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Abstract

Regulations may cause �rms to re-optimize over pollution inputs, leading to un-

intended consequences. By regulating air emissions in particular counties, the Clean

Air Act (CAA) gives �rms incentives to substitute: 1) toward polluting other media,

like land�lls and waterways; and 2) toward pollution from plants in other counties.

Using EPA Toxic Release Inventory data, I examine the e�ect of CAA regulation on

these types of substitution. Regulated plants increase water emissions by 105 percent

(72 log points). Regulation of an average plant increases air emissions at unregulated

plants within the same �rm by 13 percent. This leakage o�sets 57 percent of emissions

reductions by regulated �rms. (JEL Q53, Q52, H23)

1 Introduction

Economic theory predicts �rms will respond to environmental regulation by re-optimizing

over pollution inputs. In the presence of unpriced or mispriced externalities, such responses

can generate outcomes that are ine�cient, unintended by policymakers, or both. The Clean

Air Act (CAA) regulates particular air pollutants in particular counties, which creates incen-

tives for �rms to substitute among di�erent forms of pollution. This paper tests two variants
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of this hypothesis: 1) Do �rms respond to air pollution regulation by polluting other chan-

nels, like land�lls and waterways? (cross-media substitution); and 2) Do multi-plant �rms

substitute toward pollution from less regulated plants? (spatial leakage). The existence and

magnitude of such responses is important for both analysis of existing policies and design of

future policies.

There is anecdotal evidence of such behavior. Duhigg (2009) describes a power plant that

responded to air quality lawsuits by installing smokestack scrubbers, which spray water and

chemicals into the stream of exhaust gases. The plant dumped the resulting liquid waste

from the scrubbers into the Allegheny River. Previous empirical studies, however, have not

found much evidence of cross-media substitution. Sigman (1996) tests for substitution in

chlorinated solvent releases by metals and manufacturing plants. The author �nds no sub-

stitution driven by the CAA, but does �nd substitution driven by hazardous disposal prices.

Greenstone (2003) tests for CAA-induced substitution in releases from the iron and steel in-

dustry and �nds no evidence for it. Gamper-Rabindran (2009) models emissions of volatile

organic compounds (V OC) by chemical manufacturers as a function of CAA regulation,

proxying for output changes with employment changes. She �nds no increased emissions

into other media. Both Greenstone and Gamper-Rabindran model emissions di�erences as

a function of county-level CAA regulation.

My approach builds on this work along several dimensions. First, I account for spatial hetero-

geneity in regulation. If one of a county's air pollution monitors exceeds the CAA standard,

the EPA designates the county as �non-attainment.� The state then issues regulations to

reduce that county's air pollution, including emissions requirements for industrial plants.

My study follows the implications of Au�hammer et al. (2009), which �nds that the e�ect of

CAA non-attainment on the average monitor in a non-attainment county is zero, but that

the e�ect on monitors above the CAA standard is -11 to -14 percent. Similarly, Bento et al.

(2014) �nd that non-attainment a�ects home prices near non-attainment monitors, but not

farther away. These �ndings suggest that regulators respond to non-attainment by focusing

on problematic areas, rather than requiring uniform changes across a county. I demonstrate
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that only plants near non-attainment monitors are treated under the CAA. This pattern is

consistent with a regulator whose objective function involves minimization of enforcement

costs, either pecuniary or political (Amacher and Malik, 1996), rather than socially e�cient

abatement. My analysis of substitution accounts for this and so avoids averaging changes at

treated plants with null responses from untreated plants in non-attainment counties.

Second, by estimating in log levels rather than log di�erences, I account for two important

facts: 1) the CAA allows states and �rms to respond slowly (over three years) to a non-

attainment designation; and 2) many abatement decisions are discrete, producing a one-time

change in the level of emissions. On average, air emissions fall in the �rst few regulated years

and then stabilize. Speci�cations using log di�erences as the dependent variable average

the negative growth rate e�ects in the �rst few years with the zero growth rate e�ects in

the more numerous later years. As a result they are biased downward in magnitude. By

pooling log levels across all regulated years, my estimating equations produce consistent

estimates of the di�erence between pre- and post-treatment emissions. Third, motivated by

a simple theoretical model, I show that one can use emissions ratios to recover the signs of

net substitution elasticities among pollution inputs. Ratio estimation avoids confounding

substitution and output e�ects.

Using EPA Toxic Release Inventory (TRI) data, this study tests the substitution hypothe-

ses outlined above by comparing regulated (�treated�) plants in particulate non-attainment

counties to unregulated plants. My identi�cation relies on the exogeneity of non-attainment

status and monitor locations with respect to time-varying plant characteristics. The exo-

geneity of non-attainment status derives largely from the small share of point sources in

particulate emissions (25 percent; Au�hammer et al., 2011). The exogeneity of monitor

placement derives from EPA placement rules, which are based on population characteristics

(e.g. average age) rather than industrial characteristics, and the prohibitively high cost of

relocating a plant in response to monitor placement (Ra�use et al., 2007).

Both cross-media substitution and spatial leakage occur and responses can be large. Regu-
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lated plants increase their water emissions by 105 percent (72 log points). Regulation of an

average plant increases air emissions at unregulated plants owned by the same �rm by 13

percent, o�setting 57 percent of a �rm's emissions reductions. The latter result recommends

caution in studying CAA impacts with di�erence-in-di�erences designs.

These �ndings are important not only for air pollution regulation, but for pollution control

policy generally. If �rms substitute among various forms of pollution, an optimal policy must

consider not just a plant's emissions into a particular medium, but rather a �rm's emissions

across all media, in all locations. Optimal policy would set a �rm's emissions price for each

medium and location equal to the marginal damage from emissions, leaving no medium or

location unpriced (Muller and Mendelsohn, 2009). While such an optimal policy might not

be feasible or consonant with policymaker goals, patterns of substitution among pollutants

are nonetheless a vital input into policy design.

This analysis contributes to the literature on regulation in the presence of mispriced inputs

(e.g. Campbell, 1991). To the best of my knowledge, it is the �rst work to document

regulation-induced cross-media pollution substitution. My �ndings are consistent with the

theoretical work of Fullerton and Karney (2014) on pollution substitution. More generally,

they complement the important work by Walker (2011, 2013) on labor input changes from

CAA regulation. This study also contributes to the literature on pollution leakage. To

date this literature has focused on international leakage (Levinson and Taylor, 2008; Davis

and Kahn, 2010; Hanna, 2010) and simulated carbon leakage (Fowlie, 2009; Bushnell and

Mansur, 2011). Both Henderson (1996) and Becker and Henderson (2000) �nd the CAA

makes �rms more likely to enter attainment counties, which might be considered a form of

leakage. Fowlie (2010) demonstrates reallocation of NOx emissions across plants in response

to the NOx Budget Program, but in that case such reallocation was among the aims of the

policy. To the best of my knowledge, this is the �rst study to �nd evidence of unintended

emissions leakage across existing domestic plants, and the �rst to show spatial heterogeneity

in CAA-driven air pollution reductions at the plant level.
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The rest of the paper is organized as follows. Section 2 provides background on regulations

and abatement strategies. Section 3 discusses a simple theoretical model that informs my

estimation. Section 4 describes the data, while Section 5 de�nes treatment and discusses

identifying assumptions. Section 6 presents estimating equations and results and Section 7

explores their robustness. Section 8 concludes.

2 Background

2.1 The Clean Air Act and State Implementation Plans

Under the Clean Air Act, the EPA sets air quality standards for six criteria pollutants: carbon

monoxide (CO), nitrogen dioxide (NO2), particulate matter (PM), lead (Pb), sulfur dioxide

(SO2), and volatile organic compounds (V OC). For detailed information on particulate

standards, which are the focus of this paper, see Appendix Table A3. A county violates

the standard for a particular pollutant if at least one monitor exceeds the CAA standard

in a given year.1 In what follows, I refer to a monitor that exceeds the annual standard

as a non-attainment monitor. A monitor violation triggers the following sequence of events

(author's interview notes; Environmental Protection Agency, Undated):

1. Together EPA and the state go through a process to designate a county as non-

attainment. This may take up to two years.

2. Non-attainment designation begins a process by which states submit a State Imple-

mentation Plan (SIP) to EPA. This may take 18 to 36 months.

3. SIPs are not federally enforceable until EPA approves them, but state authorities may

enforce them prior to such approval. As a result actual regulation sometimes begins

concurrent with a non-attainment designation, but often begins after a delay of a year

or more.

1While EPA sometimes regulates smaller areas within counties, this far less common than county-level
regulation (author's interview notes from conversations with EPA o�cials).
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As a result of such lags, states have often drafted or even submitted SIPs before one of

their constituent counties o�cially receives a non-attainment designation (see for example

Missoula County Environmental Health Division, 1999).

SIPs detail steps that will bring the county into attainment. They may address both point

and non-point sources of air pollution. Under a SIP, a state issues air emissions permits

to plants. These typically include �lowest achievable emissions rates� (LAER) equipment

requirements and plant-speci�c emissions limits (Becker and Henderson, 2000, 2001; Walker,

2013). SIPs may prescribe a speci�c control technology for a plant, but they often allow a

plant to choose an abatement strategy (discussed in Section 2.3). In either case, a plant's

permit under the SIP is the outcome of a negotiation between the state and the plant. That

negotiation covers many potential abatement strategies and does consider private cost to the

�rm. In advocating a particular abatement technology, a state may think about its ability

to monitor and enforce the permit as much as abatement e�ectiveness. The state typically

does not want, for example, to permit a strategy that would allow a plant to repeatedly

claim special circumstances and not abate. EPA or the state may provide guidance to the

plant on probable costs of di�erent technologies.2

State and EPA enforcement mechanisms include �nes, inspections, and withholding of federal

highway funds (Becker and Henderson, 2000; Chay and Greenstone, 2005). Once a state

brings a non-attainment county back into compliance with CAA standards, it applies to

EPA to have the county re-designated as an attainment county. That re-designation request

must include a revised SIP, with a maintenance plan covering at least the next ten years

(United States Code, 1990). In e�ect, such maintenance plans mean that most provisions of

SIPs are made permanent.

Under the CAA, EPA periodically revises standards to re�ect new research on the health

e�ects of air pollution. For example, the agency �nalized new PM10 standards3 in 1987,

2This paragraph relies on the author's notes from telephone conversations and email exchanges with EPA
o�cials, who generously commented on this paper.

3PM10 is particulate matter 10 microns or less in diameter.
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but did not designate a county in non-attainment of the new standard until 1990. Revisions

of CAA standards typically cause large numbers of counties to fall into non-attainment

simultaneously. In my county-level data (described in Section 4), PM non-attainment lasts

for an average of approximately 4 years. Conditional on PM non-attainment in at least

one year, I observe on average .78 entries into non-attainment (some counties are already in

non-attainment in the �rst year of my data) and .69 exits. Of the 299 counties observed in

non-attainment, 126 remain in non-attainment through 2014, the last year of my data. For

three counties I observe two entries into non-attainment.

2.2 Regulation of water and land emissions

CAA-induced substitution will reduce welfare, relative to an e�cient policy, only if substitute

emissions are unpriced or under-priced. Such is plausibly the case for many TRI pollutants

and many emissions channels. The Safe Drinking Water Act (SDWA) and the Pollutant

Priority List (PPL) for the Clean Water Act do not cover many TRI chemicals (Gamper-

Rabindran, 2009). For example, my TRI data contain 689 chemicals. The PPL lists 126

chemicals (Environmental Protection Agency, 2013). In addition, two recent Supreme Court

decisions have limited the scope of the CWA. Solid Waste Authority of Northern Cook County

v. U.S. Army Corps of Engineers removed CWA protection from �isolated� water bodies,

including many wetland areas. Rapanos v. United States removed CWA protection from

waterways that are not navigable year-round and have no �signi�cant nexus� with navigable

waters (Environmental Protection Agency, 2008).4 EPA has limited this potential problem

in the electric power sector, promulgating a 2015 rule on water discharges (Environmental

Protection Agency, 2015b). The rule speci�cally targets secondary waste streams from air

pollution abatement technologies.

The Resource Conservation and Recovery Act (RCRA) governs many forms of toxic disposal

on land. Coal combustion residuals were exempt from many provisions of the RCRA during

the period I study. In 2015, however, EPA issued a rule under the RCRA imposing technical

4Waters excluded from the federal CWA may still be regulated at the state level.
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requirements on coal ash land�lls and surface impoundment ponds (Environmental Protec-

tion Agency, 2015a). Some mining and petrochemical wastes remain exempt (Environmental

Protection Agency, 1999). Regulation of TRI-listed air pollutants that do not fall into one

of the six CAA criteria categories varies by industry. Under the 1990 CAA Amendments,

EPA develops industry-speci�c regulations governing the air release of 187 toxic chemicals

(�air toxics�). EPA �...does not prescribe a speci�c control technology, but sets a performance

level based on a technology or other practices already used by the better-controlled and lower

emitting sources in an industry� (Environmental Protection Agency, Undated). While the

incomplete regulations governing water and land emissions suggest cross-media substitution

may reduce welfare relative to the �rst-best case, a full welfare analysis is beyond the scope

of this paper.

2.3 Abatement strategies and variable costs

If abatement entailed no variable costs, plants would have no incentive to substitute in re-

sponse. While abatement technologies usually have �xed costs, they also have large operating

costs. Pollution control devices typically require substantial energy and may yield secondary

wastes that require costly disposal. Processes that employ catalysts require periodic replace-

ment of the catalyst. These variable costs range from 33 to 100 percent of capital cost for

most abatement technologies (Environmental Protection Agency, Undated; Vatavuk et al.,

2000; Farnsworth, 2011). For other abatement options like fuel switching and coal washing,

the new fuel must be weakly more expensive than the old, or the plant would have been

using it before. A similar logic applies to technological process changes.5 Such costs mean

that CAA non-attainment changes the relative price of air emissions for regulated plants.

I catalog the most common particulate air emissions abatement strategies in Table 1. Many

abatement strategies produce secondary waste streams. For example, incineration decreases

toxic air emissions but increases carbon emissions. Wet scrubbers �...can lead to water and

5Note that the set of available technologies may partially re�ect the US policy environment, as the Clean
Air and Clean Water acts have been in place, in approximately their current form, since the early 1970s.
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solid waste pollution problems� (EC/R Incorporated, 1998). Theory predicts that �rms will

not consider the external costs of such secondary waste and so their abatement strategies

may not be socially e�cient. Even when a SIP prescribes a particular strategy, this may not

correspond to the social optimum. A state regulator's objective function may di�er from a

hypothetical social planner's objective function, for example. Incomplete information could

also lead to ine�cient SIPs. In discussing potential environmental harm from cross-media

substitution, EPA claims, �Such well-established adverse e�ects and their costs are normal

and assumed to be reasonable and should not, in most cases, justify nonuse of the control

technology� (Domike and Zacaroli, 2011, author's emphasis). If states do not have forecasts

of welfare losses from secondary waste disposal, then SIPs may generate levels of pollution

into land�lls and waterways that exceed social optima.

3 Theory

The following simple model informs interpretation of my empirical results for cross-media

substitution. Suppose a price-taking �rm produces a single good using two pollution inputs A

and W and a composite third input L comprised of labor, capital, land, etc. For discussion,

let A be air emissions and W be water emissions. The CAA may be viewed as shift in

relative input prices pA
pW

, with the increased price of air emissions having two components:

1) pecuniary cost, like the variable abatement cost described in Section 2.3; and 2) non-

pecuniary cost, for example the cost of incurring the displeasure of a regulator.6

Assume that the �rm's cost function is multiplicatively separable into a function of quantity

and a function of input prices.

C (Q, pA, pW , pL) = f (Q) g (pA, pW , pL)

The assumption of multiplicative separability is weaker than an assumption of constant re-

6For a model that treats CAA non-attainment as a limit on the quantity of air emissions, please see
Appendix Section A.1.1. The qualitative predications from that model are the same as those presented here.
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turns to scale (CRS; above this would imply f (Q) = Q). Like all cost functions, C (·) is

homogeneous of degree one in input prices. Using the Envelope Theorem, one can di�eren-

tiate the cost function to obtain conditional input demands.

W ∗ =
∂C

∂pW
= f (Q)

∂g

∂pW

A∗ =
∂C

∂pA
= f (Q)

∂g

∂pA

These input demands are homogeneous of degree zero in input prices, so they can be written

as functions of price ratios. Dividing yields an optimal input ratio that is independent of

output Q.

W ∗

A∗ =

∂g
∂pW
∂g
∂pA

≡ h

(
pA
pW

,
pA
pL
,
pL
pW

)
(1)

Under these conditions, therefore, one can learn about net substitution by estimating the

relationship between the optimal input ratio and prices or proxies for prices. One does not

have to control for quantity, as is common practice in estimation of translog cost functions

(see for example Westbrook and Buckley (1990)).

The assumption of multiplicative separability in the cost function builds on previous pollu-

tion substitution work, which has typically employed a CRS assumption (see for example

Fullerton and Karney (2014)). CRS implies multiplicative separability. Forms like CES and

Cobb-Douglas, which are commonly used for aggregate production functions, satisfy this

property irrespective of returns to scale.

For expositional convenience, I will temporarily assume production is CES. Then W ∗

A∗ =

h
(
pA
pW
, pA
pL
, pL
pW

)
=
(
cW
cA

pA
pW

)σ
(the derivation is in Section A.1.2), where cA and cW are tech-

nological constants. Taking logs yields the following expression.

ln

(
W ∗

A∗

)
= σ ln

(
cW
cA

)
+ σ ln

(
pA
pW

)
(2)

In this case a single global parameter σ represents the Morishima elasticity of substitution
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with respect to price pA (Blackorby and Russell, 1989):

σ =MAW (Y, pA, pW ) = εWA − εAA

where εWA and εAA are cross- and own-price elasticities of factor demand. While this is

the natural generalization of the Hicks elasticity, its asymmetry makes it di�erent in one

important respect: the elasticity MAW is informative for changes in pA but not for changes

in pW . The sign of MAW is ambiguous because the sign of εWA is unknown when there are

three or more inputs. If MAW is positive, the inputs are net substitutes. If it is negative,

they are net complements. Given a proxy for pA
pW

, one can recover the sign of the Morishima

elasticity. One need not assume CES, however. Under the assumption of multiplicative

separability in the cost function, one can recover the sign this elasticity without observing

output, but it may be local, rather than global as in the CES case.

Note that controlling for additional inputs (beyond A and W ) would force the tradeo� back

into the A−W plane. As Blackorby and Russell (1989) argue, this measure of curvature is

interesting but substantially less informative than the Morishima elasticity. My ratio-based

regression models assume not that the change in pA has no e�ect on other inputs, but rather

that only pA changes and other prices remain constant. If the plants under study are price

takers in factor markets and CAA non-attainment does not produce general-equilibrium

e�ects on other factor prices, then this assumption likely holds.

The ability to estimate Morishima elasticities without observing output is useful in the

context of the CAA. Suppose a plant is located in a county that falls into non-attainment.

The plant has two emissions reduction options: 1) substitute toward another form of pollution

W ∗ (e.g. by switching fuels or using existing pollution-control capital more intensively); 2)

produce less output. If the plant does both, the level of W ∗ may fall even though the ratio

W ∗

A∗ has increased. Gross and net (Morishima) elasticities have di�erent signs. Modeling

ratios allows me to infer when pollution inputs are net substitutes in production, even if

they are gross complements.
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One might worry that this framework will capture a �mechanical� substitution e�ect. After

all, if the CAA causes plants in non-attainment counties to reduce their air emissions and

leave water emissions unchanged, the ratio W ∗

A∗ will increase. But this actually reveals the

inputs are net substitutes. Figure 1 illustrates this for the two-input case. In the left-hand

panel, the price of air emissions rises from pA0 to pA1. Holding total cost TC and water

emissions �xed, the �rm's new input bundle is (W1, A1) at lower output Y1. Water emis-

sions are unchanged (by construction), but air emissions are lower. This change, however,

incorporates both output and substitution e�ects. The right-hand panel removes the output

e�ect by drawing a cost line (in green) at the new prices and the original output level Y0.

The input bundle is now (W2, A2), where W2 > W0. Had the �rm held output �xed, water

emissions would have increased.

The preceding discussion assumes a static production technology, with input substitution

driven by exogenous price changes. This assumption could be incorrect if �rms respond to

regulation with both installation of new pollution-control capital and input substitution. If

one thinks of the new pollution-control equipment as an increase in capital, the ratio approach

still recovers the Morishima elasticity, which allows for responses in inputs other than the

pair being considered. If instead one thinks of the new pollution-control equipment as a

change in parameters or functional form, a ratio approach is potentially problematic. Only

under a relatively strong CES functional form assumption can the ratio approach handle

this case. Technological change can be modeled with changes in the constants cW and cA.

Factoring equation 2 yields the following.

ln

(
W ∗

A∗

)
= σ

[
ln

(
cW
cA

)
+ ln

(
pA
pW

)]
(3)

Given a proxy for the quantity
[
ln
(
cW
cA

)
+ ln

(
pA
pW

)]
, it is still possible to recover a scalar

function of the Morishima elasticity. CES is the only functional form that factors such that

the optimal input ratio responds identically to changes in the ratio of technological constants

and changes in the ratio of prices.
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None of the above is meant to suggest that the Morishima elasticity is the only object of

interest in this context. Modeling W ∗, rather than W ∗

A∗ , as a function of prices is informative

about gross substitution, which may be the object of greater policy interest. I present both

ratio and non-ratio results in Section 6.2.

4 Data

My plant-level emissions and location data come from the EPA Toxic Release Inventory

(TRI) 1987-2014. As of this writing, the TRI records annual emissions of 689 chemicals by

mass (in pounds or grams). TRI data encompass a broad set of industries, from electric

power to soybeans. The top ten industries by total TRI-reportable emissions are listed in

Table 2. The database also includes the Dun & Bradstreet DUNS number for the parent

company of each plant.

These data have several shortcomings, discussed in Hamilton (2005). Only large facilities are

required to participate.7 Firms typically report estimates derived from engineering models,

rather than direct measurements. There is no straightforward measure of output.8 Gamper-

Rabindran (2006) �nds that the location variables are sometimes inaccurate. Under TRI

there are penalties for false reporting, but not high emissions, which should ameliorate �rm

incentives to under-report emissions. The EPA has �ned �rms up to $27,000 per day for

reporting problems in the past (Gamper-Rabindran, 2009). In the early years of TRI data

collection, reporting requirements changed dramatically. For example, reported pollution

increased sixfold between 1990 and 1991 due to reporting changes required by the Pollution

Prevention Act (Environmental Protection Agency, 2012). To avoid confounding such re-

porting changes with genuine emissions changes, I exclude the period 1987-1991 from my

7Reporting thresholds have varied over time and by chemical. Typically a plant must report if it meets all
of the following 3 criteria: 1) manufactures 25,000 lb/year, processes 25,000 lb/year, or uses 10,000 lb/year
of a TRI-listed chemical; 2) employs 10 or more FTE workers; 3) in a covered SIC code.

8The TRI does include a �production or activity ratio.� In some cases this is equal to the ratio of output
in year t to the ratio of output in year t-1. In others it is equal to the ratio of activity rates, e.g. the number
of cleanings in year t divided by the number of cleanings in year t-1. Firms choose which of these ratios they
report.
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analysis.

A subset of TRI chemicals are classi�ed as particulates (PM).9 The TRI data capture

emissions in great detail, distinguishing for example between di�erent types of underground

wells. To simplify presentation and analysis I aggregate up to the categories described in

Table 3 by adding the mass of each chemical emitted (in pounds).

Data on county attainment status come from the EPA Green Book 1992-2014. Monitor-level

data on pollutant concentrations come from the EPA Air Quality System (AQS) 1990-2014.

For descriptive statistics see Appendix Table A1.

5 Treatment

5.1 De�ning treatment

Past research on cross-media substitution has typically de�ned treatment as presence in

a non-attainment county, but this conceals important spatial heterogeneity. Au�hammer

et al. (2009) �nd the e�ect of county non-attainment status on an average monitor is zero,

but the e�ect on a non-attainment monitor is negative 11 to 14 percent. This suggests

that regulators treat plants near non-attainment monitors intensively, while treating plants

farther away lightly or not at all. I present evidence in support of this hypothesis. First I

estimate a simple regression of a plant's air emissions on plant �xed e�ects and year dummies:

ln (Ait) = αi + δt + εit (4)

9Professor Michael Greenstone generously shared his mapping from TRI chemicals to CAA criteria pol-
lutants. Details are available in Greenstone (2003). These data also include mappings to lead and V OC,
which I do not employ. I do not analyze lead emissions because of the small number of treated plants. The
V OC mapping is problematic because V OC are not directly regulated under the CAA. They are one of two
primary precursors (the other is NOx) of ozone, which is a CAA criteria pollutant. While one would expect
ozone non-attainment to a�ect V OC emissions, the link is much less clear than for particulates, as not all
V OC contribute substantially to ozone formation. EPA regulates PM10 (particles <10 microns in diameter)
and PM2.5 (<2.5 microns in diameter) separately, but the Greenstone data do not allow me to separately
identify these categories. TRI does not include emissions of CO, NO2, or SO2.
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In this equation A denotes air emissions, while i indexes plant and t year. Figure 2 is a

local linear regression �t to plant residuals from counties that were in non-attainment in the

previous year against the distance to the nearest non-attainment monitor in the previous

year. Residuals are large and negative (roughly -50 log points) near the non-attainment

monitor, indicating air emissions abatement. As distance to the monitor increases, the

residuals rapidly rise to zero near one kilometer and remain there. This �gure provides

evidence that regulators indeed treat plants near non-attainment monitors intensively, while

treating more distant plants lightly or not at all. The pattern is consistent with the hedonic

results from Bento et al. (2014). This spatial heterogeneity does not imply that studies

�nding e�ects of county non-attainment on home prices (Chay and Greenstone, 2005) or

health (Chay and Greenstone, 2003a) are biased. Rather, they report unbiased county-

average e�ects that may conceal substantial within-county heterogeneity.

Based on this pattern, I de�ne a variable treatedit = Nonattainit−1 ∗ 1
{
Distanceit−1 6 D

}
.

That is, I consider a plant treated in year t if in the prior year its county was in non-attainment

and the plant was located �close� to a non-attainment monitor. A non-attainment monitor

is one that violated the CAA standard in year t− 1 or previously. Based on Figure 2, I use

a threshold distance D of 1.07 kilometers, the distance at which I can no longer reject a null

hypothesis of a zero treatment e�ect on air emissions (at the 5 percent level). In Section 7.5

I discuss the sensitivity of my empirical results to this threshold distance.10

I use lagged rather than contemporaneous non-attainment status because: 1) state regula-

tions may not take e�ect in the �rst non-attainment year (see Section 2); and 2) some �rm

responses plausibly require substantial time to implement (e.g., existing contracts might limit

fuel switching). This treatment variable forms the basis for all subsequent results. De�ning

treatment in this way invokes an additional identifying assumption, exogeneity of monitor

placement with respect to plant-level scope for abatement and substitution, which I discuss

10While this pattern holds on average, it need not hold for all industries and pollutants. Stack height
provides one source of heterogeneity. If a plant has tall stacks, it exerts more in�uence on distant monitors
than on those nearby (author's interview notes). In such a case, even if regulators focus on particular plants,
they may not be the plants adjacent to non-attainment monitors.
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in Section 5.2. This spatial pattern is consistent with a regulator whose objective function in-

volves minimization of enforcement costs, either pecuniary or political (Amacher and Malik,

1996). The qualitative evidence presented by Becker and Henderson (2000) on regulator-�rm

negotiations is also consistent with such an explanation. Because maintenance plans make

most SIP regulations permanent (see Section 2.1), I assign a plant to the treatment group

in any year after it is �rst treated, even if the county in which it is located is re-designated

as in attainment of CAA standards.

I use a dummy treatment variable for two primary reasons. First, a dummy simpli�es the

relationship between estimates from equation 7 and the underlying net elasticities. Second, a

dummy allows me to construct an easily interpretable, plausibly exogenous measure of �rm-

level regulatory exposure by counting treated plants (see equation 8). One could construct

a more continuous �rm exposure measure. For example, the count of treated plants could

be weighted by inverse distance to the nearest non-attainment monitor, by the square of

that inverse distance, or by pre-treatment air emissions. Such variables require additional

researcher choices, however, and may invoke additional identifying assumptions.

5.2 Treatment exogeneity

I cannot recover the causal e�ects of treatment unless it is exogenous to my plant-level out-

comes of interest. Concretely, I assume exogeneity of: 1) county-level attainment status; and

2) distance to the nearest non-attainment monitor. As for the �rst assumption, past litera-

ture has typically argued that county non-attainment is exogenous.11 Chay and Greenstone

(2003a,b, 2005) document that PM10 non-attainment counties do not di�er systematically

from attainment counties on observable dimensions (including economic shocks), either in

levels or in changes. Appendix Table A1 shows that the emissions pro�les of plants in PM

attainment and non-attainment counties are not statistically di�erent in my data.

Non-attainment is plausibly exogenous if a given �rm produces a small portion of the ambient

11Examples include Henderson (1996); Becker and Henderson (2000); Greenstone (2002); Au�hammer
et al. (2011); Walker (2011).
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air pollution in a county. For the average plant in a non-attainment county, this is a tenable

assumption. Motor vehicles typically account for the majority of PM pollution, especially

in urban areas. The California Air Resources Board estimates that 74 percent of PM10

emissions come from non-point sources, like road dust, and from residential fuel combustion

(Au�hammer et al., 2011).

The spatial heterogeneity documented in Section 5, however, calls into question the exo-

geneity of CAA regulation for treated plants (plants actually a�ected by regulation). CAA

regulations primarily a�ect plants within one kilometer of a non-attainment monitor. It

might be that past emissions by a given plant were pivotal in pushing its county above the

CAA standard. If that were the case, CAA regulation would be endogenous to past emissions

by treated plants. For example, if a plant experienced particularly strong demand for its

output in a given year, it might have emitted more air pollution than usual and pushed the

nearby monitor above the CAA standard. Endogenous past output could bias my estimates

of CAA treatment e�ects on log emissions. For example, if output shocks were negatively

autocorrelated, my estimates might overstate the magnitude of CAA treatment e�ects. If

instead output shocks were positively autocorrelated, it might understate them.

To investigate the possibility of endogenous entry into treatment, I estimate an event-study

speci�cation for air emissions.

ln (Ait) = αi + δt +
∑
j

τj + εipt (5)

The variables τj are indicators for a time index de�ned relative to treatment. I include

dummies for τ = −5, τ = −4, τ = −3, τ = −2, τ = −1, τ = 0, τ = 1, τ = 2, τ = 3,

and τ ≥ 4, so the reference category is the average of years for which τ < −5. A county

receives a non-attainment designation in year τ = −1 and plants within one kilometer of

a non-attainment monitor enter treatment in the following year (τ = 0). Figure 3 presents

coe�cient estimates (the corresponding numbers are in Table 4). If the �gure showed higher

air emissions at τ = −1, that would be evidence of endogenous entry into treatment. The
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�gure shows no such pattern. Air emissions are roughly �at in the pre-treatment period and

decline after treatment begins.

The second identifying assumption is exogeneity of distance to the nearest non-attainment

monitor. Violations of this assumption could spring from two sources: �rm location decisions

and state monitor placement decisions. Given the relatively low cost of new monitors, �rms

are unlikely to pro�t by strategically locating away from existing monitors. The state monitor

location decision warrants more discussion. States design monitoring networks, which must

follow EPA rules and which EPA must approve (CFR, 2015). EPA may also suggest changes

to planned networks. Importantly in this setting, the agency's placement rules largely depend

on population characteristics, not �rm characteristics. For example, EPA requires monitors

in areas of high population density (Bento et al., 2014) and near large sensitive populations

(e.g. asthmatic children Ra�use et al., 2007). Two types of monitoring sites raise potential

endogeneity concerns: �Sites located to determine the impact of signi�cant sources or source

categories on air quality� and �Sites located to determine the highest concentrations expected

to occur in the area covered by the network� (CFR, 2015). Monitors placed under these

two rules could be correlated with unobservable time-varying characteristics of plants, as

discussed below. States are prohibited from putting monitors in locations that do not meet

scienti�c criteria. In most cases it is illegal for a state to move a monitor, and EPA allows

relocation only if the new site is better under its scienti�c criteria. Should a state fail to

follow these rules, EPA may �le suit against it (Chay and Greenstone, 2005).

Note that my identifying assumption is exogeneity of distance to the nearest non-attainment

monitor, not distance to the nearest monitor. The former is a weaker assumption, particu-

larly given the event-study evidence that the plants in my data are not pivotal in putting

their counties into non-attainment. Nonetheless, to investigate potential endogeneity, I �rst

regress log distance to the nearest non-attainment monitor on a set of 317 dummies for six-

digit NAICS codes, omitting the constant term. Figure A2 displays the probability density

function of the coe�cient estimates. While the distribution is roughly normal around a mean

of 2.1, some coe�cients are statistically distinguishable from that mean in both the positive
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and negative directions. Industries in the tails show no clear pattern. They include, for ex-

ample, beet sugar manufacturing, prisons, and national defense. The R2 from the regression

is .78, indicating that industry explains a substantial fraction of the variation in distance to

the nearest non-attainment monitor. This suggests that plant �xed e�ects are necessary to

my identi�cation strategy, but even with plant �xed e�ects the possibility of non-zero covari-

ance between time-varying plant unobservables and monitor distance remains. To evaluate

this threat to identi�cation, I regress the log distance to the nearest non-attainment monitor

on a vector of year dummies and the changes in log emissions into various media for untreated

plant-years (pre-treatment or farther than two kilometers from the nearest non-attainment

monitor). A negative coe�cient is consistent with states strategically placing monitors near

faster-growing emissions sources. Table A5 shows that all eight estimates are zero to two

decimal places and are not statistically signi�cant. Emissions growth rates in untreated

plant-years generally do not systematically predict distance from eventual non-attainment

monitors. Appendix Table A4 presents a version of this speci�cation using emissions levels

instead of growth rates. Estimates are practically large and statistically signi�cant. Like

Figure A2, they imply that plant �xed e�ects are necessary to my identi�cation strategy.

6 Empirical strategy and results

6.1 Air emissions

To estimate reduced-form treatment e�ects on emissions into various media, I use the fol-

lowing speci�cation, with i indexing plant and t year.

ln (Ait) = αi + δt + βtreatedit + εit (6)

The dependent variable is the log of a plant's emissions into a particular medium, e.g.

air or water. The equation includes plant �xed e�ects and year dummies, with the latter

capturing secular forces in�uencing emissions. If CAA regulations are e�ective in reducing
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air emissions, the estimate of β will be negative for air emissions. If �rms employ cross-media

substitution in response, the estimates of β will be positive for other media like water and

land�lls. Because this speci�cation does not control for output or other inputs, it captures

the full e�ect of the policy, including both output and substitution e�ects.

Table 4 presents my estimate of the CAA treatment e�ect on airborne particulate emissions,

where treatment is de�ned as in Section 5. Treated plants decrease their air emissions by 38

percent (49 log points, statistically signi�cant at the one percent level). This is larger than

the 11 to 14 percent e�ect on non-attainment monitors reported by Au�hammer et al. (2011)

because: 1) plant emissions become diluted as they mix with surrounding air; and 2) the

treated plants in my sample are not the only factor in�uencing ambient air pollution. Column

2 adds state linear time trends. This reduces the magnitude of the estimate modestly, to

33 percent (41 log points), but it remains statistically signi�cant at the �ve percent level.

Column 3 adds NAICS-year �xed e�ects, and the estimate is practically unchanged at -48 log

points. If there is substantial general-equilibrium leakage to untreated plants, my estimated

e�ects on air emissions will be biased upward in magnitude. I investigate this possibility in

Section 7.1 and provide evidence this is not a substantial concern. Bento et al. (2014) show

these air quality improvements disproportionately bene�t low-income people, at least in the

short run.

Column 4 presents the results from an event-study speci�cation (equation 5), where again

the dependent variable is log air emissions. The time pattern suggests that most of the

emissions reductions occur when τ is 1 (the second treated year). This helps motivate my

use of �xed-e�ects models in levels. Estimates based on changes in treatment status would

be biased toward zero because one does not see meaningful emissions declines at τ = −1

(the �rst non-attainment year) or τ = 0 (the �rst treated year). At approximately -50

log points, the event-study estimates are close in magnitude to my primary result (-49 log

points). Together these results demonstrate that treated plants do indeed reduce airborne

particulate emissions. Sample size falls in the event study speci�cation because some plants

are already in non-attainment counties in the �rst year of my data. Because treatment is
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permanent and my speci�cations include plant �xed e�ects, such plants do not help identify

the treatment e�ect in columns 1 through 3. Thus the identifying variation is the same in

all four columns, despite the di�erent sample size in column 4.

6.2 Cross-media substitution, all industries

Panel A in Table 5 shows estimated treatment e�ects from equation 6, by medium across

all industries. Treated plants increase water emissions by 105 percent (72 log points). This

is evidence that water and air emissions are gross substitutes in production. E�ects on

other media, including releases to recycling and treatment, are not statistically signi�cant.

(�Onsite other� emissions include waste piles, leaks, and spills.) Panel B adds state linear

time trends and the estimate for water increases slightly, to 77 log points. This increase

in water emissions imposes social costs, which are di�cult to quantify, given the relative

scarcity of well-identi�ed studies on the health and productivity e�ects of water pollution.

Nonetheless one can say something about the likely e�ciency properties of such substitution.

If water emissions are mispriced, such substitution may be ine�cient. The incompleteness

of water and regulations (see Section 2.2), coupled with �rm incentives to minimize private

abatement cost, suggests this may be the case. It is possible that states set socially optimal

relative prices in their SIPS (see Section 2.1). In order to do so, however, states must share

a social planner's objective function and have complete information about the welfare e�ects

of substitution toward water.

To investigate net (Morishima) elasticities of substitution across media, I estimate the fol-

lowing.

ln

(
Wit

Ait

)
= αi + δt + βtreatedit + εit (7)

As before, I include plant �xed e�ects and year dummies. The quantity ln
(
Wit

Ait

)
is the

plant's log emissions ratio, with the numerator emissions into another medium (e.g. water

or land) and the denominator air emissions. The estimating equation closely parallels the
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ratio of conditional factor demands from equation 1 above. The treatment dummy proxies

for the unobservable increase in the price ratio pA
pW

. The coe�cient β = νσ is a scalar function

of the Morishima elasticity of substitution σ, where ν is the percentage increase in relative

prices produced by treatment. If air and water emissions are net substitutes, theory predicts

the CAA will induce cross-media substitution and estimates of β will be positive. If instead

air and water emissions are complements, estimates of β will be negative.

Equation 6 and 7 both involve log dependent variables and thus exclude plants reporting zero

emissions into a given medium. Plants that do not emit into the air are beyond the scope

of this work. There are no plants that do not emit into a given medium before treatment,

then begin to do so after treatment.

Panel A in Table 6 presents e�ects on emissions ratios, based on equation 7 (again by medium

across all industries). The dependent variable is a log emissions ratio, with emissions into a

given medium (indicated in the column heading) in the numerator, and air emissions in the

the denominator. Positive estimates imply positive net elasticities of substitution. There

is evidence of statistically signi�cant substitution toward onsite water emissions
(
β̂ = 1.02

)
and o�site water emissions

(
β̂ = .58

)
. The negative estimates for onsite other and o�site

other emissions demonstrate that the ratio approach does not assume positive net elasticities

of substitution. Panel B in Table 6 adds state linear time trends and estimates are essentially

unchanged from panel A.

As mentioned above, these ratio estimates are scalar multiples of underlying net substitution

elasticities. Assuming treatment increases the price ratio pA
pW

, the estimates and the under-

lying elasticities have the same sign. By itself this fact is informative. Note for example that

Table 5 shows decreased emissions to recyclers (the two inputs are gross complements). One

might erroneously infer that air emissions and emissions to recyclers are net complements.

In the ratio speci�cation (Table 6), however, the estimate is positive (albeit not statisti-

cally signi�cant), suggesting these two forms of emissions may be net substitutes. To obtain

the elasticity from one of these ratio estimates, one must divide by the percentage change
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in relative prices produced by treatment, which is unobserved. Given β̂ = 1.02 for onsite

water emissions, if the increase in relative prices is less than 100 log points, then σ > 1.

That suggests that in the aggregate US production function, there is a good deal of net

substitutability between onsite air pollution and onsite water pollution.

6.3 Cross-media substitution, by industry

It is di�cult to analyze substitution patterns at the industry level due to the small number

of treated plants: recall that not all plants in non-attainment counties are treated. Moreover

not all plants report emissions into all media. Nonetheless, to illustrate the heterogeneity in

substitution responses, Table 7 presents estimates for the three industries with the largest

treated sample sizes: primary metals, wood products, and utilities. (Appendix Table A12

shows e�ects on log emissions ratios by 2-digit NAICS, while Appendix Table A13 shows

e�ects on log emissions by 3-digit NAICS.) Estimates again come from equation 6. In the

discussion that follows, note that I cannot reject the null hypothesis of equal coe�cients

in many cases; the evidence of heterogeneity is merely suggestive. Primary metals show

only a 4 percent decrease in air emissions, while wood products and utilities show large

decreases, 65 and 58 percent respectively (-106 and -86 log points). In water emissions,

primary metals show a 219 percent increase (116 log points).12 The corresponding estimate

for wood products is small, negative, and imprecise. The corresponding estimate for utilities

is large and positive (68 log points), but again imprecise. Wood products and utilities increase

onsite land emissions by 214 and 474 percent respectively (115 and 175 log points), while

primary metals decrease such emissions by 78 percent (152 log points). Utilities substantially

decrease their o�site water emissions (-85 percent or -191 log points).

12For primary metals, and for many other industries examined in this paper, in proportional terms increases
in emissions into other media are much larger than decreases in air emissions. This is because baseline air
emissions are generally much larger than baseline emissions into other media. For example, Appendix Table
A1 shows air emissions are roughly six times greater than water emissions in both attainment and non-
attainment counties.
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6.4 Leakage

To test for within-�rm leakage, I estimate the following speci�cation using all plants in

attainment counties.

ln (Ait) = αi + δt + βother_treatedit + εit (8)

Again I include plant �xed e�ects and year dummies. The variable other_treatedit is a

dummy for one or more treated plants within the same �rm, year, and 2-digit NAICS code.

If the CAA induces spatial leakage, estimates of β will be positive.

Intuition predicts that �rms might respond to treatment of a plant in one county by shifting

emissions to a plant in another county. Table 8 provides evidence they do so. Estimates

correspond to equation 8. For the average plant in an attainment county, treatment of one

or more plants within the same �rm and 2-digit NAICS code increases air emissions by 15.8

percent. Column (2) adds state linear time trends and the estimate is slightly smaller at

15.3 percent. Treating the number of other treated plants as a continuous variable (column

3), estimated leakage is 12.9 percent per treated plant. With the addition of state linear

time trends in column 4, the estimate is again slightly smaller at 12.4 percent, but remains

statistically signi�cant at the �ve percent level. This leakage has associated health, mortality,

and productivity costs. I take the TRI parent company identi�ers as given. If they are de�ned

at a level below the ultimate corporate parent, my estimates will likely understate the true

amount of leakage. Likewise, if there is general-equilibrium leakage to plants owned by other

�rms in attainment counties, my estimates will be biased downward (see Section 7.1). This

model will not capture within-�rm leakage to plants located in non-attainment counties, but

beyond the threshold distance.

The identifying assumptions for this model are modestly stronger than for my model of

cross-media substitution and warrant brief discussion. Limiting the sample to attainment-

county plants changes the interpretation of the estimates, but is not in itself problematic,
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especially if attainment status is exogenous. Interpreting the estimates in Table 8 as causal,

however, also requires that the leakage plants do not di�er from other attainment-county

plants in time-varying, unobservable ways. Appendix Table A2 shows that emissions pro�les

for leakage and non-leakage plants are not signi�cantly di�erent, which is reassuring but

does not exclude the possibility of endogeneity.

The average treated �rm in my data includes 1.4 treated plants and 21 leakage candidates:

they share the same two-digit NAICS code and are located in attainment counties.13 Average

air emissions at eventually treated plants prior to treatment are 8970 pounds, while average

baseline emissions at leakage candidates are 717 pounds. The estimate from column three

of Table 8 implies the following net change in emissions from treating an average �rm.

The �rm's treated plants reduce emissions by 1.4 ∗ .38 ∗ 8970 = 4772 pounds.14 The 21

candidate plants together increase emissions by 21 ∗ .13 ∗ 1.4 ∗ 717 = 2740 pounds. On

net, then, the average �rm treated under the CAA decreases particulate air emissions by

4772−2740 = 2032 pounds. Roughly 57 percent of reductions at treated plants are o�set by

leakage. This result should be interpreted with several important caveats in mind. First, the

TRI data cover only large plants, which may be more likely to belong to multi-plant �rms

and thus may have more scope for within-�rm leakage. Second, these estimates describe

only TRI-reportable particulate emissions. Third, leakage patterns might di�er for other

CAA-regulated pollutants (e.g. SO2). Fourth, industrial sources account for approximately

25 percent of particulate emissions in an average county (Au�hammer et al., 2011), so the

implied changes in ambient pollution are much smaller than the emissions changes I estimate

at the plant level.

Leakage reduces the welfare gains from CAA regulation, relative to a �rst-best policy, because

attainment-county emissions are unpriced (unregulated). This leakage need not imply a

net welfare loss relative to baseline, however. Leakage-driven emissions increases occur in

13This is the average number of leakage candidates over all treated �rms, including single-plant �rms that
have zero leakage candidates by de�nition.

14The 38% reduction is the percentage change corresponding to the estimated treatment e�ect on log air
emissions: e−.485 − 1 = .38.
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attainment counties, which by de�nition have lower ambient air pollution. In addition, the

average attainment county population is approximately 1/3 of the average non-attainment

county population.15 Particularly if the social damage function for air pollution is convex,

the net welfare e�ect from CAA treatment of the plants in my data may be positive.

Leakage does present a potential problem in using di�erence-in-di�erences designs to evaluate

the CAA, as it is a spillover from the treatment group (typically non-attainment counties)

to the control group (attainment counties). The spillovers identi�ed in Table 8 imply that

such analyses overstate CAA bene�ts in non-attainment counties and fail to account for

some of the costs in attainment counties. My estimated e�ects on air emissions (Table 4)

will be biased upward in magnitude and my estimated e�ects on other emissions (Table 5)

will be biased downward in magnitude. Such bias may be small if within-�rm leakage is

a minor determinant of ambient pollutant concentrations in attainment counties. Provided

the optimal input ratio is independent of scale, spatial leakage will not bias my ratio-based

estimates (Table 6).

7 Additional results, robustness & placebos

7.1 Air emissions

It is possible CAA regulation induces general-equilibrium leakage, with output reallocated

from treated plants to attainment-county plants not owned by the same �rm. If this is

the case, my estimated e�ects on log emissions at treated plants will be biased upward in

magnitude. My estimated within-�rm leakage e�ects will be biased downward in magnitude.

It is impossible to test directly for general-equilibrium leakage, since all plants are potentially

a�ected by CAA regulation through general-equilibrium mechanisms. One can however test

indirectly for general-equilibrium leakage by modeling the air emissions at untreated plants16

as a function of the number of treated plants �nearby.� To that end, I estimate the following

15Author's calculation from 2010 Census data.
16i.e. Attainment-county plants and plants farther than 1.07km from a non-attainment monitor in a

non-attainment county
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equation using plants in attainment counties.

ln (Ait) = αi + δt + βtotal_treatedjt + εit (9)

In this speci�cation the variable total_treatedjt is a count of treated plants at either the

state-year level or the state-year-NAICS2 level. If general-equilibrium leakage is occurring,

estimates of β will be positive. Results appear in Appendix Table A6. In both speci�cations,

the estimated coe�cient on the number of treated plants in the same state-year is negative,

insigni�cant, and zero to two decimal places. These estimates suggest general-equilibrium

leakage is not a �rst-order source of bias in my estimates.

It is possible that intra-�rm leakage causes my treatment model to overestimate the air

emissions reductions undertaken by treated plants. To evaluate this possibility, I estimate

a variant of my air emissions model (equation 6), controlling for intra-�rm leakage as in

equation 8. Reported in Appendix Table A7, the estimates are unchanged. This is likely

because identi�cation of the coe�cients on the year dummies comes primarily from plants

that are not leakage recipients.

Both Henderson (1996) and Becker and Henderson (2000) show that CAA non-attainment

in�uences plant entry and exit decisions, and this is a potential source of bias. A Heckman

correction would be inappropriate, as I do not have any variables that would enter the

selection equation but not the outcome equation. Instead I restrict the sample to plants

present throughout the study period and estimate treatment e�ects on air emissions (see

Appendix Table A8). While the smaller sample reduces precision, at −.45 (statistically

signi�cant at 5 percent) and −.34 (not statistically signi�cant), the estimates are close to

the results in Table 4. This suggests selection does not meaningfully bias my main results.

Lastly I estimate speci�cations similar to those employed previously in this literature (Green-

stone, 2003; Gamper-Rabindran, 2009) and present results in Appendix Table A9. Column 1

uses emissions di�erences as the dependent variable and de�nes treatment as I do in my pri-

mary analysis. Column 2 uses emissions levels as the dependent variable and lagged county
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non-attainment as the treatment. Column 3 combines these approaches, modeling emissions

di�erences as a function of lagged county non-attainment. Estimates range from −.013 to

−.078, roughly similar to the Greenstone (2003) and Gamper-Rabindran (2009) results. This

demonstrates the importance of modeling air emissions in levels, rather than growth rates,

and accounting for spatial heterogeneity in treatment intensity.

7.2 Cross-media substitution

Appendix Table A11 estimates a variant of my ratio speci�cation, with log air emissions

employed as a right-hand-side control rather than a denominator in the dependent variable.

Results are similar in sign and signi�cance to those from the ratio speci�cation, but smaller in

magnitude; the estimate for water emissions is ˙.77, rather than 1.02 in the ratio speci�cation.

This speci�cation has the bene�t of allowing log air emissions to enter the cross-media model

more �exibly, but at the cost of including an endogenous variable on the right-hand side of

the equation.

To test whether intra-�rm leakage in�uences my cross-media results, I estimate my leakage

model using an emissions ratio as the dependent variable and report results in Appendix

Table A14. Estimates are generally near zero and statistically insigni�cant, with one impor-

tant exception: the estimate for onsite water is positive 22 percent (statistically signi�cant

at the 10 percent level). This leakage will produce a downward bias in the estimated e�ect

on onsite water emissions from my cross-media model, because it increases water emissions

in the control group. Such bias should be small, however, as leakage candidates constitute a

small fraction of control-group plants.

In addition, Appendix Table A15 shows estimates for toxicity-weighted emissions into non-

air media. Estimates for onsite water releases are larger in magnitude, but much less precise.

There is also statistically signi�cant evidence that �rms are shifting some of their most toxic

releases into waste piles (onsite other) and o�site water. I do not employ toxicity weights in

my preferred speci�cations for the following reasons: 1) toxicity weights for a given chemical

can vary by three orders of magnitude, depending on the method used (Hertwich et al.,
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1998); 2) toxicity weights rely on assumptions that some chemicals are not carcinogenic, but

epidemiological evidence suggests such assumptions may not hold (Hendryx et al., 2012);

3) toxicity weights are not available for all TRI-listed chemicals. Finally, Appendix Table

A16 presents estimated e�ects of county non-attainment. These are small and statistically

indistinguishable from zero, because they average non-zero responses at treated plants with

a larger number of zero responses at untreated plants in non-attainment counties. Estimates

are similar to the Greenstone (2003) and Gamper-Rabindran (2009) results.

7.3 Leakage

As a robustness check on my leakage results I estimate the same model, grouping plants

by �rm and 6-digit NAICS code, and report results in Table A18. Estimates are similar to

those from my preferred speci�cation, but no longer statistically signi�cant, as this grouping

results in far fewer treated plants within a group. In Table A19 I include controls for �rm

size and the results are unchanged.

7.4 Placebos

Treatment should have no direct e�ect on plants that do not emit any air pollution, and

the results from Appendix Table A6 suggest that general-equilibrium treatment e�ects are

negligible. Table 9 tests this hypothesized null e�ect by estimating a variant of equation

6, where treatment is interacted with a dummy indicating zero air emissions. If my model

is well speci�ed, it should �nd no e�ect of CAA regulation on these plants. The estimates

are indeed insigni�cant. Importantly the estimated e�ect on onsite water emissions from

plants without air emissions is near zero. This suggests the estimated increase in onsite

water emissions in Table 5 does not arise from gross misspeci�cation.

Table 10 reports results from a placebo test of my leakage model. I construct variables

based on placebo �treated� plants: plants within the same �rm and 2-digit NAICS code that

are located in non-attainment counties, but farther than eight kilometers from the nearest

non-attainment monitor. As these plants are not treated and general-equilibrium e�ects are
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not apparent, one should not see increased air emissions by attainment-county plants in the

same �rm and NAICS code. If my leakage model is capturing, for example, changes in the

geographic distribution of output that happen to be correlated with treatment, this placebo

test should return large positive estimates. Instead the estimates in Table 10 are in the range

from negative one to positive two percent and are not statistically signi�cant. This suggests

that the leakage results in Table 8 do not spring from an omitted variable problem.

7.5 Distance threshold

Because the treatment variable I employ relies on an estimated threshold distance, it is

important to explore the robustness of my �ndings with respect to changes in that distance.

Appendix Table A10 shows e�ects on air emissions at �ve threshold distances, with two

smaller and two larger than the 1.07 kilometers used in my primary analyses. As expected

given Figure 2, smaller thresholds increase estimate magnitudes. This is consistent with

plants closer to non-attainment monitors being regulated more intensively. Larger thresholds

decrease estimate magnitudes, as the models begin to include potentially untreated plants

in the treatment group. Appendix Table A17 performs a similar exercise for my models of

onsite water emissions. While the estimates are less precise, the same broad pattern holds,

with lower-magnitude treatment e�ects as threshold distance increases. Finally Appendix

Table A20 estimates intra�rm leakage, again varying threshold distance. Again estimate

magnitudes decline with increased threshold distance. In none of these tables is the sign or

rough magnitude of my estimate appreciably altered by the choice of threshold. In Tables

A10 and A20 statistical signi�cance is also una�ected. In Table A17, however, some of the

alternative thresholds do result in the loss of statistical signi�cance.

Appendix Figure A1 demonstrates that the threshold is not sensitive to the range over which

one plots the local polynomial. The left panel extends the range of the horizontal axis to 8.5

kilometers (50th percentile) and the right to 53 kilometers (95th percentile). In both cases

the threshold distance is extremely close to the one used in my primary analysis. There is

no evidence of a treatment e�ect on plants beyond the threshold distance.
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The rule I employ to estimate threshold distance also warrants some discussion. The 1.07

kilometer threshold is the distance at which I can no longer reject a null hypothesis of zero

e�ect on air emissions (at the �ve percent level). There are many other possible decision

rules, e.g. the distance at which the local polynomial �rst achieves a zero value or the

distance at which the local polynomial takes on a zero slope, but my choice is conservative

in the following sense. My rule will tend to estimate a lower threshold distance than many

alternative rules. Figure 2 shows that treatment intensity declines with distance to the

nearest non-attainment monitor. If my rule errs, it does so by assigning treated plants

to the control group. (Recall that plants in non-attainment counties, but beyond the 1.07

kilometer threshold, are part of the control group in my empirical models.) In a di�erence-in-

di�erences design, such mis-assignments will bias the magnitudes of my estimates downward.

That is, this rule makes it less likely my hypothesis tests will produce false positives.

8 Conclusion

While economists have long recognized the potential for substitution responses to location-

speci�c, single-medium pollution regulation, empirical studies have found little evidence of

such e�ects. Using speci�cations motivated by classical �rm optimization theory, this study

provides evidence of regulation-induced pollution substitution in response to the Clean Air

Act. Estimates from EPA Toxic Release Inventory data show that CAA-regulated plants

increase their onsite water emissions by 105 percent. Particulate regulation of an average

plant increases air emissions at unregulated plants owned by the same �rm by 13 percent.

At the �rm level, such leakage o�sets 57 percent of emissions reductions at regulated plants.

This paper examines only two possible types of pollution substitution. In addition, new

source performance standards mean that new plants may use non-air pollution inputs more

intensively, and locate more frequently in attainment counties (the latter is documented

in Henderson (1996) and Becker and Henderson (2000)). Thus industry- or economy-wide

responses may be larger in magnitude than the plant- and �rm-level responses identi�ed in

this study.
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The welfare e�ects of such substitution present an interesting subject for future research.

Air pollution regulations can have large bene�ts (Chay and Greenstone, 2003b; Currie and

Neidell, 2005). In particular, EPA estimated the 1970-1990 bene�ts of the Clean Air Act

(CAA) at $22 trillion (Environmental Protection Agency, 2011). While social costs from

�rm re-optimization are plausibly smaller, they may be large in absolute terms.

A policy with e�ciency among its goals should account for these �rm responses. A maximally

e�cient policy, with emissions into every medium and location priced according to marginal

damage, would be di�cult to achieve and might not be desirable for normative reasons. The

primary goal of the Clean Air Act is not e�ciency, but rather safeguarding human health

(Environmental Protection Agency, 2011). Given any set of policy goals, however, it is

easier to formulate e�ective policy when policymakers have well-identi�ed estimates of �rm

responses. For example, my cross-media results suggest that restricting water emissions or

increasing water quality monitoring in CAA non-attainment counties might be important

for protecting public health. They also suggest EPA's recent rules on coal ash disposal and

water pollution from power plants are likely to constrain �rms. My estimates of within-

�rm leakage imply that applying PM -style regulations to carbon emissions would be largely

ine�ective.

Additionally, I document spatial heterogeneity in regulatory intensity. Most plants in non-

attainment counties show no evidence of being regulated, but plants near non-attainment

monitors show large air emissions decreases. This pattern is consistent with theoretical mod-

els in which regulators seek to minimize costs (political or pecuniary) in implementing the

CAA, but there are other possible explanations. Questions concerning state implementa-

tion of federal environmental regulations warrant additional research, building on work like

Levinson (2003), Helland (1998), and Sigman (2003, 2005). Legislators might also want to

consider the regulator behavior implied by my spatial heterogeneity result when designing

future policy.

Such improvements in policy design would likely have economically signi�cant consequences.
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While environmental economics research initially focused on the mortality e�ects of air pol-

lution, especially for infants and the elderly, there is growing evidence that air pollution has

costly e�ects on healthy adults. Isen et al. (2014), for example, �nd that in-utero and early

childhood air pollution exposure depresses earnings for workers ages 29-31. Zivin and Neidell

(2012) �nd air pollution decreases worker productivity. Given these large costs, the returns

to improved pollution regulation may be large.
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Figures and tables

Figures

Figure 1: Pollution changes, holding output �xed, 2-input case
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Figure 2: Residual onsite air emissions by distance from nearest non-attainment monitor
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Underlying residuals from equation 4, a panel model of log air emissions (lbs) with year dummies

and plant �xed e�ects. The �tted line represents a local linear regression estimated over residuals

for plants in non-attainment counties. Shaded area is the 95% con�dence interval. 3.8km is

25th percentile of distance distribution.
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Figure 3: Event study estimates, onsite air emissions
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Estimates from equation 5, also reported in column 3 of Table 4. Dependent variable is log air emissions (lbs).

Reference category is years for which τ < −5. A county enters non-attainment in year tau=-1 and plants within

~1km of a non-attainment monitor enter treatment in the following year (τ = 0). Dependent variable is log air

emissions. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is a

plant-year.
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Tables

Table 1: Particulate abatement strategies

Name Category Description Variable Costs Secondary wastes

Output reduction - - - -

Reduce exhaust temp./pressure - Lower reaction temperature generates fewer particulates E�ciency loss -

Fuel switching - Switch to washed coal, oil, or natural gas Added fuel cost Coal slurry (o�site)

Process modi�cation - e.g. Changing furnace type or cooling system - -

Flue gas conditioning Pretreatment Chemistry/temp./moisture modi�ed to aid collection Absorbant, electricity Sulfates

Precollection Pretreatment Collectors use gravity/inertia to gather particles Electricity Solid waste

Electrostatic precipitation End-of-pipe Field charges particles, collected by electrode Electricity, water Liquid/solid waste

Fabric �lters End-of-pipe Tightly woven fabric and dust layer trap particles Electricity, �lters Solid waste

Wet scrubbers End-of-pipe Liquid (often sprayed) traps particles Electricity, water Liquid/solid waste

Incineration End-of-pipe Emissions burned at 300-2000oF, sometimes catalyzed Fuel, catalyst CO2, N2, H2O

Ventilation Fugitive control e.g. Vacuum hoods, building enclosure Electricity Solid waste

Road paving Fugitive control - Maintenance -

Water spraying Fugitive control Wet down sources of fugitive emissions, e.g. coal piles Water Coal slurry
Sources: Department of Energy (2014); EC/R Incorporated (1998); Environmental Protection Agency (Undated); Farnsworth (2011); Vatavuk et al. (2000). Variable

costs range from 33 to 100 percent of capital cost for most �end-of-pipe� abatement technologies. Incineration is typically used only for waste streams containing both

PM and VOCs.

42



Table 2: Top ten industries, by TRI-reportable emissions

Rank NAICS code Industry

1 221112 Fossil electric power
2 325188 Inorganic chemicals
3 212231 Pb & Zn mining
4 212234 Cu & Ni mining
5 212221 Au mining
6 331111 Iron & steel
7 325199 Organic chemicals
8 322121 Paper
9 562211 Hazardous waste
10 324110 Petroleum Re�ning

Table 3: Aggregated TRI emissions categories

Aggregated category Included TRI components

Onsite air Fugitive air, stack air
Onsite water Onsite water
Onsite land Land�lls, impoundment ponds, underground wells
Onsite other Waste piles, leaks, spills
O�site water Public/private water treatment
O�site land Land�lls, impoundment ponds, underground wells
O�site other Residual emissions, waste brokers, incinerators and storage facilities

Recycled or treated Recycled, recovered, treated

43



Table 4: E�ect on log air emissions

(1) (2) (3) (4)
Onsite air Onsite air Onsite air Onsite air

Treated -0.485∗∗∗ -0.407∗∗ -0.476∗∗∗

(0.177) (0.174) (0.175)
Tau=-5 -0.266

(0.260)
Tau=-4 -0.298

(0.285)
Tau=-3 -0.339

(0.290)
Tau=-2 -0.401

(0.259)
Tau=-1 -0.154

(0.147)
Tau=0 (1st treated year) -0.204

(0.195)
Tau=1 -0.498∗∗

(0.210)
Tau=2 -0.375∗

(0.194)
Tau=3 -0.503∗∗

(0.203)
Tau>=4 -0.756∗∗∗

(0.291)
State linear trends No Yes No No
NAICS*Year FE No No Yes No
Year dummies Yes Yes No Yes
Plant FEs Yes Yes Yes Yes
Observations 152951 152951 152951 129283

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates in columns 1-3 correspond to equation 6, while estimates in column 4 correspond to

equation 5. Dependent variable is log air emissions (lbs). SEs clustered at the county level,

which is the level of exogenous variation. Unit of observation is a plant-year. Sample size falls

in the event study speci�cation because some plants are already in non-attainment counties in

the �rst year of my data. Because treatment is permanent and my speci�cations include plant

�xed e�ects, such plants do not help identify the treatment e�ect in columns 1 through 3. Thus

the identifying variation is the same in all four columns, despite the di�erent sample size in

column 4.
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Table 5: E�ect on log emissions, other media

Panel A: Main speci�cation
(1) (2) (3) (4) (5) (6) (7)

Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated
Treated 0.719∗∗ 0.192 -0.00728 -0.0677 -0.0949 -0.770 -0.153

(0.337) (0.610) (0.682) (0.248) (0.272) (0.528) (0.229)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes
Observations 39592 18989 9755 51294 71048 43220 91806

Panel B: State linear trends
(1) (2) (3) (4) (5) (6) (7)

Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated
Treated 0.774∗∗∗ -0.00749 -0.149 0.0269 -0.0431 -0.773 -0.0630

(0.297) (0.564) (0.592) (0.245) (0.273) (0.527) (0.243)

State linear trends Yes Yes Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes
Observations 39592 18989 9755 51294 71048 43220 91806
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 6. Dependent variable is log emissions (lbs), with the medium indicated atop the column. All speci�cations include year dummies

and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is a plant-year. Observation counts di�er

across columns because not all plants report emissions into all media. �Onsite other� emissions include waste piles, leaks, and spills.
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Table 6: E�ect on log emissions ratios, other media

Panel A: Main speci�cation
(1) (2) (3) (4) (5) (6) (7)

Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated
Treated 1.022∗∗∗ 0.492 -0.373 0.578∗ 0.262 -0.944 0.119

(0.374) (0.647) (0.608) (0.317) (0.284) (0.593) (0.420)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes
Observations 36264 17940 8647 41876 60947 35720 75108

Panel B: State linear trends
(1) (2) (3) (4) (5) (6) (7)

Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated
Treated 1.020∗∗∗ 0.295 -0.405 0.616∗ 0.214 -1.073∗ 0.109

(0.355) (0.550) (0.559) (0.315) (0.269) (0.592) (0.450)

State linear trends Yes Yes Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes
Observations 36264 17940 8647 41876 60947 35720 75108
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 7. Dependent variable is log emissions ratio (lbs), with the numerator indicated atop the column and the denominator air emissions

in all columns. Speci�cation includes year dummies and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of

observation is a plant-year. Observation counts di�er across columns because not all plants report emissions into all media. �Onsite other� emissions include waste

piles, leaks, and spills.
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Table 7: E�ect on log emissions, by 2-digit NAICS code

(1) (2) (3) (4) (5) (6) (7) (8)
Onsite air Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

Primary metals -0.0437 1.160∗∗∗ -1.516∗∗ 1.364∗∗∗ 0.459 -0.347 -0.603 -0.0658
(0.203) (0.406) (0.602) (0.140) (0.303) (0.381) (0.625) (0.255)

Observations 79884 18289 3431 2701 38279 40686 25871 69938

Wood products -1.056∗∗∗ -0.178 1.145∗ -0.350 -0.709∗∗ 0.0455 -1.037 -0.438
(0.322) (0.556) (0.628) (0.400) (0.326) (0.409) (0.932) (0.468)

Observations 53166 13770 8132 2664 10116 22419 12180 16359

Utilities -0.858 0.678 1.747∗∗∗ -2.553∗∗ -1.911∗∗∗ 0.751 -0.284 -0.138
(0.799) (0.567) (0.498) (1.173) (0.377) (1.052) (0.541) (1.580)

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes Yes Yes Yes
Observations 8266 4940 5094 1295 538 3742 2255 1877
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Includes the three 2-digit NAICS industries with the largest treated sample sizes. All columns based on equation 6. Dependent variable is log emissions (lbs). All

speci�cations include year dummies and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is a

plant-year. Observation counts di�er across columns because not all plants report emissions into all media. �Onsite other� emissions include waste piles, leaks, and

spills.
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Table 8: Leakage e�ect, within �rm & 2-digit NAICS code

(1) (2) (3) (4)
Onsite air Onsite air Onsite air Onsite air

1+ other treated plants 0.158∗∗ 0.153∗∗

(0.0672) (0.0667)

Count other treated 0.129∗∗ 0.124∗∗

(0.0511) (0.0511)

State linear trends No Yes No Yes

Year dummies Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes
Observations 128465 128465 128465 128465

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 8, where �other treated plant� is a treated plant within the same �rm

and 2-digit NAICS code. Dependent variable is log air emissions (lbs). Speci�cation includes year dummies

and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of

observation is a plant-year. Sample restricted to plants in attainment counties. Parent �rm identi�ers come

from TRI data.
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Table 9: Placebo e�ect on log emissions

(1) (2) (3) (4) (5) (6) (7)
Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

Treated*no air emissions 0.0758 0.142 0.546 -0.415 -0.944 -1.175 -0.381
(0.210) (0.428) (0.667) (0.426) (0.646) (0.828) (0.304)

Treated*air emissions 0.790∗∗ 0.202 -0.361 0.0909 0.0667 -0.615 -0.0990
(0.349) (0.639) (0.632) (0.214) (0.233) (0.496) (0.233)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes
Observations 41520 20100 10773 61449 82066 51509 117844

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 6, but estimates for �Treated*no air emissions� report the e�ect of placebo treatment (being near a non-attainment monitor) on

plants with no air emissions, which should not be a�ected by the CAA. Estimates for �Treated*air emissions� are for actually treated plants; they are not placebos.

The medium is indicated atop the column. All speci�cations include year dummies and plant �xed e�ects. SEs clustered at the county level, which is the level of

exogenous variation. Unit of observation is a plant-year. Observation counts di�er across columns because not all plants report emissions into all media.
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Table 10: Placebo leakage e�ect, within �rm & 2-digit NAICS code

(1) (2) (3) (4)
Onsite air Onsite air Onsite air Onsite air

1+ other placebo plants 0.0127 0.0180
(0.0330) (0.0329)

Count placebo plants -0.0141 -0.0119
(0.00939) (0.00924)

State linear trends No Yes No Yes

Year dummies Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes
Observations 128465 128465 128465 128465

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 8, but using variables based on placebo treated plants: plants within

the same �rm and 2-digit NAICS code, located in non-attainment counties, but farther than 8km from the

nearest non-attainment monitor. Dependent variable is log air emissions (lbs). Speci�cation includes year

dummies and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous variation.

Unit of observation is a plant-year. Sample restricted to plants in attainment counties. Parent �rm identi�ers

come from TRI data.
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Appendix A

A.1 Alternative theoretical models

A.1.1 Modeling the CAA as a quantity restriction

Suppose two pollution inputs: A ~ air emissions, W ~ water emissions. Treat the CAA

as an exogenous quantity restriction A on air emissions. The object of policy interest is

unconditional factor demandW ∗, incorporating �rms' possible output response to regulation.

Suppose a CES production function, so the �rm problem becomes:

max
A,W

po (cAA
ρ + cWW

ρ)
1/ρ − pAA− pWW + λ

[
A− A

]
Taking FOCs, one obtains an optimality condition:

(
cW
cA

)(
W ∗ρ−1

A∗ρ−1

)
=

pW
pA + λ

If the constraint does not bind prior to CAA non-attainment, the shadow price λ is zero.

Taking logs gives ratio of unconditional factor demands:

ln

(
W ∗

A∗

)
=

1

1− ρ
ln

(
cW
cA

)
+

1

1− ρ
ln

(
pA + 0

pW

)
(10)

Treat CAA non-attainment as a decrease in A such that it binds. This changes the value of

λ from zero to an unknown positive number. The optimality condition then becomes:

ln

(
W ∗

A

)
=

1

1− ρ
ln

(
cW
cA

)
+

1

1− ρ
ln

(
pA + λ

pW

)
(11)

If ρ is �nite and ρ ≤ 1, then the coe�cient on the last term is positive. The positive shadow

price λ causes an increase in the last term. Theory then predicts an increase in the ratio of
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water to air pollution W ∗

A
. This prediction is the same as the one from the model treating

CAA non-attainment as a relative price change. The di�erence is that under this model,

a regression that fails to control for output will not produce biased estimates if A is truly

exogenous. Rearranging equation 11 yields:

ln (W ∗) =
1

1− ρ
ln

(
cW
cA

)
+

1

1− ρ
ln

(
pA + λ

pW

)
+ ln

(
A
)

(12)

If regulators consider plant characteristics when deciding on the constraint A, however, the

potential for bias in a non-ratio speci�cation returns.

A.1.2 Three production inputs

Suppose a nested CES production function, including a third input L. As in Fullerton and

Karney (2014), this input may be regarded as labor or as a composite of non-pollution inputs

like labor, land and capital. The �rm problem then becomes:

max
A,W,L

pOc2

{
cP

[
c1 (cAA

ρ + cWW
ρ)

1/ρ
]θ

+ cLL
θ

}1/θ

− pAA− pwW

The constants c1, c2, cA, cW , cP and cL re�ect a �rm's technology. Taking �rst order

conditions on A and W , then dividing, yields:

pO
pO

c2
c2

{·}1/θ−1

{·}1/θ−1

cP
cP

[·]θ−1

[·]θ−1

c1
c1

(·)1/ρ−1

(·)1/ρ−1

cW
cA

W ∗ρ−1

A∗ρ−1
=
pW
pA

This produces the optimality condition presented in Section 3.

(
cW
cA

)(
W ∗ρ−1

A∗ρ−1

)
=
pW
pA

Intuitively, this is because the �rm substitutes over the air-labor and water-labor input pairs

in the same way, so changes in the third factor do not a�ect the ratio of A and W . Under

my multiplicative separability assumption, the omission of output (and other inputs) from
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my ratio regression speci�cations will not prevent inference of properties of the parameter

σ = 1
1−ρ . Nested CES is not the only functional form with this property, but it illustrates

the character of the required assumptions in a three-input case.

A.2 Additional �gures

Figure A1: Residual air emissions by distance from nearest non-attainment monitor, ex-
tended distance
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Underlying residuals from equation 4, a panel model of log air emissions (lbs) with year dummies

and plant �xed e�ects. The �tted line represents a local linear regression estimated over residuals

for plants in non-attainment counties. Shaded area is the 95% con�dence interval. 8.5km is the

50th percentile of the distance distribution and 53km is the 95th.

53



Figure A2: PDF of NAICS6 coe�cients
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Probability distribution function of estimates from a regression of distance to nearest non-attainment

monitor on year dummies and 317 dummies for six-digit NAICS codes. Regression does not include a

constant. R2 = .6. Industries in the right tail show no clear pattern. They include, for example, beet

sugar manufacturing, prisons, and national defense.
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A.3 Additional tables

A.3.1 Descriptive tables

Table A1: TRI PM descriptive statistics, by attainment status

Attainment counties Nonattainment counties

Mean Stdev Mean Stdev
Onsite air 4,671.90 423,203.47 1,700.19 56,683.82
Onsite water 772.29 10,723.20 337.84 7,191.41
Onsite land 48,140.87 1,182,686.23 38,496.45 553,928.50
O�site other 43,545.33 2,516,588.01 63,116.05 2,107,012.01
O�site water 394.49 19,961.01 851.40 41,676.99
O�site land 11,827.68 131,003.25 16,005.52 151,376.62
O�site other 3,773.98 60,737.40 4,039.81 60,594.14
Recycled or treated 77,869.44 1,027,343.45 87,694.84 1,471,169.80
Dist. to nonattain monitor (km) 19.84 26.75 12.21 15.28
Treated 0.00 0.05 0.05 0.21
Observations 168191 36417

Emissions measured in pounds. Unit of observation is a plant-year. Treated has a non-zero standard

deviation in attainment county plant-years because plants remain treated even after their counties return

to attainment of CAA standards. The distance to the the nearest non-attainment monitor exists for some

attainment-county plant-years because of the delay between violation of CAA standards and the o�cial

non-attainment designation for a county.
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Table A2: TRI PM descriptive statistics, by leakage dummy

Other plants Leakage plants

Mean Stdev Mean Stdev
Onsite air 4,854 433,802 1,085 5,365
Onsite water 793 10,962 354 3,538
Onsite land 48,791 1,205,882 35,328 553,543
O�site other 45,731 2,579,608 466 13,622
O�site water 400 20,441 290 3,979
O�site land 11,325 124,076 21,743 227,809
O�site other 3,652 60,388 6,180 67,212
Recycled or treated 76,804 1,048,653 98,877 427,698
Observations 160071 8120

Emissions measured in pounds. Unit of observation is a plant-year. �Other plants� are plants in attainment

counties that have no treated plants within the same �rm-year. �Leakage plants� are plants in attainment

counties that have at least one treated plant within the same �rm-year.
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Table A3: Historical CAA particulate standards

Final rule Type Averaging time Standard (µg/m3) Form

1987 PM10 24hr 150 Not to be exceeded more than once per year on average over a 3-year period

Annual 50 Annual arithmetic mean, averaged over 3 years

1997 PM2.5 24hr 65 98th percentile, averaged over 3 years

Annual 15 Annual arithmetic mean, averaged over 3 years

PM10 24hr 150 Not to be exceeded more than once per year on average over a 3-year period

Annual 50 Annual arithmetic mean, averaged over 3 years

2006 PM2.5 24hr 35 98th percentile, averaged over 3 years

Annual 15 Annual arithmetic mean, averaged over 3 years

PM10 24hr 150 Not to be exceeded more than once per year on average over a 3-year period
Adapted from http://www.epa.gov/ttn/naaqs/standards/pm/s_pm_history.html. Accessed March 19, 2014.
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A.3.2 Monitor distance

Table A4: Monitor distance and emissions levels

(1) (2) (3) (4) (5) (6) (7) (8)
ln(Dist.) ln(Dist.) ln(Dist.) ln(Dist.) ln(Dist.) ln(Dist.) ln(Dist.) ln(Dist.)

Onsite air -0.000358
(0.00667)

Onsite water 0.0157
(0.0130)

Onsite land 0.0524∗∗∗

(0.0138)
Onsite other 0.0240∗

(0.0131)
O�site water -0.0118∗

(0.00696)
O�site land -0.0135∗

(0.00728)
O�site other -0.0161∗∗

(0.00654)
Recycled or treated -0.00663

(0.00572)
Year dummies Yes Yes Yes Yes Yes Yes Yes Yes
Observations 43528 9934 3676 2611 17350 19914 14259 26960

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates from a regression of distance to the nearest non-attainment monitor (in km) on log emissions. Sample is untreated plant-years. SEs clustered at the county level, which is

the level of exogenous variation. Observation counts di�er across columns because not all plants report emissions into all media. �Onsite other� emissions include waste piles, leaks,

and spills.
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Table A5: Monitor distance and emissions growth rates

(1) (2) (3) (4) (5) (6) (7) (8)
ln(Dist.) ln(Dist.) ln(Dist.) ln(Dist.) ln(Dist.) ln(Dist.) ln(Dist.) ln(Dist.)

D.Onsite air 0.00443
(0.00332)

D.Onsite water -0.00578
(0.00640)

D.Onsite land 0.00785
(0.0119)

D.Onsite other 0.000574
(0.0100)

D.O�site water 0.00211
(0.00343)

D.O�site land 0.000647
(0.00343)

D.O�site other -0.00152
(0.00305)

D.Recycled or treated 0.000817
(0.00316)

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes
Observations 39644 8870 3133 2151 15512 17194 11542 23602

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates from a regression of distance to the nearest non-attainment monitor (in km) on changes in log emissions. Sample is untreated plant-years. SEs clustered at the county level,

which is the level of exogenous variation. Observation counts di�er across columns because not all plants report emissions into all media. �Onsite other� emissions include waste piles,

leaks, and spills.
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Table A6: General-equilibrium spillover test

(1) (2)
Onsite air Onsite air

Num. treated plants (state) -0.00206
(0.00325)

Num. treated plants (state and NAICS2) -0.00611
(0.00623)

Year dummies Yes Yes

Plant FEs Yes Yes
Observations 151156 151156

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimate corresponds to equation 9. Dependent variable is log air emissions (lbs). SEs clustered

at the county level, which is the level of exogenous variation. Unit of observation is a plant-year.

Sample restricted to plants in attainment counties. �Num. treated plants (state)� is the number

of treated plants in a given state-year. �Num. treated plants (state and NAICS2)� is the number

of treated plants in a given state, year, and two-digit NAICS code.
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A.3.3 Air emissions

Table A7: E�ect on air emissions, intra�rm leakage controls

(1) (2)
Onsite air Onsite air

Treated -0.480∗∗∗ -0.402∗∗

(0.177) (0.174)

Spillover controls Yes Yes

State linear trends No Yes

Year dummies Yes Yes

Plant FEs Yes Yes
Observations 152951 152951

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates in columns 1-2 correspond to equation 6, while estimates in column 3 correspond to

equation 5, but with the inclusion of a leakage control from equation 8: the number of treated

plants within the same �rm. Dependent variable is log air emissions (lbs). SEs clustered at the

county level, which is the level of exogenous variation. Unit of observation is a plant-year.

Table A8: E�ect on air emissions, plants open 1993-2010

(1) (2)
Onsite air Onsite air

Treated -0.452∗∗ -0.342
(0.214) (0.225)

State linear trends No Yes

Year dummies Yes Yes

Plant FEs Yes Yes
Observations 39073 39042

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 6. Dependent variable is log air emissions (lbs). SEs clustered

at the county level, which is the level of exogenous variation. Unit of observation is a plant-year.
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Table A9: E�ect on air emissions, alternative speci�cations

(1) (2) (3)
D.Onsite air Onsite air D.Onsite air

Treated -0.0466∗

(0.0274)

Non-attainment (t-1) -0.0783∗ -0.0130
(0.0418) (0.00889)

Year dummies Yes Yes Yes

Plant FEs Yes Yes Yes
Observations 132365 152951 132745

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 6, but with the dependent variable replaced by the year-on-

year di�erence in logs (the growth rate) in columns 1 and 3. In columns 2 and 3, lagged county

non-attainment is the treatment of interest. These speci�cations are similar to those used by

Greenstone (2003) and Gamper-Rabindran (2009). SEs clustered at the county level, which is

the level of exogenous variation. Unit of observation is a plant-year.

Table A10: E�ect on air emissions, varying threshold distance

(1) (2) (3) (4) (5)
<.97km <1.02km <1.07km <1.12km <1.17km

Treated -0.560∗∗∗ -0.516∗∗∗ -0.485∗∗∗ -0.417∗∗ -0.363∗∗

(0.196) (0.186) (0.177) (0.171) (0.162)
Year dummies Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes
Observations 152951 152951 152951 152951 152951

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 6. Dependent variable is log air emissions (lbs). SEs clustered

at the county level, which is the level of exogenous variation. Unit of observation is a plant-year.

The threshold used elsewhere throughout the paper is 1.07km, the distance at which one can

no longer reject a null hypothesis of a zero e�ect on air emissions.
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A.3.4 Cross-media substitution

Table A11: E�ect on log non-air emissions, controlling for log air emissions

(1) (2) (3) (4) (5) (6) (7)
Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

Treated 0.774∗∗ 0.382 -0.648 -0.0463 0.0159 -0.885 -0.0956
(0.353) (0.676) (0.693) (0.237) (0.239) (0.558) (0.260)

Log air emissions 0.220∗∗∗ 0.369∗∗∗ 0.310∗∗∗ 0.194∗∗∗ 0.257∗∗∗ 0.170∗∗∗ 0.164∗∗∗

(0.0139) (0.0267) (0.0450) (0.0129) (0.0131) (0.0167) (0.0103)
Year dummies Yes Yes Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes Yes Yes
Observations 36264 17940 8647 41876 60947 35720 75108

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All columns based on equation 7, with air emissions as a right-hand side control rather than a denominator for the dependent variable. Dependent variable is log

emissions(lbs), with the medium indicated atop the column. All speci�cations include year dummies and plant �xed e�ects. SEs clustered at the county level, which

is the level of exogenous variation. Unit of observation is a plant-year. Observation counts di�er across columns because not all plants report emissions into all media.

�Onsite other� emissions include waste piles, leaks, and spills.

63



Table A12: E�ect on log emissions ratios, by 2-digit NAICS code

(1) (2) (3) (4) (5) (6) (7)
Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

Primary metals 1.268∗∗∗ -1.066 1.432∗∗∗ 0.383 -0.467 -1.038 0.111
(0.336) (0.816) (0.168) (0.333) (0.313) (0.712) (0.414)

Observations 16528 3094 2394 30966 34496 21164 56274

Wood products 0.411 1.083∗ -0.381 0.835 0.980∗∗ -0.807 0.386
(0.800) (0.576) (0.564) (0.520) (0.425) (1.117) (1.157)

Observations 12701 7738 2511 8752 19384 10058 14221

Utilities 1.317∗ 2.569∗∗∗ -2.183∗∗∗ 0.437 1.818 -0.762 -0.767
(0.796) (0.548) (0.729) (0.299) (1.122) (0.526) (1.155)

Year dummies Yes Yes Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes Yes Yes
Observations 4914 5075 1294 523 3726 2238 1854
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Includes the three 2-digit NAICS industries with the largest treated sample sizes. All columns based on equation 7. Dependent variable is log emissions ratio (lbs),

with the numerator indicated atop the column and the denominator air emissions in all columns. All speci�cations include year dummies and plant �xed e�ects. SEs

clustered at the county level, which is the level of exogenous variation. Unit of observation is a plant-year. Observation counts di�er across columns because not all

plants report emissions into all media. �Onsite other� emissions include waste piles, leaks, and spills.
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Table A13: E�ect on log emissions, by 3-digit NAICS code

Onsite air Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated
Primary metals 0.0950 0.984∗∗ -1.882∗∗∗ 0.749∗∗ -0.571 -0.556 0.196

(0.238) (0.431) (0.522) (0.357) (0.408) (0.861) (0.389)
Chemicals -1.145∗∗∗ -0.932 -0.857∗∗ -0.197 -1.447 -0.498

(0.431) (0.594) (0.348) (0.530) (1.121) (0.599)
Fabricated metals -0.456 2.157∗∗∗ -1.375∗∗∗ 0.314 -0.328 -1.133∗ -0.595∗∗

(0.341) (0.608) (0.400) (0.550) (1.028) (0.653) (0.270)
Nonmetallic mineral products -0.800 -0.121 2.053∗∗∗ -0.275 0.495∗∗ 0.0232 -2.028∗∗∗

(0.523) (0.196) (0.522) (0.467) (0.223) (0.211) (0.169)
Transportation equipment -0.442 -0.644∗ 0.169 -0.0898 1.344 0.408

(0.936) (0.381) (0.227) (0.123) (1.391) (1.055)
Petroleum and coal -1.326 1.125 0.558∗ 0.558 0.170 -0.294

(0.815) (0.943) (0.308) (0.564) (0.890) (1.079)
Utilities -0.858 0.678 1.747∗∗∗ -2.553∗∗ -1.911∗∗∗ 0.751 -0.284 -0.138

(0.799) (0.567) (0.498) (1.173) (0.377) (1.052) (0.541) (1.580)
Year dummies Yes Yes Yes Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes Yes Yes Yes
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Includes the seven 3-digit NAICS industries with the largest treated sample sizes. All columns correspond to equation 6. Dependent variable is log emissions (lbs).

All speci�cations include year dummies and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is a

plant-year. Observation counts di�er across columns because not all plants report emissions into all media. �Onsite other� emissions include waste piles, leaks, and

spills.
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Table A14: Intra-�rm leakage e�ect on non-air emissions, within �rm & 2-digit NAICS code

(1) (2) (3) (4) (5) (6) (7)
Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

1+ other treated plants 0.220∗ 0.0770 0.544 0.0990 -0.203∗ -0.00218 0.0403
(0.114) (0.250) (0.367) (0.118) (0.110) (0.148) (0.0922)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes
Observations 34080 17066 8139 41708 60066 34979 76482

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 8, where �other treated plant� is a treated plant within the same �rm and 2-digit NAICS code, but dependent variable is log

emissions ratio (lbs). Numerator indicated atop column and denominator is air emissions in all columns. Speci�cation includes year dummies and plant �xed e�ects.

SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is a plant-year. Observation counts di�er across columns because not

all plants report emissions into all media. �Onsite other� emissions include waste piles, leaks, and spills. Sample restricted to plants in attainment counties. Parent

�rm identi�ers come from TRI data.66



Table A15: E�ect on toxicity-weighted log emissions

Panel A: Main speci�cation
(1) (2) (3) (4) (5) (6) (7)

Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated
Treated 1.606 -0.468 1.151∗∗∗ 1.294∗ 0.373 -0.407 -0.206

(1.048) (0.304) (0.282) (0.745) (0.347) (1.067) (0.397)

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes
Observations 18115 6467 4576 29688 38171 20880 64721

Panel B: State linear trends
(1) (2) (3) (4) (5) (6) (7)

Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated
Treated 1.808∗ -0.598∗∗ 0.942∗∗ 1.304∗ 0.522 -0.536 -0.138

(0.968) (0.274) (0.431) (0.696) (0.330) (0.998) (0.376)

State linear trends Yes Yes Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes Yes Yes Yes
Observations 18115 6467 4576 29688 38171 20880 64721
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 7. Dependent variable is log toxicity-weighted emissions (unitless), with the medium indicated atop the column. Speci�cation

includes year dummies and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is a plant-year.

Observation counts di�er across columns because not all plants report emissions into all media. �Onsite other� emissions include waste piles, leaks, and spills. EPA

ingestion toxicity weights applied to all emissions.
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Table A16: E�ect of county non-attainment on log emissions, other media

(1) (2) (3) (4) (5) (6) (7)
Onsite water Onsite land Onsite other O�site water O�site land O�site other Recycled or treated

County non-attainment (t-1) -0.0948 0.0342 0.0816 -0.0731 -0.0175 0.0122 0.0495
(0.0788) (0.112) (0.188) (0.0619) (0.0621) (0.0948) (0.0554)

Year dummies Yes Yes Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes Yes Yes
Observations 39592 18989 9755 51294 71048 43220 91806

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 6. Dependent variable is log emissions (lbs), with the medium indicated atop the column. All speci�cations include year dummies

and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of observation is a plant-year. Observation counts di�er

across columns because not all plants report emissions into all media. �Onsite other� emissions include waste piles, leaks, and spills.

Table A17: E�ect on onsite water emissions, varying threshold distance

(1) (2) (3) (4) (5)
<.97km <1.02km <1.07km <1.12km <1.17km

Treated 0.499 0.643∗ 0.719∗∗ 0.541 0.380
(0.366) (0.342) (0.337) (0.344) (0.316)

Year dummies Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes
Observations 39592 39592 39592 39592 39592

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 6. Dependent variable is log onsite water emissions (lbs). SEs clustered at the county level, which is the level of exogenous variation.

Unit of observation is a plant-year. The threshold used elsewhere throughout the paper is 1.07km, the distance at which one can no longer reject a null hypothesis of

a zero e�ect on air emissions.
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A.3.5 Leakage

Table A18: Leakage e�ect, within �rm & 6-digit NAICS code

(1) (2) (3) (4)
Onsite air Onsite air Onsite air Onsite air

1+ other treated plants 0.130 0.0932
(0.0965) (0.0958)

Count other treated 0.132 0.0963
(0.0852) (0.0850)

State linear trends No Yes No Yes

Year dummies Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes
Observations 128465 128465 128465 128465

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 8, where �other treated plant� is a treated plant within the same �rm

and 6-digit NAICS code. Dependent variable is log air emissions (lbs). Speci�cation includes year dummies

and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of

observation is a plant-year. Sample restricted to plants in attainment counties. Parent �rm identi�ers come

from TRI data.
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Table A19: Leakage e�ect, continuous �rm size controls

(1) (2) (3) (4)
Onsite air Onsite air Onsite air Onsite air

1+ other treated plants 0.165∗∗ 0.159∗∗

(0.0680) (0.0674)

Count other treated 0.135∗∗∗ 0.130∗∗

(0.0517) (0.0512)

Plants in �rm Yes Yes No No

Plants in �rm and NAICS No No Yes Yes

Year dummies Yes Yes Yes Yes

Plant FEs Yes Yes Yes Yes
Observations 128465 128465 128465 128465

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 8, where �other treated plant� is a treated plant within the same �rm and

2-digit NAICS code. �Plants in �rm� is a count of all plants in a given �rm-year. �Plants in �rm and NAICS�

is a count of plants within �rm-year and 2-digit NAICS code. Dependent variable is log air emissions (lbs).

Speci�cation includes year dummies and plant �xed e�ects. SEs clustered at the county level, which is the

level of exogenous variation. Unit of observation is a plant-year. Sample restricted to plants in attainment

counties. Parent �rm identi�ers come from TRI data.
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Table A20: Leakage e�ect, varying threshold distance

(1) (2) (3) (4) (5)
<.97km <1.02km <1.07km <1.12km <1.17km

1+ other treated plants 0.163∗∗ 0.178∗∗∗ 0.158∗∗ 0.130∗∗ 0.131∗∗

(0.0794) (0.0675) (0.0672) (0.0638) (0.0631)
Year dummies Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes
Observations 128465 128465 128465 128465 128465

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Estimates correspond to equation 8, where �other treated plant� is a treated plant within the same �rm

and 2-digit NAICS code. Dependent variable is log air emissions (lbs). Speci�cation includes year dummies

and plant �xed e�ects. SEs clustered at the county level, which is the level of exogenous variation. Unit of

observation is a plant-year. Sample restricted to plants in attainment counties. Parent �rm identi�ers come

from TRI data. The threshold used elsewhere throughout the paper is 1.07km, the distance at which one

can no longer reject a null hypothesis of a zero e�ect on air emissions.
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