and thus more of these goods will persist unlearned forever. As a
result, perception errors for some goods will drop to zero through preference
learning, but the average tendency of the errors that remain will be to see
goods as less attractive than they actually are.

The main story of our results so far is that Alice will sample and learn
her taste for many goods, but perhaps never for other goods including some
that are affordable and that she would actually like. In Section B.2, we study
how observers may see evidence of the learning process in action. In Section
B.3, we study how Alice loses welfare because of undiscovered preferences.
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B.2 Choice Reversals

Consider now the phenomenon of choice reversals, as discussed in work such
as Cox and Grether (1996).13 In a choice reversal, an agent is observed
to make one choice (say, bundle A over bundle B) at one time and then a
contradictory choice (B over A) at another time, when all external conditions
appear to be identical across the two choice scenarios. Our model allows for
these reversals in finite time, but not as t→∞.

Proposition 5. Choice Reversals.

(a) If there exists a good i ∈ {2, . . . , N} for which pimi ≤ y, then for any
β̂ ∈ B there exists a prior β0 ∈ B such that for any time t, P(xt+1 6=
xt|Gt+1 = Gt) > 0.

(b) The probability of such a choice reversal approaches 0 as t→∞.

This result accords with studies that show that reversals decline with
repetition, as found in Cox and Grether (1996).

B.3 Welfare Implications

Recall that U(f̂ , G) denotes the maximum myopic utility Alice can attain
with the goods available in set G. As a result, consuming any other bundle
x′ will give her (weakly) less immediate utility. Let us therefore define Alice’s
time-t expected welfare loss ∆ut as the expected reduction in utility she
experiences from not choosing according to her true preferences at time t:14

∆ut = E
[
U(f̂ , Gt)− U(f (βt), Gt)

]
.

Here, the expectation is taken based on the information available to Alice
at time 0, that is, her priors f (β0). The uncertainty here stems from the
randomness in Gt as well as the randomness in the sets of goods that are

13Most studies refer to the phenomenon as “preference reversals.” As we are maintaining
an assumption of stable underlying preferences, we say “choice reversals.”

14Since utility is not cardinal, it is usually preferable to define welfare losses in terms of
compensating or equivalent variation. However, since we restrict our attention to a single
agent, utility loss is equally appropriate here.
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available to her over the periods up to time t, which influences her beliefs
f (βt).

If Alice behaves according to our model, welfare loss will occur for two
reasons. Some accidental loss will occur as Alice chooses according to the
preferences she believes she has if those beliefs are incorrect. In addition,
Alice may intentionally lower her current expected utility, particularly early
in her life, by engaging in experimental consumption to sacrifice current
utility in hopes of better optimization in the future. Both of these effects
tend to diminish over time as Alice discovers her true preferences for at least
some of the goods, although in the case of the former it need not decline to
zero. We can thus draw the following conclusions about the agent’s welfare
loss:

Proposition 6.

Suppose there exists a good i ∈ {2, . . . , N} for which pimi ≤ y and d ui(xi;β̂i)
dxi

∣∣∣∣
xi=0

>

z · pi
p1

. Then:

(a) There exists a prior β0 ∈ B such that for all t ≥ 0, ∆ut > 0.

(b) Under the specification of part (a), ∆ut is (weakly) decreasing in t.

(c) There exists a prior β0 ∈ B such that ∆ut 6→ 0 as t→∞.

Believed and true values may be positively correlated; this would be the
case if Alice’s beliefs are formed based on information gleaned from con-
sumption of other goods, others’ experiences, introspection, or other sensible
processes. Such informed guesswork will not eliminate the failure to try some
goods with true values that would render them part of myopically optimal
bundles nor the resulting welfare loss, as long as the correlation between
beliefs and true values is not perfect.
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C Appendix: Technical Proofs

Proof of Lemma 1

(a) Axiom 6 implies that Alice updates her preferences to the true β̂i upon

her meaningful consumption experience at time t. That is, f
(βt+1
i )

i ≡
f̂i. Then, by Axiom 8, she will maintain these true preferences into
perpetuity.

(b) According to Axiom 6, if xti < mi, Alice has no reason to update her
preferences for good i at that time. Axiom 7 ensures that there is no
possible experience with any other goods that would lead Alice to update

f
(βti )
i . As a result, f

(βt+1
i )

i ≡ f
(βti )
i .

(c) This follows directly from parts (a) and (b) of this lemma: preference

belief for good i starts at f
(β0
i )

i and can only change to f̂i, if at all.

Proof of Lemma 2

Let us first observe that learning β̂i provides potentially increased expected
utility to the agent for all future periods. For k ≥ 1, we denote the difference
in expected utility from period-(t+ k) consumption based on whether or not

the agent learned β̂i in period t by αt,t+ki (f (βt)). Recalling that f
(βti )
i (.) can

only either be f
(β0
i )

i or f̂i, we can write:

αt,t+ki (f (βt)) := Et

[
max

xj for j∈Gt+k
Eu(x; βt+k)

∣∣∣∣ f (βt+1
i )

i ≡ f̂i

]
−Et

[
max

xj for j∈Gt+k
Eu(x; βt+k)

∣∣∣∣ f (βt+1
i )

i ≡ f
(βti )
i

]
,

(6)

whereby all optimization problems are subject to the usual constraints (see
Equation (3) and Lemma 1). Of course, at time t, Alice does not know her
exact value of αt,t+ki since she does not know β̂i. Since—conditional on her
current beliefs f (βt)—both the random availability of goods and the learning
process from time t to time t + 1 are time-independent, the right-hand side
of Equation (6) is independent of t, and the only time value that matters is
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k, the number of periods since the learning has occurred. We can therefore
use the shortened notation αki in place of αt,t+ki .

Alice cannot do better for herself than to optimize based on her true
parameters. Therefore, if she optimizes based on any other parameters, her
utility must be less than or equal to the utility she gets when maximizing
based on her true parameters. Therefore, αki ≥ 0.

Moreover, by definition of φti, and for all β ∈ B, with f := f (β):

φti(f) =

{
α1
i (f) + δα2

i (f) + δ2α3
i (f) + . . .+ δT−t−1αT−ti (f) , if T <∞

α1
i (f) + δα2

i (f) + δ2α3
i (f) + . . . , if T =∞

.

We can therefore conclude that:

(a) φti ≥ 0 because it is the sum of non-negative numbers.

(b) For T <∞,
φti(f)− φt+1

i (f) = δT−t−1αT−ti (f) ≥ 0 .

(c) Similarly, for T =∞,

φti(f)− φt+1
i (f) = 0 .

Proof of Lemma 4

Let x∗i < mi denote Alice’s optimal time-t consumption choice of good i when
the available set of goods is Gi = {1, i}. We will show that for any s ≥ t and

any set Gs ⊇ Gi, if f
(βsi )
i ≡ f

(βti )
i , then Alice’s optimal time-s consumption

bundle includes xsi ≤ x∗i units of good i. This implies the statement of the
lemma.

We divide this proof into two parts.

(i) We first show that Alice’s dynamically optimal time-s consumption
choice of good i, xsi , is no greater than x∗i for s > t if Gs = Gi = {1, i}.
The solution to Alice’s myopic optimization problem is independent of
time, as it solely depends on the set of available goods as well as the
current preference parameters for these goods. Per our assumption,
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both are identical at times s and t. Therefore, the solution to the
myopic choice problem is identical at both times.

Alternatively, Alice might choose to experimentally consume mi units.
For this to happen, according to Lemma 3, it must be true that for
τ ∈ {t, s}:

U(f (βτ ), Gτ )− Ui(f (βτ ), Gτ ) < δ · φτ+1
i (f (βτ )) .

The left-hand side of this inequality is identical for τ = t and τ = s,
while the right-hand side is non-increasing over time (Lemma 2), since

f
(βsi )
i ≡ f

(βti )
i by our assumption. As a result, if the inequality is not

satisfied at time t, it will not be satisfied at time s > t.

Therefore, under the given assumptions, the consumption choice of good
i at time s cannot exceed the consumption choice of good i at time t
given the same preference beliefs and the same minimal choice set.

(ii) Second, we show that xsi ≤ x∗i for s = t if Gs ) Gi = {1, i}. In
this case, there exists at least one good j ∈ Gs \Gi. If Alice chooses to
consume a positive quantity of good j, she will do so at the expense of a
myopically-optimal mix of good i and the numeraire. If strict convexity
holds, then this requires Alice to buy less than x∗i of i. If Alice does not
choose a positive quantity of any other good j, then she will choose the
same quantity x∗i of i. Thus, xsi ≤ x∗i .

If convexity is weak but not strict, so that there is constant marginal
utility, the results mostly still hold. If good i does not provide the same
marginal utility as the numeraire, then both parts will still hold: if the later
basket is Gi, then the myopic solution will be identical at both times and
experimental consumption will not happen later if it does not happen earlier;
and if the later basket is not Gi, the addition of some other good j will not
increase and may decrease choice of i. If good i does provide the same
marginal utility as the numeraire, then the choice of xti is not unique, and
thus we are not guaranteed that a larger xsi will be chosen in either case, but
this is a pathological case.
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Proof of Proposition 2

(a) Let T =∞ and define Gi = {1, i}. If at some time t, the set of available
goods is Gt = Gi, and if

dEui(xi; β
0
i )

dxi

∣∣∣∣
xi=mi

> z · pi
p1
,

then Alice will choose to consume at least mi units of good i, based
on the solution to her myopic optimization problem. This is because
this minimal consumption set contains only good i and the numeraire,
and this inequality says that the marginal utility of good i evaluated
at nibble size mi is at least as high per dollar as the numeraire. Since
marginal utility is (at least weakly) diminishing, the marginal utility for
consumption up to mi is at least as large as this, and thus at least mi

units are worth purchasing.

The numeraire does not need to be learned and Alice is already choosing
based on her myopic motives to consume enough of i to learn her taste
for it, so Alice’s myopic choice to consume at least a nibble of i is the
same as her dynamically optimal choice. As a result, by Lemma 1, Alice
will learn her true preferences for good i at time t.

Lastly, note that the number of goods is finite, and that the probability
P(Gτ = Gi) that Gi is the available basket in any given round τ lies
strictly between 0 and 1 and is time-invariant. Therefore, for any t > 0
and any i ∈ {2, . . . , N}:

P(i ∈ Lt) = P(∃ s < t s.t. Gs = Gi) = 1− P(Gs 6= Gi ∀ s < t)

= 1− (1− P(Gτ = Gi)︸ ︷︷ ︸
∈(0,1)

)t → 1 as t→∞ .

Basket Gi is not the only basket from which Alice might choose to con-
sume at least xi = mi of good i, so this probability understates the true
likelihood of learning i by time t, but the analytical point is that the
probably converges to 1, which would obviously be equally true if other
cases gave rise to learning as well.

(b) For good i to not be learned even given a life that could be infinitely long,
it must appear so unattractive that neither myopic nor experimental con-
sumption seem worthwhile under any circumstance. The first condition
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of part (b) of this proposition ensures that, from a myopic perspective,
Alice always prefers the numeraire good to a nibble (or more) of good
i. Thus, the only way she could learn it would be through experimental
consumption. The second condition ensures that for any set of prefer-
ence beliefs β that Alice may have, if she encounters a basket with just
this good in the first period (t = 0), she will not consume at least mi of
it and thus won’t learn it. Since this is true for any possible preference
beliefs, then by Lemma 4 if she won’t learn it in the first period, she
won’t learn it in any period regardless of what preference beliefs she has
at that later period, because those preference beliefs will be one of the
possible preference beliefs for which Alice refuses to learn good i in time
0.

This proves that under the two conditions specified in the proposition,
Alice will never consume at least a nibble of good i, so that by Lemma
1(b), she will never learn her preferences for this good.

Proof of Proposition 3

To learn her preferences for good i, Alice must satisfy these conditions:

(i) pi ·mi ≤ y (affordability), and either

(ii) There exists t ∈ {0, . . . , T} such that i ∈ Gt and the myopic optimiza-
tion problem yields xti

∗ ≥ mi (myopic consumption), or

(iii) There exists t ∈ {0, . . . , T} such that i ∈ Gt and U(f (βt), Gt)−Ui(f (βt), Gt) <
δ · φt+1

i (f (βt)) (experimental consumption).

(a) A smaller δ reduces the right-hand side of the inequality in (iii), making
experimental consumption less likely.

(b) A smaller T reduces φt+1
i by restricting the number of future periods

in which Alice can benefit from better knowing her preferences. This
reduces the right side of the inequality in (iii), making experimental
consumption less likely.

(c) Because the budget constraint is tighter in future periods, future con-
sumption is lower, which reduces φt+1

i and thus the right side of the
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inequality in (iii), making experimental consumption less likely. If i is
normal, then a smaller y means that the optimal myopic choice in the
current period is smaller and could fall below the nibble size, so myopic
consumption (ii) might cease to select learning this good; and if it is
already below the nibble size, then sampling this good requires a larger
utility sacrifice in experimental consumption, increasing the left side of
the inequality in (iii) and making experimental consumption less likely.
These points are unambiguous and thus sufficient to show that a lower
y reduces the chance of learning i, but other factors may aggravate the
effect of a smaller y. A smaller y can make the inequality in (i) fail to
hold, so that a nibble of i becomes unaffordable. If there is diminishing
marginal utility and the other goods that could be consumed are normal,
a lower y would increase the present sacrifice associated with sampling
this good, increasing the left side of the inequality in (iii), making ex-
perimental consumption less likely.

(d) If Alice is more risk averse, then for all i ∈ {2, . . . , N} and for any
xi > 0, Eui(xi; β

0
i ) is smaller due to her increased disutility from the un-

certainty about β0
i . This makes her consume less of good i in her myopic

choice—relative to the numeraire good as well as other available goods
that she has already learned and that she therefore has no uncertainty
over (so that increased risk aversion does not devalue the utility from
these goods). This makes myopic consumption per (ii) less likely. By the
same token, increased risk aversion increases the current period sacrifice
required for experimental consumption, increasing the left side of the
inequality in (iii) and making experimental consumption less likely.

(e) A lower prior, that is a left-shifted f
(β0
i )

i , by our informal assumption that
utility is increasing in parameters, means that Alice’s expected utility
from good i is lower. This makes consumption of any amount of the good
less likely to ever be myopically optimal (ii), and increases the current-
period sacrifice for experimental consumption, which increases the left
side of the inequality in (iii) and makes experimental consumption less
likely.

(f) If Alice has a low prior, i.e. a left-shifted f
(β0
i )

i for good i such that it is
not myopically optimal, then a narrower probability density function will
put less probability weight on parameters that would make i attractive
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enough to be tried. This lowers the good’s upside potential, thus reducing
φt+1
i , thus reducing the right side of the inequality in (iii) and making

experimental consumption less likely.

(g) If Alice is extremely confident in her prior preference beliefs such that

f
(β0
i )

i (or, more precisely, the corresponding random variable β0
i ) has close

to zero dispersion, then

dEui (xi; β
0
i )

dxi

∣∣∣∣
xi=mi

≈ d ui (xi;E[β0
i ])

dxi

∣∣∣∣
xi=mi

. (7)

The condition in the proposition gives us that these values are greater
than z · pi

p1
. In this case, by Proposition 2(a), good i will eventually be

learned.

Let us now increase the dispersion of β0
i while keeping its mean constant.

Then
d ui(xi;E[β0

i ])
dxi

∣∣∣∣
xi=mi

remains the same, whereas
dEui(xi;β0

i )
dxi

∣∣∣∣
xi=mi

de-

clines because Alice is risk averse and thus loses expected utility as a
result of the uncertainty in β0

i . The more uncertain her beliefs, the lower
her expected utility. As a result, with enough uncertainty in her beliefs,
the left side of Equation (7) can fall below the right side, so that good
i will not be learned through myopic consumption, i.e., so condition (ii)
does not hold. The level of dispersion of β0

i and her believed preferences
for the other goods could make this expected utility so low that the cur-
rent period utility sacrifice, the left side of the inequality in (iii), is so
high that experimental consumption does not occur.

Thus, under the given assumptions of risk aversion and a positive prior,
a higher level of uncertainty around her beliefs can prevent Alice from
learning her preferences for a good.

(h) A larger pi tightens the budget constraint and thus has the same effects
as a reduction in y. Moreover, it makes learning good i more costly, so
that U(.)− Ui(.) will be larger, increasing the left side of the inequality
in (iii), making experimental consumption less likely. It also renders a
nibble of the good less likely to be affordable, so it could make (i) cease
to be met.

(i) An increase in mi has the same effect on the good’s affordability and the
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cost of learning as an increase in pi, leading to the same conclusion as
(h).

(j) Lowering qi reduces the chance that i ∈ Gt for any given t, which means
that for a finite T , even if there exists a basket in which Alice would
myopically consume (as in (ii)) good i, she may not encounter that basket
during her life. In addition, since there are fewer future consumption
opportunities with this good in which decisions can be optimized, φt+1

i is
reduced, which reduces the right side of the inequality in (iii) and makes
experimental consumption less likely.

(k) If β̂j is larger for (at least one) learned good j 6= i, or if f
(β0
j )

j is more
right-shifted for a not-yet-learned good j 6= i, then good i appears rel-
atively less attractive. This reduces φt+1

i , since the net gain that could
be achieved from consuming i in the future is lower if the utility from
consuming counterfactual goods is higher. This is sufficient to show that
more attractive other goods make it less likely to learn preferences for a
good. Other channels may also be relevant. Increased attractiveness of
other goods may reduce the optimal myopic choice of i in some periods,
which might drop the myopic optimal choice below a nibble and would
further increase the sacrifice involved in experimental consumption of
good i if it was already not myopically optimal to learn.

Proof of Proposition 4

Let T =∞. Suppose that at some time t, Alice’s preferences are unstable in
the sense that they will change at some later time. For this to be true, there
must be a good for which she will learn her preferences at some point in the
future, because in our model that is the only way that preferences change.
Therefore, there exists some set G and some good i /∈ Lt, such that under
her current preferences βt, Alice will choose to consume at least a nibble of
good i, thus learning her preferences for it, if G appears as the available set
of goods.

Let τ > t denote the first time (since t) that the set Gi = {1, i} appears.
We conclude that Lτ+1 6= Lt, that is, that Alice will have learned a new
good between time t and time τ . This is because either (i) Alice changed her
preferences between time t and τ due to some other consumption experience,

59



so the learned set must expand based on that preference change; or (ii)

preferences have not changed in that time so that f
(βτi )
i ≡ f

(βti )
i , in which

case Lemma 4 implies that good i will now be learned, that is i ∈ Lτ+1 when
we know it was not in Lt. Thus, we have shown that an unstable preference
will result in a preference change as a good is added to the learned set by the
time Alice encounters the minimal set that includes the good in question.

In each period, the probability that Gi is the available set of goods is
non-zero and time-invariant, since there are only a finite number of goods
(and thus a finite number of possible sets G) and since the probabilities with
which goods appear are constant and independent from each other. Let

ρ = min
i∈{2,...,N}

P(Gi) > 0

denote the probability that the set Gi appears in any given period for the
non-numeraire good i whose minimal set is least likely to appear. This need
not be the good whose learning triggers the learned set change discussed in
the first paragraph of this proof, but since that scenario involved either the
good i under consideration or some other unknown good, we can’t identify
which good and thus which probability to use, so we are using the good least
likely to appear, as that will give the smallest (most conservative) possible
probability ρ.

Combining this with what precedes it, if Alice’s preferences are currently
unstable, there is a positive, time-invariant probability (greater or equal to ρ)
in each future period that she will change her preferences in that period, until
the first change occurs. Let T1 ≥ 1 denote the number of periods it takes
for such a change of preferences to occur for the first time. This is a random
number because it depends on realized appearances of goods. Similarly, let
T2 ≥ 1 denote the additional number of periods until the second change of
preferences, etc. Note that each Tj measures the number of periods until
an event occurs, which happens with probability of at least ρ (which is a
constant) each period. Therefore, Tj follows a geometric distribution with a
probability parameter of at least ρ.

Since there are only N − 1 < ∞ goods to be discovered, and since pref-
erences for each good remain stable once discovered (Lemma 1), there can
be at most N − 1 preference changes in Alice’s lifetime. (There are fewer
such changes if she discovers multiple goods at the same time, or if some
goods are destined to remain forever undiscovered.) The time of her final
change of preferences is thus no greater than T1 + . . .+ TN−1. Note that the
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sum of geometric distributions (with the same parameter) follows a negative
binomial distribution and reflects how many periods it takes for (in this case)
N − 1 events to occur.

Therefore, if T ∗ denotes a random variable that follows a negative bi-
nomial distribution with probability parameter ρ and frequency parameter
N − 1, we can conclude that:

P(f
(βsi )
i ≡ f

(βti )
i ∀s ≥ t) ≥ P(T1 + . . .+TN−1 ≤ t) ≥ P(T ∗ ≤ t)→ 1 as t→∞ .

The first inequality follows from our earlier discussion that preferences will
not change after time T1 + . . . + TN−1 (and possibly sooner). Note that the
Tj each have an event probability of greater or equal to ρ, while T ∗ assumes
a probability of ρ for each period. Therefore, the sum of the Tj is more
likely to be smaller than T ∗ itself. This is reflected in the second inequality.
Lastly, the convergence is a property of the negative binomial cumulative
distribution function.

Note that this essentially proves that any good that will be eventually
learned will be learned eventually. This is not true for all goods, because it
is not true that all goods have some corresponding set under which the good
will be chosen.

Proof of Proposition 5

(a) Let i ∈ {2, . . . , N} denote a good for which pimi ≤ y, as assumed in
the proposition. Let x′i denote the quantity of good i that Alice chooses
to consume as the solution to her myopic choice problem if the set of
available goods in that period is Gi = {1, i}.
Consider first the case in which under her true preferences β̂i, she would
choose x′i 6= mi. If we choose her prior for the good, β0

i ∈ Bi, such that
dEui(xi;β0

i )
dxi

∣∣∣∣
xi=mi

= z · pi
p1

, then the following sequence of events will ensure

a choice reversal between some time t and t+ 1:

(i) i /∈ Gs for any s < t;

(ii) Gt = {1, i}; and

(iii) Gt+1 = {1, i}.
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This situation is possible: since there is a finite number of goods, the
probability for (i), (ii), and (iii) to occur jointly is positive, since each
occurs with some positive probability independently of the others.

Part (i) ensures that f
(βti )
i ≡ f

(β0
i )

i . Thus, based on (ii) and given our
chosen prior, Alice will choose to consume xti = mi at time t.15 By
Lemma 1, Alice will then learn her true preferences for good i, that

is f
(βt+1
i )

i ≡ f̂i. Then, at time t + 1, Alice knows her preferences for
all available goods, so that her optimal consumption bundle is equal to
the solution of her myopic choice problem, which entails xt+1

i 6= mi, by
assumption. Thus in this case, facing the same basket of available goods
in two times, she chooses different bundles.

Secondly, for the alternative case where under β̂i she would choose x′i =
mi, we choose a prior β0

i ∈ Bi such that x′i = y/pi > mi and follow the
same logic as in the first case.

We have proved this for particular priors in each case, but it should be
evident that many other configurations can also lead to choice reversals.

(b) Once preferences become stable—which Proposition 4 guarantees to hap-
pen eventually—Alice will always choose her consumption in order to
maximize her myopic expected utility. Since preferences no longer change,
this choice is time-invariant, conditional on the available set of goods. In
other words, choice reversals no longer occur.

Proof of Proposition 6

Let i ∈ {2, . . . , N} denote a good for which pimi ≤ y and d ui(xi;β̂i)
dxi

∣∣∣∣
xi=0

>

z · pi
p1

. Such a good exists based on the assumptions of the proposition.

(a) Choose a prior β0
i ∈ Bi such that both of the following conditions are

satisfied:

15If convexity is only weak, then Alice will consume some amount xt
i ≥ mi, since my-

opically she will be indifferent between different combinations of i and the numeraire but
consuming at least mi gives a dynamic benefit from learning. Since i will still be learned,
the same conclusions will hold.
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(i)
dEui(xi;β

0
i )

dxi

∣∣∣∣
xi=0

< z · pi
p1

, and

(ii) max
G∈G , β∈B′

i

δ · φ1
i (f

(β))− U(f (β), G) + Ui(f
(β), G) < 0, with G and B′i

defined in Proposition 2.

Note that
dEui(xi; β

0
i )

dxi

∣∣∣∣
xi=0

≥ dEui(xi; β
0
i )

dxi

∣∣∣∣
xi=mi

,

since ui(.) is concave (by Axiom 4) and since Eui(.) is a linear combina-
tion of concave functions and thus also concave. Therefore, the marginal
expected utility is a (weakly) decreasing function of xi.

Thus, by Proposition 2(b), good i will never be learned. As a result—and
due to condition (i)—Alice will always choose to consume xti = 0 units
of good i.

However, since the true marginal utility of good i exceeds that of the
numeraire good, it would be optimal for Alice to consume a positive
quantity of the good every time the choice set Gi = {1, i} appears. As
a result, whenever Gt = Gi, Alice will make a suboptimal consumption
choice and thus lose a positive amount of welfare. Since the probability
that Gt = Gi is strictly positive (and constant over time), the expected
welfare loss is positive for all t ≥ 0.

(b) Welfare loss results from suboptimal consumption choices due to either
(i) lack of knowledge of true preferences, or (ii) experimental consump-
tion for the purpose of learning the true preferences. Both of these effects
diminish over time, as more parameters are being discovered. Preference
discovery brings the current preferences that Alice uses for her decision
making closer to her true preferences, thus reducing both the likelihood
and severity of the expected welfare loss in any given period. In addition,
over time, experimental consumption becomes less prevalent, because
fewer parameters will be unknown and because the benefits of learning
will be diminished (in expectation, since fewer periods remain), while
the cost of learning is time-invariant (again, in expectation), so that
goods that remain undiscovered become increasingly less likely to ever
be discovered. Therefore, the expected welfare loss ∆ut is a (weakly)
decreasing function of t.
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(c) The example provided in the proof to part (a) of this proposition entails
a case where ∆ut 6→ 0 as t→∞.
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D Appendix: Experiment Screens
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Appendix B: Experiment Screen Shots  
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