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Abstract
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asset to back multiple financial contracts (i.e., tranching) affects price bases. A positive basis

emerges when risky assets and their derivative contracts can be used as collateral for financial

promises. We provide an empirical test of our theory using inclusion in the CDX and find that

inclusion in the CDX increases the CDS basis.
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1 Introduction

Our paper considers how innovations in the use of collateral can affect the prices of portfolios with

identical cashflows—i.e., price bases. Structured credit products tranche collateral into multiple

securities and reuse these tranches as an additional layer of collateral to issue more securities.

Examples abound, such as asset-backed securities (ABS), collateralized debt obligations (CDOs),

and synthetic indices like the CDX, a tradable index of credit default swaps (CDSs). These

financial innovations greatly increase the ability of assets to serve as collateral.1 We argue that

these collateral innovations affect price bases. Consider the CDS basis, which is the difference

between the spread on a bond and the premium on a credit default swap protecting that bond. The

typical convention is CDS basis equals CDS spread minus bond spread. CDS bases before the

crisis, especially on high yield (HY) bonds, were significantly positive with an average HY basis

of about 80 basis points. This means that a (nearly risk-free) portfolio of a HY bond with a CDS

would be more expensive than purchasing a similar maturity US Treasury. During the crisis the

basis became negative, and the post-crisis financial recovery has led to a normalization of the CDS

basis around 0.

Our primary contribution is theoretical. We provide a model that shows that the basis on a

risky asset is positive whenever the asset can be tranched into multiple contracts, or when derivative

contracts backed by the risky asset can be used as collateral to issue further promises (pyramiding).

All else equal, tranching and pyramiding increase bases (other factors may contribute to negative

bases). We consider a general equilibrium model with heterogeneous agents and collateralized

borrowing following Geanakoplos and Zame (2014). Issuing financial contracts requires using

assets as collateral, but cross-netting frictions may limit the number of contracts that a single asset

can back (Shen et al., 2014). Some assets can be used to back multiple contracts simultaneously,

and this could occur in at least two ways. First, the asset could be used as collateral directly to

issue several securities at once (tranching). Second, a financial promise backed by the asset could

be used as collateral to back further financial promises (pyramiding). In either case, the original

asset is explicitly or implicitly used to back multiple distinct financial contracts. We show that,

when considering portfolios with identical payoffs, tranching or pyramiding an asset leads to a

1See Gorton and Metrick (2009); Fostel and Geanakoplos (2012a)
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positive basis on the underlying asset, which is consistent with the empirical facts.

Our theory has implications for how inclusion of bonds in CDX indices affects CDS bases.

The CDX index can be tranched into indices with multiple “attachment points,” thus increasing

the ability of the underlying assets to serve as collateral. Our theory yields two predictions. First,

tranching the CDX should create a positive CDS-CDX basis, which is consistent with the data.

Second, inclusion in the CDX should increase the CDS basis on underlying bonds, since the CDX

index tranches CDS contracts. We provide an empirical test of this prediction using difference-in-

differences for contracts included/excluded from the CDX index and show that inclusion increases

the CDS-bond basis, consistent with our theory.

Related literature

Our paper relates to two theoretical literatures: directly to the literature on collateral in general

equilibrium, and indirectly to the literature on limits to arbitrage. We discuss the empirical literature

in Section 4 when discussing the empirical implications of our theory.

Our model introduces tranching and pyramiding into a model of collateral equilibrium based

on Geanakoplos (1997, 2003) and Geanakoplos and Zame (2014). This literature tends to focus

on either efficiency or how collateral use leads to negative bases. Geanakoplos and Zame (2013)

discuss how using promises to back further promises (what they call pyramiding) can potentially

allow the market to achieve efficient allocations. Gottardi and Kubler (2015) show that any

Arrow-Debreu equilibrium allocation with limited pledgeability can also be attained at a collateral-

constrained financial market equilibrium when all financial securities serve as collateral and financial

markets are sufficiently rich in terms of payoffs and collateral requirements. We focus on limited

tranching and pyramiding across assets and show that the possibility of pyramiding changes the

set of contracts issued so that investors will never issue a promise that cannot later be used as

collateral. As a result, pyramiding increases the basis on the underlying asset.

Shen et al. (2014) propose a collateral view of financial innovation driven by the cross-netting

friction and show that negative bases emerge. Derivatives allowing investors to “carve out” risks

emerge to conserve collateral. As a result, the price of a risky asset is always less than the price of a

portfolio replicating it with derivatives (negative basis) because the risky asset requires “too much”

collateral for agents to isolate the risks they want. In contrast, we show that the sign of the basis
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can flip (the risky asset can be expensive) with tranching and pyramiding, and we also derive their

same result when the risky asset cannot be used as collateral. In essence, we consider when the

risky asset can “require less collateral” than alternatives. Tranching and pyramiding are ways of

stretching collateral, similar to their insight that financial innovation responds to scarce collateral

(see also Gottardi et al., 2019, regarding collateral re-use). Our theory rooted in collateral can

explain positive bases by emphasizing financial innovations that stretch collateral.

Fostel and Geanakoplos (2012a) provide an example within a binomial (two state) model

where the basis is negative (when the risky asset cannot be used as collateral or can be leveraged

but cannot be tranched). In their model, tranching refers to using an asset to issue state-contingent

contracts, and it is sufficient for an asset to back a single contract at a time. We define tranching as

using an asset to back multiple contracts simultaneously. Tranching and pyramiding are meaningful

innovations in our setting with multiple states, and we produce positive bases.2

Most theoretical papers explain why non-zero bases can persist once deviations occur. This

literature relies on limits of arbitrage conditions in the market to explain the existence of non-

zero basis: a “shock” occurs that causes CDS and bond premia to diverge, and the basis persists

because arbitrageurs cannot fully arbitrage the difference. Of these limits to arbitrage conditions,

the most commonly cited is the existence of limits in firms’ funding capacity, which prevents

firms from conducting enough trades to eliminate the basis. With this interpretation, differences in

cross-sectional bases at different points in time point to variations in funding capacity across firms.

Notably, the literature focuses on explaining when bond premia exceed CDS spread, as occurs

during crises, but does not typically explain the reverse phenomena, which we do.

Gârleanu and Pedersen (2011) provide a model where margin constraints can lead to pricing

differences between two identical financial securities. Negative shocks to fundamentals cause

margin constraints bind and differences in margin requirements cause the basis to deviate from

zero. Our analysis and results differ from Gârleanu and Pedersen (2011) in several ways. First, in

Gârleanu and Pedersen (2011), a basis only occurs when negative shocks cause a funding-liquidity

crisis and losses for leveraged agents, while in our model non-zero bases are due to the financial

2Our paper relates to the literature on collateral equilibria in models with multiple states. See Araujo et al. (2012);
Simsek (2013); Toda (2015); Brumm et al. (2015); Gottardi and Kubler (2015); Phelan (2015); Cao (2017); Cao and
Nie (2017); Gong and Phelan (2019); Phelan and Toda (2019). Darst and Refayet (2018) study credit default swaps in
equilibrium.
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environment (assets used as collateral), not the presence of a funding-liquidity crisis. Second,

we show that the basis between two assets depends not only on the margin requirements of the

assets themselves but also on the margin requirements for derivative debt contracts collateralized

by the assets. Relatedly, Oehmke and Zawadowski (2015) show that a negative basis emerges

when transaction costs are higher for bonds than for CDS. In our paper, negative bases can persist

when risky assets are imperfect collateral, and positive bases can persist even when agents can

short assets because the efficient use of collateral is to buy CDS rather than to short assets.

2 General Equilibrium Model with Collateral

This section presents the basic general equilibrium model with a rich set of collateralized financial

contracts subject to cross-netting frictions. All proofs are in Appendix A.

Time, Assets, and Households

We consider a two-period, N-state general equilibrium model with time t = 0,1. Uncertainty is

represented by a tree with a node s0 at t = 0 and N states n ∈N = {1, . . . ,N} at t = 1. There are

Z fundamental assets, indexed by z ∈Z = {1, . . . ,Z}, which produce dividends of the consumption

good at t = 1. For a generic asset z ∈Z , let dz
n be the dividend of asset z in state n. Each asset trades

for a price pz at t = 0, and we denote the vector of asset prices at t = 0 by p.

We suppose that agents are uniformly distributed on H = (0,1), that is they are described

by Lebesgue measure. (We will use the terms “agents” and “investors” interchangeably.) Agents

are risk-neutral and have linear utility in consumption c at time 1. Each agent h ∈ (0,1) assigns

subjective probability γn(h) to the state n, and beliefs γn(h) are continuous in h. The expected

utility of agent h is

Uh(c) =
N
∑
n=1

γn(h)cn,

where cn is consumption in state n.

To ensure that in equilibrium investors’ positions are sorted by their level of optimism, we
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suppose agents’ beliefs satisfy hazard rate dominance (see also Simsek, 2013; Phelan, 2015):

For all n ∈ {1, . . . ,N −1}, the ratio
γn(h)

∑
N
k=n γk(h)

is strictly decreasing in h. (A1)

This condition implies that ∑k>n γk(h)
∑k≥N γk(h)

is strictly increasing in h, which means more optimistic

agents are increasingly optimistic about states above a threshold state n. Investors with higher

h have uniformly higher marginal utility for consumption in states in which the asset payoff is

higher (i.e., they are uniformly more optimistic). This setup is equivalent to a model with finitely

many heterogeneous risk-averse agents, where endowments and preferences are such that marginal

utilities or “hedging needs” are monotonic and uniformly increasing by state.

Each agent is endowed with θ̄ h ∈ RZ
+ assets at t = 0 and eh ∈ RN

+ consumption goods at t = 1.

We denote asset holdings at t = 0 by θ h = (θ h
1 , . . . ,θ

h
Z) ∈RZ

+, implying no short sales of assets.

Financial Contracts and Collateral

The heart of our analysis involves contracts and collateral. Agents trade financial contracts at

t = 0. A financial contract j = (A j,C j), consists of a promised payment A j = (A j
n)n∈N in terms of

the consumption good at t = 1, and an asset C j serving as collateral backing the promise. Since

collateral is the only enforcement mechanism, the financial contract yields min{A j
n,dC j

n } in state

n.3 Agents must own collateral in order to make promises.

Let J = {1, . . . ,J} be the set of all possible financial contracts. Throughout the analysis we

suppose the set of contracts J is a finite (guaranteeing equilibrium existence) but very large set.

In particular, we suppose that there are no restrictions on the set of contingent promises available

so that agents can issue contracts j with any set of promised payoffs A j. Because promises can

be state-contingent, without loss of generality we can restrict attention to promises A j
n ≤ dC j

n since

promising more is redundant given default.

Each contract j ∈ J trades for a price π j. We denote contract holdings of j ∈ J by ϕ j, where

ϕ j > 0 denote sales and ϕ j < 0 denote purchases. The sale of a contract corresponds to borrowing

the sale price and the purchase of a promise is equivalent to lending the price in return for the

3This definition of a financial contract encompasses using a portfolio of assets to back the a promised payment—
any promise backed by a portfolio of assets can be constructed with a portfolio of financial contracts, each backed by
a single asset.
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promise. A position of ϕ j > 0 units of a contract requires ownership of ϕ j units of the collateral,

whereas the purchase of such contracts does not require ownership of the collateral.

We suppose that assets are potentially subject to a cross-netting friction as follows. Asset z

can back up to Mz contracts simultaneously subject to payment enforceability, i.e. z can back Mz

contracts j1, . . . , jMz if ∑Mz
m A jm

n ≤ dz
n for all n. When Mz > 1 we say that asset z can be tranched

into multiple securities.4 Given a portfolio of financial promises Φ consisting of contract holdings

ϕΦ
j , we define collateral requirement for the portfolio as follows. Let Φ(z) be the contracts sold in

portfolio Φ that are backed by asset z, that is Φ(z) = { j ∈ J ∶ ϕΦ
j > 0, C j = z}. Let χz(Φ) to be the

minimum amount of asset z required to satisfy the collateral requirement for asset z in portfolio Φ.

χz(Φ) is the smallest number such that

1. contracts are able to deliver the promised payments backed by the collateral, i.e., for all n,

∑
j∈Φ(z)

A j
n ⋅ϕ

Φ
j ≤ χz(Φ) ⋅dz

n,

2. each unit of z backs at most Mz contracts.

∑
j∈Φ(z)

ϕ
Φ
j ≤Mz ⋅χz(Φ).

Even though promises can be state-contingent, an economy in which fundamental assets can

back only one contract at a time cannot implement an Arrow-Debreu equilibrium with limited

pledgeability (see Geanakoplos and Zame, 2014; Gottardi and Kubler, 2015).5 We take the financial

environment as exogenous. The question of how financial institutions determine collateral constraints,

while important, is outside the scope of this paper.6

4Note that using an asset z to issue a single contract splits the payoffs to z into two sets of contingent claims: those
cash flows defined by the contract, and the residual cash flows that accrue to the holder of z after making the contract
payments. Thus, issuing a single contract is akin to tranching z into two sets of payoffs. In contrast, we are interested
in when an asset can be tranched into at least 3 sets of cash flows.

5 Generally, if a contract pays in K ≤ N states, then the issuer of the contract retains payments in at least N −K
states. Collateral constraints require that in equilibrium some agents must hold “bundles” of Arrow-Debreu securities,
which is not required with complete markets—in other words, collateral constraints prevent the complete splitting
of asset payoffs into Arrow-Debreu securities. Because of this, tranching is not redundant in equilibrium precisely
because it increases the set of contingent payoffs that can be backed by an asset.

6For papers that discuss this question, see Calza et al. (2007); Dang et al. (2011); Gennaioli et al. (2013); Gorton
and Ordoñez (2014).
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Budget Set

Without loss of generality, we normalize the price of consumption to be 1 in all states of the world.

Given asset and contract prices at time 0, each agent chooses asset holdings and trades contracts j

to maximize utility, subject to the budget set

Bh(p,π) ={(θ ,Φ,c) ∈ RZ
+×RJ ×RN

+ ∶

∑
z∈Z

θz pz ≤ ∑
j∈J

ϕ jπ j, (1)

χz(Φ) ≤ θz,∀z ∈Z, (2)

cn =∑
z∈Z

θzdz
n−∑

j∈J
ϕ j min{A j

n,dC j

n }}. (3)

Equation (1) states that expenditures on assets purchased cannot be greater than the resources

borrowed by selling contracts. Equation (2) is the collateral constraint for contracts backed by

fundamental assets, requiring that agents must hold sufficient assets to collateralize the contracts

they sell. Equation (3) states that in the final states, consumption must equal dividends of the assets

held minus debt repayment. Recall that a positive ϕ j denotes that the agent is selling a contract or

borrowing π j units of account, while a negative ϕ j denotes that the agent is buying the contract or

lending π j units of account. Short selling of fundamental assets is not possible (θz ≥ 0).

Collateral Equilibrium

Definition 1. A Collateral Equilibrium in this economy is a set of asset prices, contract prices, asset

purchases, contract trades, and consumption decisions all by agents, ((p,π),((θ h,Φh,ch)h∈H)) ∈

(RZ
+×RJ

+)×(RZ
+×RJ ×RN

+)
H, such that

1. ∑Hθ h =∑H θ̄ h,

2. ∑Hϕh
j = 0, ∀ j ∈J ,

3. (θ h,Φh,ch) ∈ Bh(p,π),∀h,

4. (θ ,Φ,c) ∈ Bh(p,π)⇒Uh(c) ≤Uh(ch),∀h.

Condition 1 is the asset market clearing conditions at time 0 and condition 2 is the market

clearing condition for financial contracts. Condition 3 requires that all portfolio and consumption
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bundles satisfy agents’ budget sets, and condition 4 requires that agents maximize their expected

utility given their budget sets. By the same arguments made in Geanakoplos and Zame (2014),

equilibrium in this model exists under the assumptions made thus far.

Our baseline model imposes minimal restrictions on preferences and available contracts. In

Appendix C we characterize equilibrium in an economy where agents are restricted to trading non-

contingent debt contracts and credit-default swaps. Even though agents cannot trade a full set of

contingent contracts, the results on the basis are identical in this setting.

3 Theoretical Results

We now provide the theoretical results regarding investment choices and price bases. We define

the basis on an asset z as the difference between the price pz of the asset and the closest price p(θ)

of a replicating portfolio θ :

Basisz = pz− p(θ). (4)

Defining in this order preserves the standard notation based on bond spreads (which move inversely

with bond prices) so that a positive basis indicates that the bond is “expensive.”

We broadly consider two ways in which assets can have different collateral capacities. First,

we consider the case when some assets can be used to directly and simultaneously back multiple

contracts (tranching) while others cannot. Second, we consider the case where assets can only

back one contract directly at a time, but contracts backed by certain assets can serve as collateral

for further contracts (pyramiding). Comparing different assets, the one with the greater collateral

capacity has the higher price.

3.1 Results with Tranching

We begin by proving a fundamental result about tranching before exploring the implications that

tranching has on price bases. In equilibrium, any asset that can be tranched into multiple contracts

will be tranched.

Lemma 1 (Tranching). Suppose asset z can be used to issue Mz > 1 contracts simultaneously. Then

no agent will buy z and issue fewer than Mz contracts. In equilibrium, agents that hold z will issue
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Mz contracts.

Intuitively when multiple contracts can be issued, holding an asset and issuing a single contract

is inefficient—doing so does not take full advantage of the collateral capacity of the asset. In

equilibrium, some agents will always hold asset z and issue Mz contracts. Therefore, the cost of z

prices in the full collateral ability of z; it is too expensive for other agents to hold z and issue fewer

than the full set of contracts. Thus, any agents who hold the asset will completely tranche it. With

this proposition, we can now state our first asset pricing result.

Proposition 1. Consider two assets z1 and z2 with identical payoffs and prices p1 and p2. Suppose

that the two assets can back the same contracts but z2 can back multiple contracts simultaneously

while z1 cannot, that is z1 cannot be tranched while z2 can be tranched. Then p2 > p1.

The intuition is simple—the asset that can be tranched has greater collateral capacity and this

capacity is used by investors in equilibrium; this difference is reflected in the price of the asset.

The consequence of Lemma 1 can be used to explain two of the most common asset price bases:

(1) the swap basis, which compares the cost of an asset to its corresponding derivative, and (2)

the CDS-bond basis, which compares the price of a risk-free asset to the price of a “cash-synthetic

portfolio.

Let the dividends for a risky asset Y be ordered s1 < ⋅ ⋅ ⋅ < sN with sN = 1 the maximum dividend

as a normalization with price pY . Let X be a risk-free asset delivering 1 for sure, i.e., dX
n = 1 for all

n, with price pX . We first consider the swap basis: suppose X can be used to issue a promise jY

with price πY that replicates the payoffs to Y , so that the promise has payoffs s1, . . . ,sN ; the asset Y

can be tranched but jY cannot. As a direct consequence from Lemma 1, we can state the following

result on the swap basis:

Corollary 1 (Swap Basis). In equilibrium, either X is used to issue a derivative contract replicating

Y , with price πY and BasisY = pY −πY > 0, or the derivative replicating Y is not traded.

Less obviously, the collateral value of tranching also extends to portfolios of assets. The

CDS-bond basis compares the price of a risk-free asset to the price of a “cash-synthetic portfolio”

consisting of a risky asset and a CDS on the asset, which pays the difference between the maximum

promised payoff and the realized dividend on the asset. Using the same environment as before,
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suppose X can back CDS on Y , which delivers 1− sn units in n. Issuing a CDS without default

requires using risk-free asset X requires 1− s1 units of X and grants the issuer sn− s1 units in n. If

the asset Y can be tranched but X cannot be, then Y will have a positive basis.

Corollary 2 (CDS Basis). Consider two assets X and Y described above. In equilibrium, either X

is used to issue a CDS on Y , with price πC, and BasisY = πY
C −(pX − pY ) > 0, or CDS are not traded.

There are two ways to create a risk-free portfolio: hold X for a cost pX , or hold Y and a CDS

together for a cost of pY +πC. When Y can be tranched, it is strictly cheaper to get a risk-free

portfolio by holding X , which cannot be tranched. Indeed, in equilibrium an investor that chooses

to hold Y would use it to issue tranches would therefore not choose to also hold a CDS.

Finally, we can also consider the case when CDS contracts themselves can be tranched into

further promises, which occurs with CDS indices. Consider two assets z1 and z2 which are identical

in both payoffs and collateral capacity (i.e. can be tranched the same) but suppose that the CDS

on z2 can be tranched while the CDS on z1 cannot7. The ability to tranche CDS on z2 will increase

the CDS-bond basis on z2.

Corollary 3. Suppose that z2 and z1 can be directly collateralized in the same way (i.e. z2 and z1

can be used to issue the same financial contracts). Suppose that the CDS on z2 can be tranched

but the CDS on z1 cannot be tranched. Then the basis on z2 is greater than the basis on z1.

Furthermore, in equilibrium, the CDS on z1 will not be traded.

The payoff to issuing the CDS on z1 is the same as the payoff to issuing the CDS on z2, but

the two have different costs. This is because while the CDS themselves are identical in payoff, the

CDS on z2 is superior collateral compared to the CDS on z1 and must therefore have a higher price.

Thus, the investor would strictly prefer to issue the CDS on z2 and the CDS on z1 would be priced

but not traded in equilibrium.

The second part of this result is particularly important because it links to the literature on

liquidity and CDS trading (e.g., Oehmke and Zawadowski, 2015). This model provides a novel

explanation for how CDS inclusion into structured finance products affects liquidity. In our model,

CDS which are poor collateral are not even issued. While the result is very stark given the stylized

7Tranching the CDS could mean breaking it into one security that pays in some states and another security that
pays in others.
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nature of our model, the insight is more general: the ability to tranche a contract or to use a contract

as collateral will affect the issuance and trade in that contract and investors prefer contracts which

are superior collateral.8

3.2 Results with Pyramiding

We now consider using contracts as collateral for further contracts, as occurs with the creation of

CDOs and other structured products. In reality, both of these innovations (tranching and pyramiding)

occur and often occur simultaneously. ABS are tranched capital structures in the underlying

collateral, and CDOs are tranched capital structures in which the underlying collateral are ABS

tranches. Similarly, index CDO tranches fit within our definitions, since underlying collateral

(CDS) are tranched simultaneously into multiple indices corresponding to different loss levels.

We first formally extend the model to include pyramiding. Based on an essential equivalence

between pyramiding and tranching, we show that our results with tranching all extend to the setting

with pyramiding.

3.2.1 Contracts and Pyramiding

Suppose that assets can back at most one financial contract at a time, but financial contracts to be

used as collateral to issue further promises (we refer to this as pyramiding for the rest of the paper).

We introduce multiple levels of pyramiding inductively. Level-0 contracts are promises using

one unit of a fundamental asset as collateral, with the set of contracts denoted byJ 0. Note as before

that an economy with level-0 contracts only cannot implement an Arrow-Debreu equilibrium

because a fundamental asset can back only one contract at a time. Because of this, allowing

level-0 contingent contracts to serve as collateral is not redundant in equilibrium precisely because

it increases the collateral capacity of the underlying asset. Contract collateralization effectively

allows a fundamental asset to serve as collateral for multiple contracts—the asset directly backs

the level-0 contract, and indirectly backs level-1 contracts, etc.

Level-0 debt contracts in J 0 can be used as collateral to issue further contingent promises.

Definition 2. We say the first level of collateralization is the creation of promises j1 using k0 ∈J 0

8See also Fostel and Geanakoplos (2016), who show that investment in risky assets increases when the asset can
be used as collateral.
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as collateral. Denote the set of contracts at the first level of contract collateralization by J 1. We

write j1(k0) = (A j1,k0) to denote the contract that is traded when an agent holds k0 as collateral

and promises to pay A j1 . We denote the act of holding k0 and selling j1 by k0/ j1.

For a contract k0 to be meaningful collateral for a promise A j1 it must be that Ak
n ≥A j1

n because

otherwise the payoff to k0 would always be less than the promise (equality for all n would render the

new promise redundant). Thus, in what follows we will only consider when agents use meaningful

collateral to make new promises. The payoffs to j1
m(k0) are the same whenever k0 is sufficient

collateral, and so we can denote the price of a contract j1
m(k0) by π1

m.

In general, level L contract collateralization is to promise a non-contingent payment using a

level L−1 debt as collateral.

Definition 3. We say the L-th level of contract collateralization is the creation of contracts jL

using kL−1 ∈ J L−1 as collateral. Denote the set of contracts at the L-th level of collateralization

by J L. We write jL(kL−1) = (A jL ,kL−1) to denote the contract that is traded when an agent holds

kL−1 ∈ JL−1 as collateral and promises to pay A jL
n in state n. The contract delivers min{A jL

n ,AkL−1
n }

in state n.

With meaningful collateral, the payoff of any contract is defined by the promise, and we use

πL
m to denote the price of any security jL

m(kL−1) ∈ J L. With L levels of collateralization, the set of

financial contracts is given byJ =J 0∪J 1∪⋅ ⋅ ⋅∪J L. Thus, each additional level of collateralization

involves the creation of new contracts and allows all previously existing contracts to be purchased

with leverage (by issuing new contracts). The budget set now includes the constraint

∑

j= jln( jl−1
k )∈J l

max{0,ϕ jln( jl−1
k )

} ≤ ϕ jl−1
k
∀l ∈ 1, . . . ,L, (5)

which is the collateral constraint for contracts backed by contracts, up to L levels, which is a

parameter of the financial environment.

3.2.2 Theoretical Results

There is an essential equivalence between tranching and using contracts as collateral. To see this,

consider using an asset Y to issue level-0 contract j0 which is then used as collateral to issue a
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level-1 contract j1. The owner of j0 yields payoffs A j0 −A j1 . Define a contract j01 backed by the

asset Y and making promised payoffs A j01
=A j0 −A j1 . Then Y can simultaneously be tranched into

a contract paying A j1 as well as A j01
. Tranching can implement the same state-contingent payoffs

created when Y issues a contract that can then be used as collateral.

However, when contracts are limited in their set of state-contingencies, it is no longer true that

tranching can directly implement the same payoffs. As an example, if all contracts are restricted

to be non-contingent (debt), then pyramiding creates contingencies via default. Replicating the

payoffs created by pyramiding requires tranching an asset into a senior-subordinated capital structure

(i.e., contingent payoffs). The equivalence between senior-subordinated tranching and equilibrium

payoffs when debt can be used as collateral is completely general (Gong and Phelan, 2019).

Lemma 2 (Pyramiding). Suppose asset z can be used to issue contracts that can be used as

collateral. Then no agent will buy z and issue a contract that cannot be used as collateral. In

equilibrium, agents holding fundamental assets will issue contracts that can be pyramided to issue

more contracts.

This generalizes the result found in Gong and Phelan (2019): when some contracts can be

used as collateral, investors will exclusively use assets to issue collateralizable contracts whenever

possible. In doing so, investors maximize the capacity of the underlying asset to serve as collateral.

The following result generalizing Proposition 1 immediately follows.

Proposition 2. Consider two assets z1 and z2 with identical payoffs and prices p1 and p2, but

suppose that contracts backed by z1 cannot be used as collateral, while contracts backed by z2 can

be used as collateral. Then p2 > p1.

Similarly, Corollaries 1–3 generalize to include pyramiding. First, pyramiding affects the

swap basis: suppose that contracts backed by Y can be used as collateral; then either X is used to

issue a derivative contract replicating Y , with price π and BasisY = pY −π > 0, or the derivative is

not traded. Second, pyramiding affects the CDS basis: consider a risk-free asset X and risky asset

Y , and suppose that contracts backed by Y can be used as collateral while contracts backed by X

cannot; then either X is used to issue a CDS on Y , with price πC and BasisY = πY
C −(pX − pY ) > 0,

or CDS are not traded.
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Finally, differential CDS bases reflect differences degrees of pyramiding. Consider two risky

assets z1 and z2 with identical dividends, and suppose that z2 can be collateralized more than z1: if

z1 cannot be used as collateral, then z2 can be used as collateral to issue contracts (and perhaps the

contracts can also be collateral); if z1 can be used as collateral to issue contracts but these contracts

cannot be used as collateral, then contracts backed by z2 can be used as collateral. Since the CDS

on z1 or on z2 are identical, they must have the same price. But since z2 is superior collateral to z1,

z2 has a greater collateral value than z1 and thus has a higher price than z1 in equilibrium.

In sum, our results yield two key insights regarding how collateral affects the basis. First,

the cash-synthetic basis is a measure of the differential “collateral values” between risky and safe

assets. Importantly, this depends on the extent to which downstream contracts backed by the asset

can be used as collateral as this changes the degree of indirect promises the asset can back. When

risky bonds can be used as collateral, and contracts backed by risky bonds can also be used as

collateral for financial contracts, the bond premium is less than the corresponding CDS premium.

The positive basis emerges because the asset can be used to issue financial promises with positive

collateral value. Accordingly, if the collateral value of the derivative contracts decreases, then the

basis for the asset should decrease.

Second, agents value assets based on their abilities to provide payoffs in different states.

Assets with the same payoffs but that can be used as collateral for different promises allow different

agents to isolate payoffs in states in which their marginal utilities are higher. As a result, agents

may not “trade against” the basis even though there is an apparent arbitrage opportunity, but trade

to receive their most preferred state-contingent payoffs.

3.3 Economies with Multiple Bases

We now consider an economy with a single underlying risky asset and consider CDS on it and

on derivative debt. Consider a risky contract jM, backed by an asset Y , where the maximum

payoff to jM is M. We introduce a CDS on the risky contract jM and now consider the CDS basis

for the risky debt jM and to study the relationship between this basis and the basis for the risky

asset. We think of the basis on jM as corresponding to the basis on ABS or CDO tranches, rather

than the basis on the underlying pool of collateral. As before, we define the basis on the risky
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contract, denoted BasisM, as the difference between the spread on the debt CDS and the bond

spread, BasisM = πM − (MpX −πM
C ), where the basis is defined with MpX to reflect the cost of a

risk-free payoff of M. Our main result is that BasisM and BasisY are never equal. We use the

term “double basis” to refer to this phenomenon of two unequal bases occurring in equilibrium for

assets with correlated payoffs.

Proposition 3. Consider an economy with CDS contracts CDSY and CDSM, which are backed by

safe assets:

1. (Leverage) In an economy with level-0 contracts only, the basis on the risky debt is negative

and the basis on the risky asset is non-negative. That is, πM +πM
C <MpX and p+πY

C ≥ pX .

2. (Pyramiding) In an economy with level-1 contracts, the basis on the risky debt is zero and

the basis on the risky asset is positive, πM +πM
C =M and p+πY

C > pX

The intuition for this result is similar to the intuition provided in the previous section. Without

pyramiding, jM has no collateral value. However, the asset X is allowed to issue CDSM, which

gives X higher collateral value relative to jM. This results in a negative basis on the risky debt. In

the pyramiding economy, BasisM = 0 implies that BasisY > 0 since Y always has one more level of

collateralization than jM. Allowing jM to serve as collateral implicitly raises the collateral value

of Y , and causes BasisY > 0. The basis on the most upstream collateral is greater than the basis on

downstream contracts. This occurs because the risky asset Y can always back at least one more

level of debt contracts than the risky debt can back, and so the debt has a lower collateral value.

It is clear that the previous results on how tranching and pyramiding affect the basis on

fundamental assets z also apply in the same way to the basis on derivative contracts. Thus, bases

on derivative contracts are measures of the collateral value of those derivatives.

4 Empirical Implications and Test

Our analysis offers testable implications regarding fluctuations in bases. We first discuss empirical

implications, some suggestive evidence supporting our theory, and considerations for more careful

tests by future research. We then present an empirical test of one of the key predictions using CDX

inclusion.

16



4.1 Predictions

Our theory predicts that tranching or pyramiding increases the CDS basis. Thus, variations in the

extent to which funding markets use debt as collateral, or to which structured finance implicitly

allows debt to be used as collateral, ought to correspond to variations in the CDS basis.

There are two sets of facts that provide suggestive evidence for the predictions of our model.

First, the predictions of our model are broadly consistent with the stylized facts regarding the

prevalence and collapse of CDO and structured finance issuance as well as the time series behavior

of average bases. Rauh and Sufi (2010) show that low-credit-quality firms are more likely to have

a multi-tiered capital structure with subordinated debt. Hence, our model predicts that pre-crisis

the HY basis should be larger than IG basis because senior-subordinated capital structures, which

implicitly use debt as collateral for debt, increase the basis (post-crisis, funding market freezes

disproportionately affected weak collateral, which is why HY bases would turn more negative).

Figure 1: CDS-CDX basis. Source: Boyarchenko et al. (2017)

Additionally, our results from Section 3.3 provide important predictions for CDS contracts

that are part of a CDX basis.9 The CDX index is tranched into synthetic “index CDO tranches”: in

addition to buying (or selling) protection on the overall level of the CDX index, investors can also

buy protection on the first 3% of losses among the 125 constituents, or losses between 3 and 7%,

9We are grateful to Nina Boyarchenko for her comments on this topic.
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and so on with attachment points at 10, 15, and 30 percent of losses. The CDX tranches correspond

to downstream contracts backed by the underlying constituent assets. Because the CDX tranches

give greater collateral value to the underlying CDS contracts that make up the index, our theory

predicts that the basis on the most upstream collateral—namely, the 125 constituent single name

CDS contracts—should be greater than the basis on downstream contracts—namely, the index

tranches.10 This is exactly what we observe in the data (see Figure 1), with the basis widening when

collateral is most scarce, as occurred during the financial crisis. It follows also from Corollary 3

that the CDS-bond basis should increase for CDS contracts that are added to a CDX index. We

provide an empirical test of this prediction in the next section.

Our model provides an explanation for CDS bases that is distinct from what exists in the

current literature such as the cheapest-to-deliver mechanism11 or the “CDS market leads the bond

market” mechanism. Our theory implies that variations in the extent to which funding markets can

use debt as collateral (or the extent to which structured finance implicitly allows debt to be used

as collateral) ought to correspond to variations in the CDS basis. In contrast, funding markets for

derivative debt securities ought to have no direct effect on the value of the CTD option. Our model

also matches the broad time-series data on the CDS-bond basis in a way that the “CDS market

leads the bond market” mechanism cannot.12

10 Undoubtedly, limits to arbitrage are important for explaining difficulties in exploiting the apparent arbitrage trade
of buying protection on the CDX index (pay the premium) and selling protection on the underlying 125 names (receive
the higher premium). Our theory suggests that non-arbitrageur investors would trade instead in particular tranches in
order isolate precisely the risk profile they desire. For example, see Longstaff and Rajan (2008) for an analysis of how
each tranche corresponds to different levels of systemic/correlated default risk.

11 Blanco et al. (2005) find that the CTD option is most prevalent for European entities because U.S. CDSs have
been subject to a Modified Restructuring definition since May 11, 2001, which reduces the value of the delivery option.
Blanco et al. (2005) argue that it is almost impossible to value this option analytically since there is no benchmark for
the post-default behavior of deliverable bonds. Additional technical considerations of CDS contracts and bond trading
can increase the basis (e.g., CDS premia are floored at zero, CDS restructuring clause for technical default, bonds
trading below par, see De Wit 2006).

12Many authors in the empirical literature have identified factors that partially explain the behavior of the CDS
basis. Zhu (2004) finds that the CDS market moves ahead of the bond market in terms of price adjustment because the
two markets respond differently to changes in credit conditions, and this timing may explain the existence of non-zero
bases in the short run. Blanco et al. (2005) argue that the bond market lags behind the CDS market in determining
the price of credit risk, causing short-run deviations in prices; long-run deviations arise from imperfections in CDS
contract specification (the CDS price is an upper-bound on credit risk) and from measurement errors, which understate
the true credit spread. Nashikkar et al. (2011) show that bonds of firms with a greater degree of uncertainty are
expensive (i.e., the basis is positive), which they claim to be consistent with limits to arbitrage theories. Choi and
Shachar (2014) argue that a negative basis emerged during the 2008 financial crises because the limited balance sheet
capacity of dealer banks prevented corporate bond dealers from trading aggressively enough to close the basis. Bai
and Collin-Dufresne (2013) conclude that the basis is larger for bonds with higher frictions, which include trading
liquidity, funding cost, counterparty risk, and collateral margin.
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We stress that our results about collateral quality provide only one possible explanation of

fluctuations in the basis. Our results can begin to explain some of the time-series variation within

a collateral class (corresponding to fluctuations in CDO issuance and other structured finance) and

some of the cross-sectional difference across classes. One can consider our explanation as having

an effect in addition to what liquidity premia would imply. In addition, there have been many other

apparent arbitrages that behaved similar to the CDS basis, but for which our story does not apply

directly (e.g., cash-futures, mortgage rolls, fed funds, swap spreads, covered interest parity).

4.2 An Empirical Test

We now provide a rudimentary test of the hypothesis that inclusion in the CDX (and thus being

able to be tranched) should increase the CDS basis, which is the prediction of Corollary 3. To

directly test the effect that collateralizability has on the CDS-bond basis, we look at changes in

the CDS-bond basis for CDS contracts that are removed or added to a Markit CDX index. The

two Markit CDX indices we consider are the Markit North American High Yield CDX Index,

or the CDX.NA.HY Index and the Markit North American Investment Grade CDX Index, or the

CDX.NA.IG Index. Markit tranches the HY and IG indices into five and six tranches, respectively,

and allows investors to buy shares of the tranches in addition to buying the entire index. Purchasing

a tranche of an asset’s cash flows is equivalent to funding the asset with some implicit margin

(where the margin is given by the prices of the tranches). As a result, the margin requirement

increases for entities that are excluded from an index and decreases for entities that are included.

For margin-based asset pricing to be valid, the change CDS-bond basis must be positive (negative)

for included (excluded) entities relative to unaffected entities.

The details of our empirical analysis are provided in Appendix B, but we provide a summary

of the methods and results here. We use a difference-in-difference approach to estimate the

percentage change in the CDS-bond basis for credit default swaps that are added to or removed

from either index over a two-day window, both around the time of announcement and around the

time of index roll, using Markit’s publicly available record of changes to the CDX.NA.HY index

and CDX.NA.IG index from March 2013 to September 2017.
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The baseline regression estimation is given by equation (6):

basisit = β1 ⋅(announcedt) ⋅(addedi)+β2 ⋅(announcedt) ⋅(removedi)+γ ⋅Zit +εit , (6)

where basisit is the normalized basis for CDS i at time t, where the pre-announcement basis is

normalized to be 1. This allows us to estimate the difference in percentages rather than levels.13

The variable announcedt is an indicator variable that takes a value of 0 before the announcement

and a value of 1 after announcement; addedi and removedi are indicators for whether the CDS

has been added to or removed from an index. If both addedi = 0 and removedi = 0, then the CDS

was previously included in the index and had no change in status. Zit consist of a constant term,

fixed effect for announcement, fixed effects for addition and removal, year and month fixed effects

(the indices are updated twice each year), and indicators for whether the swap switched from one

index to another. The coefficient β1 (β2) is the difference-in-difference estimator that provides the

percentage in the CDS-bond basis for entities that were added to (removed from) an index, relative

to swaps that remained on the index. Margin-based asset pricing predicts that β1 > 0 and β2 < 0.

There are two identifying assumptions. First, the announcement of addition or removal

from an index is uncorrelated with other factors that may affect the CDS-bond basis. This is

likely satisfied because index inclusion does not reveal new information about the CDS, since

the requirements for inclusion are publicly available and the characteristics are easily observable.

Furthermore, any revealed information which changes the payoff value of the CDS should also be

reflected in an equivalent change in the bond price, so that there is no change in the CDS-bond

basis.

Second, identification requires common trends across the group—that is, in the absence of

announcement, the percentage change in the CDS-bond basis for swaps that were added, removed,

or unaffected would have been the same. Since swaps that are included on the index or added to

the index have relatively high liquidity and are traded on a frequent basis, nothing fundamentally

changes around the announcement date other than information about the swap’s inclusion.

13We use percentage changes because different bonds exhibit a great degree of heterogeneity in the magnitude of
the CDS-bond basis. In our sample, the largest bases in absolute value was over 1000 basis points, while the smallest
was .5 basis points. CDS contracts with large bases typically were much more volatile in levels. Proceeding with the
estimation in percentages reduces the amount of noise. The details of the normalization method can be found in the
appendix.
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Table 1: The last two specifications include controls for the month and year, as well as indicators
for whether the entity switched indices. The month and year controls are not shown in the table.

Dependent variable: Normalized CDS basis (percent changes)

announcement roll announcement roll

(1) (2) (3) (4)

switch to HY 0.127∗∗ 78.159∗∗

(0.063) (38.689)

switch to IG 0.050 17.602
(0.101) (43.579)

announced×add 0.187∗∗ −0.128 0.183∗∗ −29.946
(0.072) (0.085) (0.073) (32.320)

announced×remove −0.071 −0.116 −0.081 −21.873
(0.073) (0.086) (0.075) (33.869)

Observations 662 658 662 658
R2 0.031 0.025 0.045 0.035
Adjusted R2 0.023 0.018 0.027 0.023

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The result of our baseline procedure is given in Table 1. We find that the announcement of

the addition of a CDS to an index is associated with an increase in the CDS-bond basis by about

18 percent, relative to entities that are unaffected (consistent with our theory). In the appendix, we

also explicitly test inclusion relative to exclusion (rather than being unaffected) and find that the

change in the CDS-bond basis was 26 percent higher for those included than for those excluded.

Furthermore, we show that there is no statistically significant percentage change in the CDS-bond

basis upon the roll date across the groups.

We also consider the alternative hypothesis that our results are driven by liquidity values, not

collateral. It is possible that CDS contracts that are added to an index become more liquid as a

result of inclusion, and the increase in the liquidity premium increases only the CDS spread and

not the bond spread. However, while trade volumes spike on the roll date of the index, this increase

in trade volume is temporary and there is no significant increase in trade volume around the time

of the announcement (see Figures 2 and 3). Additionally, since there is no significant change in
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Figure 2: Trade Counts for CDS contracts on IG firms in 2017, with the March and September
CDX roll dates highlighted

the CDS-bond basis around the roll date, this suggests that liquidity is not the driving force behind

changes in bases. Without a doubt liquidity is an important determinant of asset prices and basis

behavior, as is well established in the literature.

In Appendix B, we try to eliminate confounding variables from behavioral responses by

market participants and estimate a triple-difference estimation, comparing addition to the HY index

to addition to the IG index. The difference between these two indices consist only of (i) credit

rating of the firm, which is publicly known prior to announcement (ii) the number of swaps in each

index (100 in HY vs 125 in IG) and (iii) the tranching structure of the two indices. While the first

difference should not result in any changes to the CDS-bond basis, the latter have implications for

the implicit margin requirement and therefore should translate into differences in the percentage

change of the CDS-bond basis. We find that inclusion to the HY index (rather than the IG index)
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Figure 3: Trade Counts for CDS contracts on HY firms in 2017, with the March and September
CDX roll dates highlighted

has significant implications in the movement of the CDS-bond basis. Our results therefore suggest

that collateral values, driven by index inclusion, may also be an important determinant.

5 Conclusion

We present a theoretical model that relates the extent to which financial markets can effectively

use assets as collateral to the CDS basis on those bonds. We show that the basis is positive when

either an asset can be tranched into multiple securities or agents can use risky debt contracts as

collateral to issue financial promises. Structured finance that uses pools of collateral to issue senior-

subordinated capital structures will produce positive bases on the underlying collateral, and thus

financing these assets will be cheap. We also prove that when multiple CDS contracts are traded
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in an economy with tranching or pyramiding, the bases on the CDS contracts must be different as

each level of has a different collateral value. We provide empirical evidence for our theory using

inclusion/exclusion in CDX indices to show that the behavior of the CDS basis is consistent with

our theory.
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Appendices for Online Publication

A Proofs

A.1 Proof of Proposition 1

Proof. Consider a contract j1 backed by z1 that is traded in equilibrium at a price π1. An investor

can receive the payoffs d1 −A j1 by using either asset as collateral to issue the payoffs A j1 . But

by Lemma 1 no investor holding z2 would choose to issue j1 alone. Since by assumption some

investor is holding z1 to yield the cash flows d1−A j1 , but no investor would want to hold z2 to hold

those same cash flows, it must be that the cost of those cash flows is cheaper when holding z1, i.e.,

p1−π1 < p2−π1.

A.2 Proof of Corollary 2

Proof. Suppose CDS are traded. Using X to issue the CDS yields sn−s1 and costs (1−s1)pX −πC.

However, an investor can yield sn − s1 by holding Y and issuing a single risk-free contract that

promises s1 in each state, which costs pY − s1 pX . But since Y has capacity to be tranched further,

any investor holding Y would strictly prefer to issue additional contracts, and so pY − s1 pX > (1−

s1)pX −πC. Rearranging yields the result. If the basis is otherwise, then no agent would choose to
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use X to issue CDS and would choose instead to use Y to issue contracts.

A.3 Proof of Lemma 2

Proof. Consider a contract j1 with price π1 such that A j1 < dz
n for some n. Consider a second

contract j2 with price π2 that can serve as collateral for j1, and the payoffs to j2 are not identical

to the payoffs for z. In other words, an agent can hold z, issue j2, and receive positive payoffs in

at least one state, and another agent can similarly hold j2, issue j1, and receive positive payoffs in

some states.

Let γh denote the vector of subjective probabilities (γ1(h),γ2(h), . . . ,γN(h)) for investor h. If

an investor strictly prefers to hold z and issue j1, then given investor preferences we have

γh ⋅(dz−A j1)

pz−π1
>

γh ⋅(dz−A j2)

pz−π2
,

γh ⋅(dz−A j1)

pz−π1
>

γh ⋅(A j2 −A j1)

π2−π1
,

where the numerator of each term is the marginal utility of the investment and the denominator is

the price of the investment. The first line says that holding z and issuing j1 is preferred over issuing

j2, and the second line says that holding z and issuing j1 is preferred over holding j2 and issuing

j1. Multiplying we have

γ
h ⋅(dz−A j1)(pz−π2) >γ

h ⋅(dz−A j2)(pz−π1) ,

γ
h ⋅(dz−A j1)(π2−π1) >γ

h ⋅(A j2 −A j1)(pz−π1) ,

and adding these two inequalities yields

γ
h ⋅(dz−A j1)(pz−π1) > γ

h ⋅(dz−A j1)(pz−π1) ,

which is a contradiction. Thus, the agents either prefers issuing the contract j2 which can be used

as collateral or investing in j2 and issuing the contract j1.
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B Empirical Test Using Markit CDX Inclusion/Exclusion

This section describes in greater detail the empirical test of our theory using inclusion and exclusion

in Markit CDX indices.

B.1 The logistics of index inclusion/exclusion and index tranching

The HY (IG) index is composed of 100 (125) liquid North American entities with high yield

(investment grade) credit ratings that trade in the CDS market. There are two roll dates every year

for both the HY and IG indices, once in March and once in September. The IG index rolls out

on September 20 (March 20) and the HY index rolls out on September 27 (March 27). When the

20th or the 27th falls on a non-trading day, the IG and HY indices are rolled out on the trading day

closest to the 20th and 27th, respectively. Prior to a new index being rolled out, Markit releases

information about which CDS contracts are added to or removed from the CDX index and Markit

keeps publicly available records of these announcements from 2013-2017, as well as a finalized

list of the CDS basket for each roll.

All CDS contracts in the basket are equally weighted, though Markit does have target sector-

specific weights for the composition of each index. Markit publishes the list of entities removed or

added to the indices around a week before the roll date. Entities are removed from the index if any

of the following conditions are satisfied

1. There is a corporate event (i.e. merger or acquisition).

2. There is a credit event–the bond matures, is called, or is defaulted upon.

3. For the HY index, the debt outstanding of the entity falls below a certain level; for the IG

index, the debt outstanding rises above a certain level.

4. The credit default swap no longer meets the liquidity requirement.

5. The target sector weights in the index are not met; or

6. There is a change in the relevant credit rating. For example, a formerly investment-grade

corporation that gets demoted to high-yield would be removed from the IG index to the HY

index and vice versa.

Entities are added to the index if

1. the CDS satisfies the liquidity requirement
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2. The referenced corporation meets the required amount of debt outstanding.

Entities are also added or removed from an index based on the results of a dealer poll conducted

amongst institutions that frequently trade these indices. Furthermore, the HY and the IG index are

tranched separately and the tranches are shown in Figure 4.

HY tranche

Equity0%-10%

Junior Mezz10%-15%

Senior Mezz15%-25%

Junior Senior25%-35%

Super Senior35% - 100%

IG tranche

Equity 0%-3%

3%-7%Junior

7%-10%Junior Mezz

10%-15%Senior Mezz

15%-30%Junior Senior

Super Senior 30%-100%

Figure 4: Tranches for HY and IG indices

B.2 Data

Based on Markit’s publicly available record of changes to the CDX.NA.HY index and CDX.NA.IG

index from March 2013 to September 2017, we compiled a list of CDS contracts that were included,

excluded, or stayed on the index. We exclude contracts that were removed from an index due to a

credit event. We obtained end-of-day mid CDS bases from Bloomberg, where the mid CDS basis

is defined as the CDS spread minus the Z-spread (zero-volatility spread) for a fixed rate cash bond
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of the same issuer and maturity. The z-spread takes into account the full term structure of the

benchmark swap curve and is defined as the spread that must be added to a give benchmark zero

swap curve so that the sum of the bond’s discounted cash flows equals its price, with each cash

flow discounted at its own rate. As such, the Z-spread is a reasonably realistic valuation of a bond’s

cash flows. We obtained CDS data for all entities that were excluded or included from a roll and a

random subsample of entities that were unaffected by the roll.

We group the CDS data into 5 different status categories: included, excluded, updated (removed),

updated (added), and remain. Included and excluded observations are self-explanatory, though the

sample sizes for these two groups are rather small (approximately 50 observations in each group)

because most rolls do not involve substantial changes to the index. A referenced bond has a status

of “updated” if the firm has issued another a newer bond with maturity closer to five years. Markit

prefers to select newer bonds with a maturity of around five years because five-year CDS contracts

are the most commonly traded and are the most liquid on the market.

B.3 Estimation Method

We use a difference-in-difference approach to estimate the change in the CDS-bond basis for

credit default swaps that are added to or removed from either index over a two-day window, both

around the time of announcement and around the time of index roll. We use the end-of-day CDS

bond-basis the day before the announcement and the day of the announcement (as well as the day

before roll and the day of roll). The baseline regression examines percentage changes for the CDS-

bond basis of CDS contracts that were added, removed, or unaffected by the announcement/roll

and does not include observations that were updated.

We use percent changes because different bonds exhibit a great degree of heterogeneity in the

magnitude of the CDS-bond basis. In our sample, the largest bases (in absolute value) was over

1000 basis points while the smallest observed basis was 0.5 basis points. CDS contracts with large

bases typically were much more volatile in levels, changing by over 200 basis points between

trading days. Because of this, running a regression on levels introduces a lot of noise into the

estimation. The normalization procedure is as follows: Letting basis0 and basis1 be the observed
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basis before and after an announcement (or roll). We define

b̂asis0 = 1, b̂asis1 =
basis1−basis0
∣basis1∣+∣basis0∣

2

so that the normalized basis before treatment is equal to 1, and the the after-treatment observation

is the percentage change in the basis. To calculate the percentage change in the basis, we divide by

the mean of the absolute values of the pre- and post-announcement basis for several reasons

1. Dividing by the absolute value of the pre-announcement (roll) basis or post-announcement

(roll) basis introduces systematic bias into the regression. Consider the case when added

entities tend to have both positive bases and and experience a increase in basis while removed

entities tend to have negative bases and experience a decrease in the basis. Dividing by the

pre-announcement basis would upward bias the estimated coefficients while dividing by the

post-announcement basis biases the estimates toward zero.

2. We use the mean of the absolute values because there are several observations for which the

basis switches signs over the observation period. This is problematic if the mean of the basis

is close to zero.14

The regression equation is given by

basisist = β0+β1λt +β2γa+β3γr +β4λt ⋅γa+β5λt ⋅γr +εist (7)

Here, basisist is the basis for CDS i with status s at time t. λt is an indicator variable that takes

a value of 0 before the announcement (or roll) and a value of 1 after the announcement/roll. The

regression includes dummy variables γa and γr that takes values of 1 if the CDS is in the added or

removed group respectively. In this equation, β1 is interpreted as the time fixed effect and β2 and β3

are the status-group fixed effects for entities that are added or removed from an index, respectively.

β4 is the difference-in-difference estimator that provides the level change in the CDS-bond basis

around the time of the announcement (or roll) for entities added to an index relative to entities

that were unaffected. β5 is the analogous estimator for entities that were removed from an index

14An example: a CDS basis switches from -5 to 5.25 during the window of observation. Taking a simple mean
mean would inflate the actual change in basis.
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relative to swaps that are unaffected. Margin-based asset pricing predicts that β4 > 0 and β5 < 0.

In order for β4 and β5 to be interpreted as the causal effect of the implied margin change on the

CDS-bond basis, it must be the case that nothing else changed in the included or excluded group

at the time of the announcement (or roll) that did not change for the unaffected group.

We rerun the baseline regression including controls for index switching and year-month fixed

effects.

basisist = β0+β1λt +β2γa+β3γr +β4λt ⋅γa+β5λt ⋅γr +β6δHY +β7δ IG+αT +εist (8)

δHY is an indicator variable that takes a value of 1 if the entity switched from the IG index to the

HY index. β7 is the analogous variable indicating whether an entity switched from HY to IG. T is

a matrix of dummy variables to estimate month-year effects. The results of the two regressions are

reported in the next section.

Here, the biggest threat to identification is that the announcement of inclusion or exclusion

from an index conveys some information about the bond/CDS or for some other reason causes

market participants to treat the bond/CDS contracts differently. Theoretically, index inclusion

does not reveal new information about the future prospects of the newly included firm, since the

requirements of index inclusion or exclusion are published by Markit and publicly available to all

market participants. However, a number of papers have found that inclusion in an equity index is

associated with improved stock prices (see Harris and Gurel (1986), Shleifer (1986), Denis et al.

(2003), Chen et al. (2004), and Wurgler and Zhuravskaya (2002)). For equities, this change in price

can be explained by, among other hypotheses, increased monitoring by investors after inclusion

which leads to more effort by the firm’s management; increased demand for the equity pushing up

prices from funds that track the index; or greater reputation costs if management performs poorly.

However, because trading CDS contracts is fundamentally different from trading equities, these

hypotheses do not apply to the CDX index. Investors in CDS buy protection against a firm credit

default and there is no monitoring incentive involved and funds do not track CDX indices.

This does not exclude the possibility of a behavioral response by market participants when

an entity is added to or removed from the index. To eliminate differential changes in behavioral

reactions for the included, excluded, and unaffected groups, we run a difference-in-difference-in-
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difference regression on CDS entities that were added to or removed rom the HY and IG indices.

basisist = β0+β1λt +β2γa+β3κI +β4λtγa+β5λtκI +β6γaκI +β7λtγaκI (9)

As before, λt takes a value of 1 if the observation is post announcement (or roll). γa is 1 when the

observation was added to an index and 0 if it is removed. κI indicates which index the entity was

added to or removed from and takes a value of 1 when the affected index is the HY index. β7 in the

above equation is the triple difference estimator–it is the difference in relative changes (inclusion

relative to removal) in the CDS basis between entities that were added to the HY index versus

the IG index. While there might be differences in behavioral response for entities that are added

rather than removed, it is harder to come up with plausible explanations for there being significant

difference for swaps added to the HY index rather than the IG since the only fundamental difference

between the two indices is the credit rating of the firm. As credit rating is known publicly before

the announcement, the difference in credit rating cannot explain why β7 ≠ 0. Margin-based asset

pricing, however, does predict that β7 ≠ 0 precisely because the cash flows and tranching of the two

indices are different. The result is reported in Table 3.

B.4 Empirical Results

As shown in table 1, we find that inclusion into an index is associated with an 18% increase

in the CDS bond basis at the time of announcement while removal has no significant effects on

the CDS bond basis around the announcement. There are no significant changes for either group

around the time of the roll, which suggests that the market has already adjusted by the time of the

roll. The lack of a significant coefficient on removal could be due to the fact that the “removed”

sample is much smaller because many entities removed after experiencing a credit event.

To better compare included observations from excluded ones, we run a difference-in-difference

regression comparing only included entities to excluded entities with results reported in Table 2.15

we find that the difference in the change of bases between these two groups is significant–addition

relative to removal is associated with a 26% increase in the CDS-bond basis. This estimate matches
15To increase sample size, we also include “updated” entities. The entities included in the new roll are in the

inclusion group while the entities that are phased out are in the exclusion group.
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Table 2: Difference in difference estimations comparing inclusion to exclusion. The last two
specifications include controls for the month and year, as well as indicators for whether the entity
switched indices. The month and year controls are not shown in the table.

Dependent variable: Normalized CDS basis (percent changes)

announcement roll announcement roll

(1) (2) (3) (4)

time −0.046 0.091 −0.046 0.091
(0.066) (0.060) (0.066) (0.060)

added −0.000 −0.000 0.004 −0.030
(0.066) (0.054) (0.068) (0.055)

switch to HY 0.123∗ 0.038
(0.070) (0.075)

switch to IG −0.021 −0.112
(0.089) (0.087)

time*added 0.259∗∗∗ 0.007 0.259∗∗∗ 0.007
(0.094) (0.077) (0.093) (0.077)

Observations 214 486 214 486
R2 0.081 0.013 0.132 0.038
Adjusted R2 0.068 0.007 0.071 0.009

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

the differences in the point estimates in Table 2.

B.5 Alternative hypotheses

It is possible that CDS contracts that are added to an index become more liquid as a result of

inclusion, and the increase in the liquidity premium increases only the CDS spread and not the

bond spread. Figure 2 and 3 show the trading volume of HY and IG CDS contracts with the roll

dates highlighted. Trade volumes spike on the roll date of the index, but this increase in trade

volume is temporary. There is no significant increase in trade volume around the time of the

announcement. The result from the previous section finds that there is no significant change in the

CDS-bond basis around the roll date, and this suggests that liquidity is not the driving force behind

changes in bases.
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To eliminate confounding variables that arise from behavioral responses by market participants,

we look at a triple difference estimation following Equation (9). The only difference between

addition to the HY index and addition to the IG index is the credit rating of the firm, which is

publicly known well before the announcement or roll dates. As such, if different market reactions

to addition versus removal resulted in changes to the CDS-bond bases, such reactions should not

be present in the triple-difference regression. Table 3 shows that the change in the CDS basis for

added entities relative to removed entities is 41 percent higher when the entity was added to the

HY index rather than the IG index. This result implies that the implicit margin for a CDS contract

in the HY index is much lower than the margin for contracts in the IG index, likely because the HY

index is composed of fewer entities, so that each individual entity accounts for a greater percentage

of the index’s cash flows.

C Three-State Model with Collateral and CDS

This section presents a multi-state extension of Fostel and Geanakoplos (2012a) with the addition

of tranching or pyramiding. The restriction to debt requires imposing more structure on preferences

and endowments. In this environment, we are able to completely characterize equilibria, as well

as derive similar results regarding how structured finance affects the basis. We first present the

three-state model and then characterize equilibria with different financial regimes. Proofs are in

Appendix C.10.

C.1 The Model

Time, Assets, and Investors

We consider a two-period, three-state model with time t = 0,1. Uncertainty is represented by a tree

S = {0,U,M,D} with a root s = 0 at t = 0 and three states of nature s =U,M,D at t = 1.There are two

fundamental assets, X and Y , which produce dividends of the consumption good at time 1. Asset

X is risk-free, producing (as a normalization) 1 unit of the consumption good in every final state.

Asset Y is risky, producing dY
U = 1 unit in state U (a normalization), dY

M < 1 units in state M, and

dY
D < dY

M in state D. We think of asset Y as a financial asset, such as a corporate bond, a pool of
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Table 3: Triple-difference estimations comparing the effect of inclusion versus exclusion for the
HY index relative to the IG index. The first two specifications looks at the percent change in the
CDS-bond basis around the time of the announcement and roll. The last two specifications include
controls for the month and year, as well as indicators for whether the entity switched indices. The
month and year controls are not shown in the table.

Dependent variable: Normalized CDS basis (percent changes)

announcement roll announcement roll

(1) (2) (3) (4)

time −0.046 0.221∗∗∗ −0.046 0.221∗∗∗

(0.091) (0.076) (0.091) (0.076)

added 0.000 −0.000 0.028 −0.011
(0.092) (0.070) (0.096) (0.071)

HY 0.000 0.000 0.022 0.027
(0.090) (0.084) (0.099) (0.086)

Switch to HY 0.084 0.048
(0.077) (0.076)

Switch to IG −0.011 −0.099
(0.086) (0.085)

announced×HY 0.0002 −0.317∗∗∗ 0.0002 −0.317∗∗∗

(0.128) (0.118) (0.128) (0.118)

announced×added 0.038 0.009 0.038 0.009
(0.130) (0.099) (0.130) (0.099)

added×HY −0.000 0.000 −0.028 −0.046
(0.127) (0.107) (0.141) (0.111)

announced×added×HY 0.412∗∗ 0.029 0.412∗∗ 0.029
(0.180) (0.151) (0.180) (0.151)

Observations 214 486 214 486
R2 0.166 0.078 0.209 0.102
Adjusted R2 0.138 0.064 0.136 0.067

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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mortgages, or an asset-backed security, rather than a physical asset like a house or the assets of a

firm. With a slight abuse of notation we let M, D be the dividends in states M, D with D < M < 1.

Asset payoffs are shown in Figure 5.

t = 0

s = 0

t = 1

U

M

D

γU(h)

γM(h)

γD(h)

dY
s

1

M < 1

D <M

dX
s

1

1

1

Figure 5: Payoff tree of assets X and Y in three-state world.

We suppose that agents are uniformly distributed on (0,1), that is they are described by

Lebesgue measure. (We will use the terms “agents” and “investors” interchangeably.) Agents

are risk-neutral and have linear utility in consumption c at time 1. Each agent h ∈ (0,1) assigns

subjective probability γs(h) to the state s, and beliefs γs(h) are continuous in h. The expected

utility of agent h is

Uh(c) = γU(h)cU +γM(h)cM +γD(h)cD,

where cs is the consumption in state s. At t = 0, each investor is endowed with 1 unit of each asset

X and Y .

To ensure that in equilibrium investors’ positions are sorted by their level of optimism, we

suppose hazard rate dominance (see also Simsek, 2013; Gong and Phelan, 2019), which we can

write as

γU(h)+γM(h) and
γU(h)

γU(h)+γM(h)
are increasing in h. (A1)

High h investors believe that state D is unlikely and that, conditional on the state being at least M,

state U is relatively likely. This setup is equivalent to a model with finitely many heterogeneous

risk-averse agents, where endowments and preferences are such that marginal utilities or “hedging
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needs” are monotonic and uniformly increasing by state.

Financial Contracts and Collateral

We restrict attention to debt contracts and CDS. Debt contracts, denoted j`, promise non-contingent

payments (`,`,`). Without loss of generality, we suppose that all debt contracts are collateralized

by one unit of the risky asset Y (selling a non-contingent promise backed by X as collateral would

be equivalent to selling a fraction of X). Debt contracts with promises ` ≤D are fully collateralized

(never default) and are therefore risk free. Debt contracts with D < ` ≤M will default in state D but

deliver the promise ` in states U and M.

A CDS contract on the risky asset Y , denoted by CDSY , pays 1−dY
s in state s (the difference

between the maximum payout of Y and the actual payout of Y ). To simplify the analysis, we

require that each unit of the CDS contract be fully collateralized so that any agent selling the

CDSY contract is able to repay his obligations regardless of which state is realized.16 The safe

asset X can serve as collateral for CDS. Since CDSY pays (0,1−M,1−D), every unit of CDSY

must be collateralized by (1−D) units of X . (Alternatively, an agent holding one unit of X can sell
1

1−D units of CDSY .) When Y can serve as collateral for CDS, one CDSY contract must be backed

by D
1−D units of Y ; alternatively, 1

D units of Y can back 1
1−D units of CDSY . We let JY and JX be the

set of promises backed by Y and X respectively. Thus, to start JX = (CDSY ,(1−D)X). Later we

will introduce a CDS on risky debt contracts (specifically on jM), which will expand JX .

Definition 4. Debt collateralization is the process by which agents use debt contracts j ∈ JY to

issue financial promises in the form of debt or CDS. An economy with debt collateralization is one

in which agents are allowed to use any debt contract as collateral.

We allow agents to trade contracts of the form j1
` = (`, jM). This contract promises a non-

contingent payment (`,`,`) backed by the risky debt jM acting as collateral. The restriction to jM

is without loss of generality; we could let any contract j ∈ JY serve as collateral, but in equilibrium

16This restriction is not without loss of generality for the equilibrium regime, though our main results continue
to hold. As will be clear from the analysis that follows, if agents could sell “partially collateralized CDS,” then in
equilibrium some agents would sell CDS collateralized by only 1−M units of X , which would yield the CDS buyers
a payoff of (0,1−M,1−M) and the sellers a payoff of (1−M,0,0). The first payoff would be attractive to “high
pessimists” and the second payoff would be attractive to the most optimistic agents, and is equivalent to buying Y and
promising M, which we consider in the sections with leverage.
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only jM will be traded and thus only jM will serve as collateral (Gong and Phelan, 2019). The

contract jM delivers d jM
s = (M,M,D), and the payoff to j1

` in each state is min{`,d jM
s }. Note that

the act of holding jM and selling the contract j1
D is equivalent to buying jM with leverage promising

D, yielding a payoff of (M−D,M−D,0). We also allow agents to use safe debt jD to issue CDS,

which is the contract (CDSY ,(1−D) jD), and this contract has identical payoffs to CDS backed by

X . Denote the set of contracts backed by jM and jD by J1.

In our model, variations in the financial environment are the drivers of variations in CDS

bases. These variations can reflect changes in how assets or contracts are used as collateral or

changes in how assets are tranched in securitized markets. Before proceeding with the theoretical

analysis, we explain this equivalence in greater detail. To fix ideas, let M = 0.3 and D = 0.1.

Consider when debt contracts can be used as collateral, and consider the following equilibrium

regime. Some investors buy the risky asset Y with maximum leverage, issuing a risky debt

contract that promises M = 0.3. This debt contract will default in state D, and thus the payoff

is (0.3,0.3,0.1). The investors that bought Y and issued the contract would be left with payoffs

(0.7,0,0). Another set of investors would buy this risky debt with leverage, issuing a risk-free debt

contract that promises D = 0.1. The investors in risky debt would be left with payoffs (0.2,0.2,0).

In total, investors in the economy will hold the following set of payoffs, (0.7,0,0); (0.2,0.2,0);

(0.1,0.1,0.1), all of which are ultimately backed by the payoffs to Y . These payoffs are exactly

what would occur if Y were tranched into senior-subordinated tranches. The most senior tranche

would be guaranteed to pay in every state, and thus could deliver D = 0.1. The mezzanine tranche

would default in state D but would otherwise be able to deliver 0.2. The subordinated, or equity,

tranche would deliver the residual payment in state U alone, delivering 0.7.

C.2 Baseline Results

Note that the payout of holding one unit of X is equivalent to holding one unit of Y and one unit

of CDSY . Thus, the basis can be equivalently defined to be the difference in the price of these two

options: BasisY = (p+πY
C )−1, or p+πY

C = 1+BasisY . We use the term “cash-synthetic asset” to

refer to a portfolio consisting of equal units of Y and CDSY since this option, like X , is completely

risk-free.
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We first characterize the basis in an economy without short selling. We consider when agents

can (1) use X as collateral to issue CDSY ; (2) use Y as collateral to issue debt contracts and to

issue CDSY ; and (3) use debt contracts to issue debt and CDSY . We refer to (2) as the leverage

economy17 and (3) as the debt-collateralization (or structured finance) economy. This section

presents the main theoretical results, and later sections provide the complete characterizations of

equilibria.

Limiting leverage (i.e., restricting the set of contracts backed by Y ) decreases the basis. If

Y is imperfect collateral, perhaps due to regulations or because financial markets have concerns

arising from informational frictions, then the basis will be negative. If the risky asset Y can be

used as collateral to issue debt contracts and CDSY , then the basis is nonnegative. The following

proposition extends the results in Fostel and Geanakoplos (2012a) to multi-state economies.

Proposition 4. Suppose that the only financial contracts agents can trade are debt and a CDS on

Y . Then,

1. (No leverage) If only X can serve as collateral for financial contracts, then agents will issue

CDSY backed by X and the basis on Y is negative, πY
C + p < 1.

2. (Leverage) If X and Y can serve as collateral for financial contracts, then in the following

cases

(a) if there are limits on the collateral ability of Y so that Y cannot issue CDSY and Y can

only issue safe debt, then the basis is negative p+πY
C < 1.

(b) if there are no limits on the collateral ability of Y (Y can issue CDSY and any kind of

debt), then the basis is non-negative πY
C + p ≥ 1.

3. (Debt Collateralization) If X, Y , and debt can serve as collateral for financial contracts,

then the basis is positive πY
C + p > 1.

Here is the intuition for the results. The price of an asset can be decomposed into the sum

of its “payoff value” (PV) and its “collateral value” (CV) to any agent who holds the asset. The

PV is an agent’s normalized expected marginal utility of the future dividends; the CV measures

17This case has been considered by Fostel and Geanakoplos (2012a) in a two-state economy.
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the asset’s value of the collateral capacity of the asset, which is also how much the agent values

liquidity.18 When an asset can be used as collateral, its price generally exceeds the payoff value.

When an asset cannot act as collateral, the CV is always zero. When the risky asset Y cannot

be used as collateral at all (case 1) or for CDS (case 2), then X is superior collateral and then Y

trades at a negative basis to X . When Y can be used as collateral without constraint, then X does

not have greater collateral capacity and so the basis disappears. Indeed, since CDS must be fully

collateralized whereas Y could be used to issue risky debt (which might default), X has a limited

collateral capacity compared to Y and so Y may trade at a premium.

Finally, with structured finance as in the third case, debt backed by Y can be used as collateral.

This increases the collateral value of jM (since agents buying jM have the ability to sell j1
D),

increasing πM in equilibrium. Since agents can leverage their purchases of Y by borrowing

πM, agents can now buy Y with higher leverage, raising the equilibrium demand for Y . Debt

collateralization increases the collateral value of Y because Y can be used to issue jM and therefore

inherits some of the increase in the collateral value of jM. Thus the risky asset Y now has two

“levels” of collateralization—the first from allowing Y to back debt contracts, and the second from

allowing these debt contracts to back further contracts. The collateral value of X does not change

because it can still issue only one contract, CDSY . In other words, Y back all the same contracts

that X can, but Y can also back contracts that can be further collateralized downstream.19 These

forces increase the price of Y relative to the price of X and result in a positive basis.

C.3 No Leverage: C j = X

We first characterize equilibrium with no leverage before considering when Y can serve as collateral.

Consider the scenario in which agents cannot use Y as collateral to issue debt contracts.

Formally, JY = ∅ and J = JX = (CDSY ,(1−D)X) is the only financial contract available for trade.

We denote the act of holding X and selling the maximum allowable amount of CDSY by X/CDSY .

In this regime, agents can take any of the following positions: (i) X/CDSY (hold X and sell CDSY ),

18Fostel and Geanakoplos (2008) define the PV of an asset j to an agent i as PV i
j ≡∑s∈S γ

i
sd

j
s ( dui(ci

s)
dc )/(

dui(ci
0)

dc ),
where ui is the utility of agent i and γ

i
s is the subjective probability the agent assigns to state s.

19Agents have no desire to use X to issue debt contracts since leveraging a completely safe asset provides no
benefits
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(ii) buy Y , (iii) buy X or the cash-synthetic asset made of a portfolio of both Y and CDSY , and (iv)

buy the financial contract CDSY . Notice that the above positions are listed in terms of decreasing

optimism/increasing pessimism. An agent who believes that state U is very likely to happen will

choose to either buy Y or hold X/CDSY , whereas an agent who believes that state D is more likely

will want to purchase CDSY . Because agents are risk neutral, every agent will choose exactly

one of the above positions based on how optimistic they are. The following result characterizes

equilibrium in this economy.

Lemma 3. In this regime, no agent chooses to hold safe assets without selling financial contracts.

That is, no agent chooses to hold simply X or the cash-synthetic asset made of a portfolio of Y and

CDSY . In fact, any agent who holds X will also sell the maximum allowable amount of CDSY .

The intuition is straightforward. Any agent who does not want to buy X and sell the CDS

must value consumption in state D. This is because selling the CDS means that the agent loses

consumption if the down state occurs. Thus, these agents are relatively pessimistic (compared to

agents who do choose to sell the CDS) and must therefore be willing to sacrifice consumption

in state U for the chance to have even more consumption in state M or D. Since CDSY pays

(0,1−M,1−D), in equilibrium prices must be such an agent will want to invest in CDSY rather

than hold X . The basis must be negative in this economy (Proposition 4).

In this equilibrium regime, agents choose to hold X rather than the cash-synthetic asset even

though the two have equivalent payoffs and the latter is cheaper. While this outcome may seem

illogical, the result occurs in equilibrium because neither Y nor CDSY can be used as collateral:

neither have collateral value. Thus, agents hold X precisely because it allows them to sell the CDS,

and therefore isolate payoffs in states U and M. Any agent who chooses to hold the portfolio of Y

and CDSY cannot isolate payoffs in any states but accepts equal payoffs in every state. It is worth

contrasting this result with traditional theories that ignore collateral. Traditional theory predicts

that the CDS spread should be equal to the bond spread, due to the arbitrage opportunity that

would arise otherwise. Even when agents cannot short-sell assets, the spreads should still be equal

because agents can always choose buy the cheaper option—either the safe asset or a combination

of the risky asset and its CDS. It is the ability of X to issue financial contracts that gives X a higher

price. Combining these results, we obtain the following lemma, which describes equilibrium in
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this regime.

Lemma 4. In this economy, equilibrium consists of the following portfolio positions, ordered by

investors: (1) X/CDSY , (2) Y , and (3) CDSY .

There are two marginal buyers h1 and h2. The most optimistic agents in the economy h > h1

will sell their endowment of Y to buy X and issue the maximum allowable number of CDSY .

Moderate agents h ∈ (h1,h2) will sell their endowment of X to buy all the units of the risky asset

Y . Pessimists h < h2 will sell their endowment of X and Y to buy the financial contract CDSY sold

by optimists. Figure 6 illustrates the equilibrium regime. Arrows point from lender to borrower

and we see pessimists (those holding CDSY ) lending to optimists (those holding X/CDSY ) in this

economy.

h = 1

h = 0

h1

Optimists holding X/CDSY

Moderates holding Y

Pessimists holding CDSY

h2

Figure 6: Equilibrium with CDSY , no leverage. Holders of CDSY fund optimists.

Marginal investors are indifferent between two different options. Agent h1 is indifferent

between selling the CDSY collateralized by X and buying the risky asset Y

γU(h1)(1−D)+γM(h1)(M−D)

1−D−πY
C

=
γU(h1)+γM(h1)M+γD(h)D

p
. (10)

Agent h2 is indifferent between buying Y and buying the financial contract CDSY

γU(h2)+γM(h2)M+γD(h)D
p

=
γM(h2)(1−M)+γD(h2)(1−D)

πY
C

. (11)
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Market clearing for X requires
(1−h1)(1+ p)

1−
πY

C
1−D

= 1, (12)

and market clearing for Y requires

(h1−h2)(1+ p)
p

= 1. (13)

Equation (12) states that agents buying X , h ∈ (h1,1) will spend all of their endowment, (1+ p)

to purchase X , which has price 1. With each unit of X they buy, they will also sell 1
1−D units of

CDSY , which has price πY
C . The revenue from these sales is used to buy more X . The demand

for X is equal to the supply, which is 1. Equation (13) states that agents buying the risky asset

Y , h ∈ (h2,h1) will spend all of their endowment on Y , which has price p, and that the amount

demanded by these agents must be equal to the unit supply in the economy.

C.4 Leverage Economy: C j ∈ {X ,Y}

Consider when the risky asset Y can be used as collateral to issue debt contracts and CDSY . In

particular, one unit of Y can back a non-contingent debt promise (`,`,`), or 1−D
D units of Y can

back one (fully collateralized) CDS contract. This is due to the fact that the CDS pays 1−D in the

same state when Y pays D.

The results of Fostel and Geanakoplos (2012a,b) characterize which contracts will be traded

in equilibrium in an economy with only debt contracts, and these results allow us to characterize

equilibrium with CDS. In an economy with debt contracts and without leverage limits, two debt

contracts are traded in equilibrium: jD = D and jM = M, with prices πD and πM respectively.

The contract jD delivers (D,D,D), while jM delivers (M,M,D). Unlike the safe promise jD, the

delivery of jM depends on the realization of the state at time 1. Therefore, jM is risky and has price

πM <M. The interest rate for jM is strictly positive and is given by iM = M
πM −1, and is endogenously

determined in equilibrium.

First, note that holding 1−D units of Y and selling D units of CDS contracts yields (1−D,M−

D,0), which is the same payoff as holding one unit of Y and selling the promise jD. Second,

holding (1−D) of X and selling one unit of CDSY also yields the same payoff as holding one
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unit of Y and selling the promise jD. We denote buying Y and selling CDS by Y /CDSY , buying

Y and selling jD by Y / jD, and buying X and selling CDS by X/CDSY , where all positions are

appropriately scaled to be fully collateralized: Y /CDSY costs (1−D)p−DπY
C ; Y / jD costs p−πD;

X/CDSY costs 1−D−πY
C . Since all positions yield the same cash flows, investors will choose

the positions which are cheapest. An immediate implication is that the equilibrium basis is non-

negative.

If the basis were negative, then agents would prefer to use Y as collateral to issue CDS over

using X , and so no agent would hold X . In fact, we can say more: if the basis is zero, then X/CDSY

is equivalent to Y /CDSY and both will be traded in equilibrium; when the basis is strictly positive

then X/CDSY is cheaper and no agent will trade Y /CDSY in equilibrium. Accordingly, equilibrium

in the leverage economy can be described by three marginal investors h1,h2,h3. Investors h > h1

buy the risky asset Y and issue risky debt. Investors with h ∈ (h2,h1) issue CDS contracts, using

either X or Y as collateral. Investors with h ∈ (h3,h2) buy risky debt, and the remaining investors

buy CDS.

Lemma 5. In the leverage economy, equilibrium consists of the following portfolio positions,

ordered by investors: (1) Y / jM, (2) X/CDSY ≡ Y /CDSY , (3) jM, (4) and CDSY . When the basis

is zero, then a fraction of Y is used for Y /CDSY , but no agents trade Y /CDSY when the basis is

positive.

That the four positions exist in equilibrium is immediate. Figure 7 shows the equilibrium

regime. Arrows point from lender to borrower. In this economy, pessimists lend to optimists.

With leverage, equilibrium consists of three marginal investors, h1, h2, and h3 and the following

equations defining the marginal investors. Agent h1 is indifferent between holding the risky asset

with leverage promising M and buying the risky asset with leverage promising D,

γU(h1)(1−M)

p−πM =
γU(h1)(1−D)+γM(h1)(M−D)

p−D
. (14)

Agent h2 is indifferent between buying the safe asset to sell CDSY and holding the risky debt

promising M

γU(h2)(1−D)+γM(h2)(M−D)

1−D−πY
C

=
(γU(h2)+γM(h2))(M)+γD(h2)D

πM . (15)
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h = 1

h = 0

Y / jM

X/CDSY ≡Y /CDSY

jM

CDSY

h1

h2

h3

Figure 7: Equilibrium with leverage and CDSY backed by X . Buyers of CDSY fund moderates
holding X/CDSY . Agents purchasing jM lend to optimists.

Agent h3 is indifferent between holding the risky debt jM and buying the CDSY contract.

(γU(h3)+γM(h3))M+γD(h3)D
πM =

γM(h3)(1−M)+γD(h3)(1−D)

πY
C

. (16)

Denote by η the fraction of Y used to back CDSY . Market clearing for the risky asset Y requires

(1−h1)(1+ p)
p−πM = 1−η . (17)

Market clearing for risky debt jM requires

(h2−h3)(1+ p)
πM =

(1−h1)(1+ p)
(p−πM)

. (18)

The market clearing condition for CDSY is

h3(1+ p)
πY

C
= (1+ηD)(

1
1−D

) . (19)

Equation (17) states that the amount of risky asset Y demanded by agents h ∈ (h1,1) is equal to the

amount of risky assets not backing CDSY . Equation (18) states that agents h ∈ (h3,h2) will sell their

endowment which has value 1+ p and buy the risky debt, costing πM for each unit; this demand

must equal the amount supplied, which is created by the agents h ∈ (h1,1) who sell one unit of

47



jM for every unit of Y they hold. Finally, Equation (19) states that agents h ∈ (0,h3) will sell their

endowment to buy CDSY , which has price πY
C and that this demand is equal to the amount supplied

in the economy—a total of 1
(1−D) units of CDSY are created from the one unit of X and D

1−D units

are created from the equilibrium amount η backed by Y .

Notice that we could implement this equilibrium if we let any safe asset—specifically, jD in

addition to X—be used as collateral to back CDSY . Whether or not Y can back CDSY , equilibrium

would be unchanged. In equilibrium, if the basis is zero, then agents will trade Y / jD, and every

agent that buys jD will use it as collateral to sell CDSY (just as they do with X). Thus, πD = D,

and the following positions will be equivalent: X/CDSY , Y / jD, jD/CDSY . The risky asset Y would

implicitly back CDSY because it would be used to back safe debt which was used to back CDSY .

C.4.1 Leverage Constraints and Negative Bases

Before investigating how leverage limits affect the basis, we document that for almost all parameters,

the basis is zero with full leverage. (Our theoretical result is simply that the basis is non-zero.)

Figure 8 plots the basis in leverage economies, with beliefs parametrized by the form γU(h) = hζ

and γM(h) = hζ (1−hζ ), when beliefs are given by ζ = 0.5 and ζ = 1. The parameter ζ determines

the relative frequency of optimists and pessimists in the economy; equivalently, the frequency of

pessimists can be interpreted as the relative demand for assets that pay in bad states (negative-

beta assets), perhaps from hedging needs or risk aversion. High ζ corresponds to relatively more

pessimists and low ζ to more optimists (with ζ > 1, γ’s are convex; ζ < 1, concave).

In general the basis is zero, but as noted earlier the basis can be positive. In these cases, the

risky asset Y is not used to issue CDS but is exclusively used to issue risky debt. There is a small

range with a positive basis around M = 0.3,D = 0.08. This region grows slightly as ζ decreases, but

for ζ sufficiently high (for example, ζ = 1.5) the basis is always zero for all payoffs.

The zero-basis result emerges when Y and X have equal abilities to serve as collateral, albeit

to make different promises. However, if Y is imperfect collateral, perhaps because of regulations

or because financial markets have concerns arising from informational issues, then the basis will be

negative. This follows because if the collateral value of Y decreases, then a negative basis emerges.

Suppose that Y can be used to issue debt contracts, but the maximum promise is ¯̀< M. That is,

one unit of Y can at most back a non-contingent promise ( ¯̀, ¯̀, ¯̀). Furthermore, Y cannot be used
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(a) Leverage: ζ = 0.5
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(b) Leverage: ζ = 1

Figure 8: Comparative Statics: basis (times 100) varying payoffs M, D with leverage.

to issue CDS.

When ¯̀≤ D, the only debt contract traded is j ¯̀ = ¯̀ which delivers the promised amount in

every state of the world. However, because this safe debt cannot be used to issue CDS, it trades at

a discount to X (there is a basis on the safe debt), and so π
¯̀
< ¯̀. Equilibrium in this case is ordered

as follows (starting with the most optimistic): agents holding X to issue CDS; agents holding

Y and issuing safe debt (the leverage constraint); agents holding safe debt; agents holding CDS.

Furthermore, the basis is negative. While we have not been able to prove so, numerical examples

suggest that the basis is monotonic in ¯̀ for ¯̀< D, with the basis more negative the tighter is the

leverage constraint (lower ¯̀).

When D < ¯̀<M, two debt contracts are potentially traded: the safe contract jD =D and a risky

contract j ¯̀ = ¯̀. The jD contract delivers (D,D,D) while the j ¯̀ contract delivers ( ¯̀, ¯̀,D) because

agents default in the down state. Depending on parameters, in equilibrium agents may trade the

risky contract only. While we have not been able to prove so in this case, numerical results (below)

suggest that in either case the leverage constraint decreases the basis.

Figure 9 plots the basis with beliefs parametrized by the form γU(h) = hζ and γM(h) = hζ (1−

hζ ), with D = 0.1 and M = 0.3, solving for the basis as a function of ¯̀ and varying the parameter ζ .

The numerical examples provide two results in addition to our propositions. First, for low ζ

(corresponding to high levels of optimism or high marginal utilities in good states), the basis with

leverage limits and when Y cannot be used to issue CDS converges to the basis without leverage
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Figure 9: Leverage Constraints and the Basis. Dashed lines are the basis in an economy without
leverage constraints and in which Y can be used to issue CDS.

limits and when Y can be used to issue CDS. In particular, in these cases the restriction that

Y cannot issue CDS is not binding when leverage limits are relaxed (note that the basis would

actually be positive in this case). In these economies, when ¯̀> D agents trade only risky debt in

equilibrium.

However, when ζ is high (corresponding to low levels of optimism or high marginal utilities

in bad states), the basis with leverage limits does not converge to the basis when Y can be used to

issue CDS. In these cases, in equilibrium agents use Y to issue safe debt, and the basis on the asset

exactly equals the basis on the safe debt .

Second, when neither safe assets nor Y can back CDS contracts, the basis need not be monotonic

in ¯̀ when D < ¯̀< M. In particular, when the economy features a relatively high demand for risk

(ζ is low, marginal utilities are high for higher states), the basis is monotonic. However, when

the economy features a substantially high demand for negative-beta assets (ζ is high, marginal

utilities are high for low states), the basis can decrease as ¯̀ increases from D to M. Varying the

asset payoffs emphasizes these non-monotonicity results. Figure 10 plots the effects of leverage

constraints on the basis, varying ζ , for two different sets of payoffs. When in equilibrium agents do

not use Y to issue safe debt, the basis decreases significantly when ¯̀ increases beyond D. In panel

(a) to the left, for ζ = 2,3 agents use Y to exclusively issue risky debt. In this case, increasing the
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leverage limit actually decreases the basis. However, when agents use Y to issue safe debt, there is

a basis on safe debt (because it cannot be used to issue CDS while X can), and the basis on the asset

exactly equals the basis on the safe debt. Panel (b) to the right shows this for ζ = 0.75,1,2, and

for ¯̀> .3 for ζ = 2.5. For ζ = 2.5 the equilibrium regime shifts as leverage constraints rise. For the

loosest constraints, agents use Y to issue safe debt, but this is not the case for tighter constraints.
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Figure 10: Leverage Constraints and the Basis.

C.5 Structured Finance (Pyramiding, Tranching) Economy: C j ∈ {X ,Y, jM}

Given our earlier results, we can proceed to characterize equilibrium.

Corollary 4. In the economy with debt collateralization and CDSY backed by X, it is cheaper to

hold X/CDSY than Y / jD. Thus, no agent will hold Y / jD. That is, (1−D)−πY
C < p−D.

Lemma 6. In this economy, equilibrium consists of the following portfolio positions, ordered by

investors: (1) Y / jM, (2) X/CDSY ≡ j1
D/CDSY , (3) jM/ j1

D, and (4) CDSY . This characterization of

equilibrium is not dependent on which assets can be used to issue CDSY . In fact, the equilibrium

regime does not change even if we allow agents to use Y and jM to back the CDS,

It is clear from earlier results that the above four positions must exist in equilibrium. Figure

11 depicts the equilibrium regime. There are three marginal buyers. Arrows demonstrate the

lender-borrower relationship in this economy, pointing from lenders to borrowers. Compared to
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the leverage economy, there is no longer a clean lending relationship, with pessimistic investors

always lending to more optimistic agents. In addition to the usual lending flows, in this equilibrium

we also see relatively optimistic agents (those holding the safe asset and selling CDS) lending to

more pessimistic agents (those holding the risky debt contract) by buying the safe debt contract

issued by the pessimists. This occurs because the safe debt issued by these pessimists can be

leveraged to make an even more optimistic trade. (This is a form of financial entanglement.)

h = 1

h = 0

Y / jM

X/CDSY ≡ j1
D/CDSY

jM/ j1
D

CDSY

h1

h2

h3

Figure 11: Equilibrium with debt collateralization and CDSY backed by X . Regime features
financial entanglement.

The following equations define marginal investors (given by equalizing expected returns on

two investment options) in the debt collateralization economy. Agent h1 is indifferent between

buying Y with leverage promising M and holding X while selling CDSY

γU(h1)(1−M)

p−πM =
γU(h1)(1−D)+γM(h1)(M−D)

1−D−πY
C

. (20)

Agent h2 is indifferent between buying X to sell CDSY and buying jM with leverage D

γU(h2)(1−D)+γM(h2)(M−D)

1−D−πY
C

=
(γU(h2)+γM(h2))(M−D)

πM −D
. (21)

Agent h3 is indifferent between buying the risky debt with leverage promising D and buying the

CDS
(γU(h3)+γM(h3))(M−D)

πM −D
=

γM(h3)(1−M)+γD(h3)(1−D)

πY
C

. (22)
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Market clearing for the safe asset X requires

(h1−h2)(1+ p)

1−
πY

C
1−D

= 1. (23)

Market clearing for the risky debt jM implies that

(h2−h3)(1+ p)
πM −D

= 1. (24)

Finally, market clearing for CDSY requires

h3(1+ p)
πY

C
=

1
1−D

. (25)

C.5.1 Numerical Example

While our results hold across parameters and are not quantitative, a numerical example is helpful

to fix ideas. We let beliefs be γU(h) = h, γM(h) = h(1−h), and let payoffs be dY
M = 0.3 and dY

D = 0.1.

Table 4 compares equilibrium with no leverage, leverage, and debt collateralization. When debt

backed by Y can be used to back further debt contracts, the basis is positive since Y now has two

levels of collateralization. Our results explicitly demonstrate that the basis does not only depend

on whether Y can be used as collateral—it is also intrinsically linked to the collateral value of

“downstream” promises backed by Y .

Table 4: Equilibrium with No Leverage, Leverage, and Debt Collateralization

No Leverage Leverage Debt Collateralization
p 0.447 0.508 ↑ 0.529 ↑

πY
C 0.513 0.492 ↓ 0.491 ↓

πM – 0.204 0.224↑
BasisY -0.040 0 ↑ 0.020 ↑

An agent in the no-leverage regime could choose to buy the cash-synthetic asset consisting

of a portfolio of Y and CDSY —at a lower price than X while earning the same return—but this

portfolio is less valuable to agents because it cannot be used as collateral to back financial contracts.

Thus, the cash-synthetic asset does not provide agents the ability to isolate payoffs in a state of the
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world. Similarly, every investor in the debt collateralization economy could sell Y and CDSY to

buy X at a price lower than the cash-synthetic asset. However, in equilibrium, no agent chooses to

do so because the value of “downstream” contracts backed by X is lower than those backed by Y ,

and it is also cheaper for the agent to buy X while selling the CDSY contract.

In fact, a positive basis could emerge in a leverage economy when there is a strong demand

to use Y to issue risky debt, rather than to use Y to issue CDS, which is the equivalent leveraging

with safe promises. To see this, consider the following comparative static for the economy above.

Redistribute wealth from agents h<h3 to agents h>h1. For small redistribution, the only equilibrium

variable affected would be η , the fraction of Y used to back CDSY , and thus the supply of CDS.

Taking wealth from agents h < h3 would decrease demand for CDS, and increasing wealth for

agents h > h1 would increase demand for Y / jM. A large enough redistribution would require η = 0,

at which point marginal agents and prices would change and the basis could be positive so that

agents trading X/CDSY would not trade Y /CDSY .

However, if agents could sell partially collateralized CDS, then a zero-basis would re-emerge

because a issuing a partially collateralized CDS is equivalent to Y / jM. Thus, the positive basis

emerges with the restriction that CDS be fully collateralized because X is “constrained” in the set

of promises it can make while Y is not. See Figure 8 for comparative statics regarding positive

bases with leverage.

C.5.2 Comparative Statics and Tail Risk

We now consider how variations in the payoffs M and D affect the size of the basis in the economy

with debt collateralization. Figure 12 plots the basis (multiplied by 100) with debt collateralization

varying the payoffs M and D. We parameterize beliefs as before (results are qualitatively the same

for other belief structures). The comparative statics provides the following main qualitative results,

which are interesting testable implications for our model. With debt collateralization the basis is

more positive when tail risk is larger (when D is small and M is large). Debt collateralization

endogenously shifts equilibrium so that investors purchase the asset only with the riskiest contract.

When M and D are very different, leveraging the asset with a safe promise is not very valuable.

Since debt collateralization endogenously increases the fraction of investors issuing expensive

promises to buy the asset, with substantial tail risk, the collateral value of Y substantially. Thus,
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variations in tail risk ought to correspond to variations in the size of the CDS basis.
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Figure 12: Comparative Statics with debt collateralization: basis (times 100) varying payoffs M,
D.

C.6 Equilibrium Conditions with CDSM and Leverage

Proposition 5. Consider an economy with CDS contracts CDSY and CDSM, which are backed by

safe assets:

1. (Leverage) In an economy with level-0 contracts only, the basis on the risky debt is negative

and the basis on the risky asset is non-negative. That is, πM +πM
C <M and p+πY

C ≥ 1.

2. (Pyramiding) In an economy with level-1 contracts, the basis on the risky debt is zero and

the basis on the risky asset is positive, πM +πM
C =M and p+πY

C > 1

Marginal investors are given by equalizing expected return on two investment options. There

are five marginal investors in equilibrium and they are as follows: agent h1 is indifferent between

buying Y while making the jM promise and buying Y while making the jD promise

γU(h1)(1−M)

p−πM =
γU(h1)(1−D)+γM(h1)(M−D)

1−D−πY
C

. (26)
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Agent h2 is indifferent between buying X leveraged with the CDSY contract and buying X leveraged

with the CDSM contract

γU(h2)(1−D)+γM(h2)(M−D)

1−D−πY
C

=
(γU(h2)+γM(h2))(M−D)

M−D−πM
C

. (27)

Agent h3 is indifferent between holding X to sell the CDSM contract and buying the risky debt jM

(γU(h3)+γM(h3))(M−D)

M−D−πM
C

=
(γU(h3)+γM(h3))M+γD(h3)D

πM . (28)

Agent h4 is indifferent between buying jM debt contract and buying the CDSY contract

(γU(h4)+γM(h4))M+γD(h4)D
πM =

γM(h4)(1−M)+γD(h4)(1−D)

πY
C

. (29)

Agent h5 is indifferent between buying the CDS on the risky asset and the CDS on the risky debt.

γM(h5)(1−M)+γD(h5)(1−D)

πY
C

=
γD(h5)(M−D)

πM
C

. (30)

We obtain market clearing conditions by equating the supply and demand for a given asset.

For any asset, agents demanding the asset will spend their endowment (1+ p) to buy the asset, at

some price either with or without leverage. Market clearing for the safe asset X requires

(h1−h2)(1+ p)

1−
πY

C
1−D

−(1−
(1−h1)(1+ p)

p−πM )+
(h2−h3)(1+ p)(M−D)

M−D−πM
C

= 1. (31)

Market clearing for the risky debt implies

(h3−h4)(1+ p)
πM =

(1−h1)(1+ p)
p−πM . (32)

Market clearing for CDSY guarantees

(h4−h5)(1+ p)
πY

C
=
(h1−h2)(1+ p)

1−D−πY
C

−(1−
(1−h1)(1+ p)

p−πM ) . (33)
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Finally, market clearing for CDSM necessitates

h5(1+ p)
πM

C
=
(h2−h3)(1+ p)
(M−D−πM

C )
. (34)

Figure 13 illustrates the equilibrium regime with the direction of the arrow indicating the

direction of funding. In general, pessimists lend to optimists in this economy. The most pessimistic

agents buy the CDSM promise from moderates, thereby lending to agents holding X/CDSM. Agents

who are slightly less pessimistic hold CDSY , funding those who hold X/CDSY . Moderates buying

the risky debt contracts lend to the most optimistic agents in the economy, who are buying Y

while making the jM promise. However, financial entanglement occurs between agents who hold

X/CDSY , Y / jD or X/CDSM; the safe debt contracts, jD are being bought by agents who hold X .

Thus, within (h1,h2), agents are (potentially) lending to each other, and agents in (h2,h3) are also

lending to those in (h1,h2).

h = 1

h = 0

Y / jM

X/CDSY ≡Y / jD

X/CDSM ≡ jD/CDSM

jM

CDSY

CDSM

h1

h2

h3

h4

h5

Figure 13: Equilibrium with CDSY and CDSM (backed by X). No debt collateralization.

C.7 Economy with CDSM and Pyramiding

Figure 14 depicts the equilibrium regime and shows the direction of funding between agents. The

borrower-lender relationships are similar to those in the previous regime. However, agents who
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are buying safe assets and selling the CDSY contract are now lending to more pessimistic investors

holding the risky debt contract with with leverage. This occurs because the safe debt issued by the

moderates can be used as collateral to issue CDSY , which is a riskier position.

h = 1

h = 0

Y / jM

X/CDSY ≡ j1
D/CDSY

X/CDSM ≡ jM/ j1
D

CDSY

CDSM

h1

h2

h3

h4

Figure 14: Equilibrium with CDSY , CDSM, and Debt Collateralization.

Marginal investors

• h1: indifferent between Y / jM and X/CDSY

γU(h1)(1−M)

p−πM =
γU(h1)(1−D)+γM(h1)(M−D)

1−D−πY
C

• h2: indifferent between X/CDSY and X/CDSM

γU(h2)(1−D)+γM(h2)(M−D)

1−D−πY
C

=
(γU(h2)+γM(h2))(M−D)

M−D−πM
C

• h3: indifferent between X/CDSM and CDSY

(γU(h3)+γM(h3))(M−D)

M−D−πM
C

=
γM(h3)(1−M)+γD(h3)(1−D)

πY
C
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• h4: indifferent between CDSY and CDSM

γM(h4)(1−M)+γD(h4)(1−D)

πY
C

=
γD(h4)(M−D)

πM
C

Market Clearing

• Market for Y
(1−h1)(1+ p)

p−πM = 1

• Market for CDSY
(h3−h4)(1+ p)

πY
C

=
(h1−h2)(1+ p)

1−D−πY
C

• Market for CDSM

h4(1+ p)
πM

C
= (1+D−

(h1−h2)(1+ p)(1−D)

1−D−πY
C

)(
1

M−D
)

• Market for X and jM

(h1−h2)(1+ p)(1−D)

1−D−πY
C

+
(h2−h3)(1+ p)(M−D)

M−D−πM
C

= 1+M

C.7.1 Numerical Example

Table 5 compares the prices and bases in the CDSM regime with leverage and the CDSM regime

with equilibrium. The price of the risky asset increases because debt backed by Y can now

serve as collateral. The price of risky debt increases because agents can now buy the debt with

leverage, increasing demand for risky debt. Furthermore, allowing jM to serve as collateral for

non-contingent debt contracts increases the supply of safe assets in the economy. Since safe assets

are used to issue both CDSY and CDSM, the supply of both these CDS contracts increase, resulting

in a lower πY
C and πM

C .

C.7.2 Double Basis in Four-State Economy

While in the 3-state economy BasisM can never be positive because jM can be collateralized at

most once, we can obtain a positive basis on both the risky debt in a four-state model in which

59



Table 5: Double-Basis Equilibrium with Leverage and Debt Collateralization

Leverage Collateralization
p 0.502 0.527 ↑

πM 0.196 0.223 ↑
πY

C 0.498 0.491 ↓
πM

C 0.090 0.077 ↓
BasisY 0 0.018 ↑
BasisM -0.014 0 ↑

downstream debt contracts can be used to back multiple layers of debt. See Gong and Phelan

(2019) for a theoretical characterization of debt collateralization with N > 3 states.

The setup is as before, but now the set of states is given by by S = (0,S1,S2,S3,S4), where

s = 0 is the initial state of the world at time t = 0. Let the payout of the risky asset Y be (1,s2,s3,s4)

in states (S1,S2,S3,S4), where 1 > s2 > s3 > s4. Let ji be the debt contract promising si, and let the

price of ji be π i. We set s2 = 0.5, s3 = 0.3, s4 = 0.1, and we let beliefs be given by γ4(h) = (1−h)3,

γ3(h) = h(1−h)2, γ2(h) = h2(1−h), γ1(h) = 1−γ4(h)−γ3(h)−γ2(h), which preserves the properties

in the three-state model.

Let there be full debt collateralization in the economy, and let there be a CDS on Y (with price

πY
C ) and a CDS on j2 (with price π2

C). We let Basisα denote the basis on the asset α . In equilibrium,

p = 0.585, π2 = 0.339, π3 = 0.228, πY
C = 0.431, π2

C = 0.169, BasisY = 0.016, Basis j2 = 0.009, and we

see a positive basis on both the risky asset and the risky debt.

C.8 Equilibrium when Y and jD cannot serve as collateral for CDS

Let the set of financial contracts in the economy be given by J = JX ∪ JY , where JX consists of

CDSY backed by X and JY consists of non-contingent debt contracts. Note that we no longer allow

jD to back CDSY . By Proposition 3, it must be the case that πD <D or no one will want to buy the

safe debt. We define the basis on jD, denoted BasisD, to be D−πD = BasisD. Equilibrium features

four marginal buyers, h1 > h2 > h3 > h4. All agent h > h1 will hold Y / jM. Agents h ∈ (h2,h1) will

hold a combination of X/CDSY and Y / jD (or just X/CDSY if it is cheaper). h ∈ (h3,h2) will sell

their endowments to buy jM and h ∈ (h4,h3) will buy jD instead. Finally, h < h4 will hold only

CDSY . Furthermore, we see a double basis in this case—one on the risky asset and one on the safe
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debt. Additionally, when jD is traded, the basis for Y must be the same as the basis on jD because

p−π
D = 1−D−π

Y
C Ô⇒ 1− p−π

Y
C =D−π

D Ô⇒ BasisY =BasisD.

Note that jD is not always traded in this equilibrium. Specifically, for low enough values of M, no

agent strictly prefers to buy the safe debt. The intuition here is that a lower M raises increases the

payout of CDSY in the M state, making the CDS a more attractive option for moderate agents who

wish to isolate payoffs in state M.

C.9 Economies with Short Selling

Thus far we have been silent about the possibility of short sales. One could understandably worry

that, given the literature on limits to arbitrage, ignoring short selling would be a central driver of

our results. We now show that this is not the case. In this section we provide agents the ability

to sell short Y and we show that in general agents will not choose to do so. The intuition for our

result is that to bet against Y , a collateral-efficient strategy is to buy CDS (requiring no collateral)

rather than to sell short the asset.

In addition to letting agents trade debt and CDS, now let agents also be allowed to issue a

contract promising (1,M,D), which we call a Y -promise. This Y -promise is collateralized by 1

unit of X and costs πY
short . Note that buying X and issuing a Y -promise is a collateralized short

position in Y , which costs 1−πY
short and delivers (0,1−M,1−D), which is exactly the payoff to a

CDS. Thus, agents can bet against Y by either buying CDS or by shorting Y . However, a unit of

X can issue more CDS than Y -promise: one CDS is backed by 1−D units of X as collateral while

selling Y -promise requires one unit of X . This is precisely what we mean when we say that buying

the CDS to bet against Y is collateral efficient.20

We now reinforce our previous results by showing that our results hold even when short sales

are allowed.

20An alternative modeling strategy follows Bottazzi et al. (2012) by explicitly requiring agents to borrow the asset
Y at a funding cost in order to sell it short in the market. This “box constraint” is how short sales are done in reality.
They show that a binding box constraint leads to a liquidity premium (bonds are special in repo), increasing the cost
of shorting. Our setup will deliver a similar result—the Y -promise may trade at a discount to Y , implying that shorting
Y entails a funding cost.
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Proposition 6. In an economy with short sales, suppose that agents can use X to issue Y -promises,

but these promises cannot be used as collateral.

1. (Shorting with no leverage) If Y cannot be be used as collateral, then in equilibrium, agents

do not issue Y -promises and the basis is negative.

2. (Shorting with leverage) If y can be used as collateral to issue debt contracts (but these debt

contracts cannot serve as collateral), then in equilibrium, the basis on Y is non-negative, as

it was without short sales.

3. (Shorting with debt collateralization) If Y can be used as collateral to issue debt, and these

debt contracts can also be used as collateral, then in equilibrium the basis on Y is strictly

positive.

In all of these cases, it is important to note that more optimistic agents will always be willing

to use X as collateral for CDS because this position isolates payoffs in the U and M states. So the

CDS on Y is always traded.

In case 1 with no leverage, since neither Y nor Y -promises can be used as collateral, investors

are indifferent between buying Y or the Y -promise. If the Y -promise is traded in equilibrium it must

be that πY
short = p. Since buying X and issuing a Y -promise delivers the same payoffs as buying a

CDS, a Y -promise will be issued in equilibrium only if πY
C = 1−πY

short , implying that p+πY
C = 1—

that is, the basis is zero. But, we have already shown that the basis is strictly negative when X

can issue CDS and Y cannot be leveraged since X has higher collateral value (the proof of 4 still

holds with short-selling). This contradiction implies that in equilibrium, no agent will trade the

Y -promise. The intuition for the result is immediate: when Y cannot be used as collateral, the basis

is negative (Y is cheap) and so investors do not want to sell short the already-cheap asset, but those

who wish to bet against it do so by buying CDS.

In case 2 with leverage, because Y can be used as collateral while the Y -promise cannot, it

must be that πY
short ≤ p if the Y -promise is traded. Suppose that short sales do occur in equilibrium.

As we just argued, agents are only willing to issue Y -promises (to short Y ) if the basis is non-

negative since a negative basis implies it is cheaper to buy CDS. Thus, the presence of short-sales

imply a non-negative basis. In particular, the equilibrium regime would feature a set of agents
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buying Y promises with these agents lying between those using X to issue CDS and those buying

the risky debt. Even if short sales do not occur, then the equilibrium regime is exactly as discussed

in the previous section so the basis is non-negative. The result in case 3 with debt collateralization

follows from the same argument.

The restriction that Y -promises cannot be completely collateralized as the underlying asset

can reflect either (i) direct limitations in borrowing underlying assets to short or (ii) the fact that

assets that are used in CDOs or other structured securities cannot be replicated frictionlessly to be

used in these same structures. (Technically, the result holds when the Y -promise can be collateral

but the debt backed by the Y -promise cannot be, implying that a risky promise backed by the Y -

promise would be different from the risky promise backed by Y .) These restrictions are empirically

relevant given the assets we have in mind (corporate bonds, mortgage- and asset-backed securities,

etc.).

C.10 Additional Proofs

Proof of Proposition 4. We prove for each case.

Case 1, No leverage: From Lemma 3, the position X/CDSY must be traded in equilibrium,

otherwise no agent will hold X . Thus X/CDSY cannot be more expensive than Y /CDSY . Hence,

it must be that 1−D−πY
C ≤ (1−D)p−DπY

C , which simplifies to 1 ≤ πY
C + p. In order for any agent

to hold jD, which offers the same payoff as X but which cannot be used as collateral, it must be

that πD < D in equilibrium. But since πY
C + p ≥ 1, then p−πD > (1−D)p−DπY

C , which means that

agents would strictly prefer to use Y to issue CDS rather than to issue debt.

Case 2, Leverage and limits on Y : Consider the agent h who is indifferent between holding

X/CDSY and holding Y . For h, Eh[X/CDSY ] =Eh[Y ], thus

γU(h)+γM(h)M+γD(h)D
p

=
γU(h)(1−D)+γM(h)(M−D)

1−D−πY
C

. (35)

Furthermore, this agent is relatively optimistic and strictly prefers both of these two options to

holding the safe asset, X . It follows that

γU(h)(1−D)+γM(h)(M−D)

1−D−π
> 1. (36)
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Rearranging and simplifying Equation 35, we have that

p+π
Y
C = (1−D)+

D(1−D−π)

γU(h)(1−D)+γM(h)(M−D)
.

Combining this with 36, p+πY
C < (1−D)+D = 1 Ô⇒ p+πY

C < 1.

Case 3, Leverage, no limits on Y : First, suppose ¯̀= D. Then in equilibrium investors must

be indifferent between X/CDS and Y / jD (the alternative is investors will hold Y without leverage,

in which case the basis is negative per earlier results). Since the payoffs to these positions are the

same, the costs of these positions are the same, 1−D−πY
C = p−πD, implying the basis is πD−D,

which is negative since the safe debt cannot be used as collateral while X can. Note that if D< ¯̀<M

and safe debt is issued in equilibrium, then the same argument implies the basis is negative.

If ¯̀<D then investors are ordered X/CDS, Y / j ¯̀, j ¯̀, CDS. The position Y / j ¯̀ pays (1−D+D−

¯̀,M −D+D− ¯̀,D− ¯̀). This position can be replicated using X/CDS and buying D− ¯̀
¯̀ units of j ¯̀.

Note that the investor indifferent between Y / j ¯̀ and j ¯̀ is indifferent between buying and selling j ¯̀,

but strictly prefers Y / j ¯̀ over X/CDS. Thus, the position must be cheaper:

1−D+π
Y
C +

D− ¯̀
¯̀ π

¯̀
> p−π

¯̀
.

Since ¯̀<D and π
¯̀
< ¯̀, D(π

¯̀

¯̀ −1) < 0, and the basis satisfies

p+π
Y
C < 1−D+D(

π
¯̀

¯̀ −1) < 1.

Proof of Lemma 3. Suppose some agent strictly prefers to hold only the safe asset X without

selling any financial contracts. Let Eh[a] denote the expected return on holding the position a.

Then there exists some agent h such that Eh[X] >Eh[X/CDS]. This implies that:

1 >
γU(h)+γM(h)(M−D

1−D )

1−
πY

C
1−D

Ô⇒ (1−D)−π
Y
C > γU(h)(1−D)+γM(h)(M−D). (37)
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Additionally, since h strictly prefers to hold X , it must be the case that Eh[X]>Eh[CDSY ], implying

1 >
γM(h)(1−M)+γD(h)(1−D)

πY
C

Ô⇒ π
Y
C > γM(h)(1−M)+γD(h)(1−D). (38)

Note that adding together equations 37 and 38 implies the following contradiction:

(1−D) > (1−D)(γU(h)+γM(h)+γD(h)) Ô⇒ (1−D) > (1−D).

Thus, no agent ever prefers to hold X . By risk neutrality, it is also follows that any agent who

choses to sell CDS will sell as many units of CDS as they can. To see that no agent is willing

to hold the cash-synthetic asset, suppose for contradiction that some agent h, strictly prefers the

cash-synthetic asset. That is, Eh[Y +CDSY ] >Eh[Y ] Then,

1
p+πY

C
>

γU(h)+γM(h)M+γD(h)D
p

Ô⇒ p > (p+π
Y
C )(γU(h)+γM(h)M+γD(h)D). (39)

Additionally, we must also have , Eh[Y +CDSY ] >Eh[CDSY ], which means

1
p+πY

C
>

γM(h)(1−M)+γD(h)(1−D)

πY
C

Ô⇒ p > (p+π
Y
C )(γM(h)(1−M)+γD(h)(1−D)). (40)

Combining the above two inequalities yields the following contradiction:

p+π
Y
C > (p+π

Y
C )(γU(h)+γM(h)+γD(h)) Ô⇒ p+π

Y
C > p+π

Y
C .

Proof of Lemma 5. First note that because the minimum payout of Y is D and the maximum payout

of CDSY is 1−D, each unit of Y can back D
1−D units of CDSY . The payoff of buying one unit of Y

and selling D
1−D units of CDSY (holding Y /CDSY ) is (1, M−D

1−D ,0) in states (U,M,D). However, this

return is equivalent to holding Y and selling jD, so the choice-set of agents has not been increased

by this financial innovation.

Now consider when jD could also be used to back CDSY . Without letting agents use Y to issue

CDSY , agents holding Y were still able to do this indirectly by selling the promising jD. One unit
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of jD can back D
1−D units of CDSY , which is the exactly the amount issued when agents holding Y

issue CDSY directly. In short, the leverage equilibrium, as we have characterized, does not depend

on which assets can back CDSY .

Proof of Corollary 4. From previous theorem, we have that p+πY
C > 1 Ô⇒ p > 1−πY

C Ô⇒ p−

D > (1−D)−πY
C . Note that 1−D−πY

C is the cost of holding X/CDSY while p−D is the cost of

holding Y / jD. Thus, all agents will choose the cheaper option and hold X while selling the CDSY

contract.

Proof of Lemma 6. There are two parts to this proof. First we will show that no one holds Y /CDSY .

Second, we will show that no agent strictly prefers to hold jM/CDSY . Note that we know that

1−D−πY
C < p−D and hence p+πY

C > 1. Then,

Ô⇒ (p+π
Y
C )(1−D) > 1−D Ô⇒ p−

D
1−D

π
Y
C > 1−

1
D

π
Y
C .

So, the cost of holding Y /CDSY is higher than the cost of holding X/CDSY even though these two

positions have equivalent returns. Thus, no agent will choose to hold Y /CDSY .

Now, suppose for contradiction that there is an agent, h who strictly prefers to hold jM/CDSY .

This means that for investor h, the expected return of jM/CDSY must be greater than the return of

X/CDSY . Thus,

γU(h)M(1−D)+γM(h)(M−D)

(1−D)πM −DπY
C

>
γU(h)(1−D)+γM(h)(M−D)

1−D−πY
C

. (41)

Rearranging this equation and simplifying, we obtain

γU(h)M(1−D)+γM(h)(M−D) > (42)

π
M(γU(h)(1−D)+γM(h)(M−D))+π

Y
C (M−D)(γU(h)+γM(h)). (43)

Since h strictly prefers jM/CDSY , the expected payout of this position must also be higher

than the expected payout of holding jM/ j1
D. So,

γU(h)M(1−D)+γM(h)(M−D)

(1−D)πM −DπY
C

>
γU(h)(1−D)+γM(h)(M−D)

1−D−πY
C

. (44)
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Rearranging and simplifying the above, we obtain

−(γU(h)M(1−D)+γM(h)(M−D)) > (45)

−π
M(γU(h)(1−D)+γM(h)(M−D))−π

Y
C (M−D)(γU(h)+γM(h)). (46)

Combining Equations (43) and (46) yields 0 > 0, a contradiction. So, there does not exist a set of

agents with positive measure who strictly prefer to sell CDSY backed by jM.

Proof of Proposition 5. We prove the result in the three-state economy for each case.

Case 1, Leverage. Consider the agent who is indifferent between holding X/CDSM and jM.

Since this agent is relatively optimistic, the expected return of both of these two options must be

greater than 1. Then, we have that Eh[X/CDSM] =Eh[ jM] > 1.

(γU(h)+γM(h))(M−D)

M−D−πM
C

=
(γU(h)+γM(h))M+γD(h)D

πM > 1. (47)

Rearranging and simplifying 47, we obtain

(π
M +π

M
C )(γU(h)+γM(h))(M−D) =D(M−D−π

M
C )+(M−D)2(γU(h)+γM(h))

Ô⇒ π
M +π

M
C =

D(M−D−πM
C )

(γU(h)+γM(h))(M−D)
+M−D. (48)

Combining the above with Equation 47, it follows that πM +πM
C <M.

Case 2, Debt Collateralization. Because X/CDSM is equivalent to jM/ j1
D, any equilibrium

in this economy must feature a zero basis on jM (BasisM = 0). A positive basis, BasisM > 0 would

imply that jM/ j1
D is expensive relative to X/CDSM and no agent would want to buy jM. This is not

an equilibrium because optimists who want to isolate payoffs in state U would be willing to sell

jM at a lower price, driving the basis toward 0. A negative basis, BasisM < 0 is not an equilibrium

because this implies jM/ j1
D is cheap relative to X/CDSM and CDSM is never issued as a result.

However, extreme pessimists who want to isolate payoffs in state D and would therefore be willing

to buy CDSM even at a higher price, driving the basis toward 0.
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