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Abstract

Combining records for 71,225 severe accidents from the Occupational Safety and Health Ad-

ministration with a panel of county-level weather data for 1990 to 2010, we find that heat shocks

significantly increase accident rates across the United States, while cold shocks significantly re-

duce them. We find that heat shocks increase accidents both in plausibly temperature-sensitive

industries, like construction and agriculture, and among industries that are not obviously sen-

sitive to weather. While we find suggestive evidence of short-term adaptation to heat shocks

over summer months, we find no evidence that the impacts of heat shocks have fallen over our

21-year panel.
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1 Introduction

A growing literature in economics finds that temperature stress reduces productivity, focusing

especially on the hot weather extremes growing more common under climate change (Hsiang, 2010;

Dell, Jones, and Olken, 2012; Jones and Olken, 2010). This work suggests that output falls both at

temperature highs and lows: Burke, Hsiang, and Miguel (2015) find that country-level aggregate

production is smooth, non-linear, and concave with respect to temperature for all countries, with

a maximum at 13◦C. Productivity is vulnerable to temperature even in the US, where Deryugina

and Hsiang (2014) find that average daily productivity falls linearly by about 1.7% for each 1◦C

increase in daily average temperature above 15◦C. See Heal and Park (2016) for a review of the

growing literature on temperature and productivity.

The impacts of high temperature on output may arise in part through temperature’s effects on

individual workers. Graff Zivin and Neidell (2014), for instance, use county-level data from the

American Time Use Survey to show that people spend significantly less time working in industries

that are plausibly exposed to weather, like agriculture, forestry, mining, construction, and utilities,

when it is hot. The impacts of temperature on worker safety could be another key mechanism

through which temperature reduces economic output. As temperatures rise under a changing

climate, more frequent extreme heat might threaten laborers working outside in industries like

construction, utility services, forestry, and agriculture. At the same time, milder winters might

reduce these risks. Changes in accident rates due to climate change could impose substantial costs:

the National Institute for Occupational Safety and Health (NIOSH) (2017) finds that a total of

42,380 fatal occupational injuries cost the United States more than $44 billion between 2003 and

2010 in medical expenses and lost future earnings.

In this paper, we investigate the impact of temperature on the rate of workplace accidents

in a panel of counties across the United States from 1990 through 2010. This work adds to a

small literature providing early evidence that temperature extremes, and especially hot weather,

increase the risk of workplace accidents (Osborne et al., 1922; Ramsey and Burford, 1983; Fogleman

et al., 2005). In Adelaide, Australia, Xiang et al. (2014a) find that the number of daily injury

compensation claims increases weakly with temperature at temperatures below 100◦F, but then

falls by 1.4% with each 1◦C increase in daily maximum temperature above that threshold. Xiang
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et al. (2014b) also find that heat waves, which they define as three or more consecutive days

with daily maximum temperature over 95◦F, increase compensation claims in outdoor industries

by 6.2%. Adam-Poupart et al. (2015) conduct similar analysis in 16 health administration regions

of Quebec, finding that an increase of 1◦C in daily maximum temperature is associated with a 42%

increase in the count of daily heat-related occupational injury compensations.

Our paper builds on this literature in key ways. Drawing on the growing climate-economy

literature, we use a suite of geographic and temporal fixed effects to identify the causal impacts

of short-term, plausibly exogenous local variation in weather (Dell et al., 2014). Our panel covers

nearly all counties of the contiguous United States, lending our results substantially greater external

validity than the existing region- or city-specific studies in public health. Next, like other work on

climate impacts in economics, we estimate the impacts of temperature using a series of temperature

bins, improving on the rigid functional form restrictions of previous research in public health.

Finally, we provide the first preliminary exploration of the role of adaptation in the relationship

between temperature and accidents.

We use a balanced daily panel of weather, accident, and employment data for 3,093 counties

across the contiguous United States from 1990 to 2010. These data include records for 71,225

occupational injuries and fatalities reported to the Occupational Safety and Health Administration

(OSHA), daily temperature and precipitation data from the North America Land Data Assimila-

tion System (NLDAS), and monthly employment data from the Bureau of Labor Statistics (BLS)

Quarterly Census of Employment and Wages.

We find that heat shocks significantly increase accident rates, while cold shocks significantly

reduce them. Accident rate rises monotonically with high temperature extremes, ranging from

an increase of 4.0% on days with maximum temperature between 70◦and 75◦F to an increase of

41.0% on days with maximum temperature over 105◦F, both relative to a day with maximum

temperature between 65◦and 70◦F. In contrast, accident rate falls monotonically with decreasing

temperature at low temperature extremes: these impacts range from a drop in accident rates of

4.5% on days with maximum temperature between 55 and 60◦F to a drop of 37.0% on days between

5 and 10◦F, again relative to a day with maximum temperature between 65◦and 70◦F. Crucially, we

find that heat shocks increase accidents both in a set of plausibly temperature-sensitive industries,

like construction and agriculture, and in indoor industries like hospitals and schools. These results
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add to a growing literature, led by Cachon et al. (2012), showing that temperature impacts even

production processes that are ostensibly insulated to the impacts of weather.

A key question for the climate-economy literature is the extent to which the short-run impacts

of weather map into the long-run impacts of climate change, or a gradual shift in the distribution

of weather outcomes (Dell et al., 2014). In particular, adaptation to the risks of working in hot

weather could reduce these long-run impacts. On the other hand, intensification, where longer

stretches of hot weather under a warmer climate have more severe impacts than isolated heat

shocks, could increase them. We explore the impact of temperature over time after controlling for

differential temperature impacts by region, finding no evidence of long-run adaptation. Making the

simplifying assumption that our short-term estimates will hold as climate change progresses, we

use climate data compiled by Rasmussen, Meinshausen, and Kopp (2016) to project that the US

will suffer 134,518 additional severe workplace accidents per year by 2099 under business as usual

emissions, relative to a high-abatement climate scenario.

The rest of the paper is organized as follows: Section 2 reviews the relationship between temper-

ature and workplace safety, Section 3 describes our data. Section 4 presents our empirical strategy,

and Section 5 presents our primary results. Section 6 documents preliminary results on adaptation,

and Section 7 concludes.

2 Temperature and workplace safety

Research on temperature, health, and cognition suggests that the physiological impacts of temper-

ature on the human body could have direct implications for worker safety (Heal and Park, 2016).

First, heat stress or cold stress can be debilitating or even fatal. In extreme heat, loss of plasma and

electrolytes from continuous sweating and changes in blood circulation can overwhelm the body’s

thermo-regulatory systems, allowing core body temperature to rise and compromising the cardio-

vascular and central nervous systems (Jackson and Rosenberg, 2010). The BLS estimates that heat

exposure led to 37 work-related deaths and 2,830 nonfatal illnesses in 2015 (BLS 2017). While less

studied, cold stress poses similar risks. In cold environments, the body shifts blood flow from its

extremities to its core in order to maintain a sufficiently high core temperature, exposing the skin

and extremities to rapid cooling and increasing the risk of frostbite. Prolonged cold stress can lead
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to hypothermia, with symptoms ultimately progressing to cardiac failure, respiratory failure, and

death (Stocks et al., 2004).

Besides causing explicitly temperature-related illnesses like heat or cold stress, extreme temper-

atures may increase the risk of workplace accidents more broadly. Many intermediate symptoms

of heat and cold stress, like dizziness, confusion, and loss of dexterity, could increase accident

risk (Jackson and Rosenberg, 2010). Furthermore, a large lab-based literature in physiology finds

that exposure to hot and cold temperatures impairs various measures of cognitive function that

link directly to accident risk, like coordination, vigilance, reaction time, and mental performance

(Seppanen et al., 2006; Hancock and Vasmatzidis, 2003; Ramsey and Kwon, 1992). For example,

Epstein et al. (1980) report that study participants’ proportion of errors when shooting at a square

target on a video screen increased from 7.9%, to 15.9%, and then to 16.6% between 70◦F, 86◦F,

and 95◦F, respectively.

Based on these mechanisms, we might hypothesize a U-shaped curve between temperature

and accident risk, with the risk of workplace accidents rising both at high and low temperatures.

But even if accident risk per unit of work charts a U-shaped curve with respect to temperature,

adaptation to temperature may alter even the short-run impacts of temperature that we observe

(Behrer and Park, 2017). First, adaptation may be physiological. The human body acclimatizes

to hot weather by sweating earlier, in higher volumes, and with lower electrolyte concentration,

allowing workers to function with a lower core temperature and reduced heart rate (NIOSH, 2013).

The average body can acclimatize to most hot conditions over one to two weeks (Lind and Bass,

1963, WHO, 1969). Acclimatization to cold is less rapid and has been the subject of less extensive

study, but research suggests that workers may adapt to consistently cold temperatures over similar

timescales by improving core insulation or metabolic heat production (Kaciuba-Uscilko et al, 1989;

Castellani and Young, 2016).

Besides physically acclimatizing, workers or employers may make protective investments and

behavioral changes to adapt to temperature extremes across a range of timescales. In the short-

run, workers could take breaks for rest and water, and employers could provide areas for rest and

recovery, provide cooling protective clothing, or reschedule strenuous jobs to cooler times (Jackson

and Rosenberg, 2010). As noted above, Graff Zivin and Neidell (2014) find that workers reduce

labor supply in certain outdoor industries at high temperatures. At longer timescales, other forms
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of economic adaptation to extreme temperatures would become available, like migration to cooler

areas and the development of new worker safety technologies or regulations. While perhaps costly

in other ways, these adaptive responses could help to avert some of the safety risks of extreme

temperature, bending down the arms of the curve between temperature and observed accident

rates even in the short-run.

We might expect the impacts of temperature to be largest in industries where workers are

directly exposed to weather, like construction and agriculture. However, some previous research

on temperature impacts has found that temperature matters even in industries that we might

expect to be fully insulated to weather. For example, Cachon, Gallino, and Olivares (2012) find

that plant-level automobile production in the US falls by 8.75% on weeks with six or seven days

with maximum temperature over 90◦F. Even in indoor industries, workers might be more prone to

accident due to heat exposure on their way to and from work, for example, or due to inadequate

air conditioning. We will first explore the impact of temperature on accidents across all industries

and then explore differences in impacts between temperature-sensitive and other industries.

3 Data

3.1 Accident Data

We collect data on workplace accidents from the Occupational Safety and Health Administration’s

(OSHA) Enforcement Inspection and Accident Investigation Data. Employers have been required

to report severe workplace accidents to OSHA since 1971, after the agency was established under

the Occupational Safety and Health Act of 1970. While regulations first required employers only

to report fatalities and accidents that hospitalized at least five employees, these regulations have

grown more stringent over time. Employers have been required to report accidents that hospital-

ized at least three workers since 1994 and have been required to report all work-related inpatient

hospitalizations, amputations, and losses of an eye since 2015 (US DOL, 1996 and 2014).

A total of 93,683 unique accidents were reported to OSHA from the contiguous United States

between 1972 and 2013. The number of accidents reported each year varies widely over that period,

but it is not clearly tied to these changes in reporting regulations. Accidents are first recorded in

large volumes in the OSHA data in the mid-1980s and drop off in recent years due to a backlog
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Figure 1: Total number of fatal and nonfatal accidents reported to the Occupational Safety and
Health Administration (OSHA) by year. Figures are based on OSHA’s Enforcement Inspection
and Accident Investigation Data.

in accident investigation and processing. We also see a sudden increase in the volume of accidents

reported to OSHA in 1990.1 We will restrict our analysis to the years 1990 through 2010, a range in

which there are no abrupt shifts in the volume of accidents reported each year and which accounts

for 79.5% of all reported accidents. Our analysis will control for any national trends in total accident

reporting. Next, we restrict to private sector accidents to bypass variation in OSHA’s coverage of

public sector employees by state. Finally, we restrict our sample to the contiguous United States,

excluding Alaska, Hawaii, and any other U.S. territories. In total, our balanced panel includes

71,225 private-sector accidents in the contiguous US between 1990 and 2010. About 49.0% of these

accidents are fatalities. These severe accidents are rare: the average county has just 1.10 OSHA-

reported accidents each year. Reporting to OSHA varies across states, and our accident reports

are heavily concentrated in California, which accounts for 38.6% of accidents in our sample. We

test that our analysis is robust to excluding California.

1This increase in accident reporting in 1990 may be tied to a transfer of record-keeping requirements from BLS to
OSHA in that year. A Memorandum of Understanding dated July 11, 1990 delegated responsibility for administration
of accident record-keeping to OSHA.
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3.2 Weather Data

Our weather outcomes of interest are maximum daily temperature and daily precipitation. We

use daily data from the North America Land Data Assimilation System (NLDAS), a collaborative

project between NOAA, NASA, Princeton University, and the University of Washington. NLDAS

provides a record of county-level daily weather across North America from 1979 to 2011, with

measures including maximum temperature, heat index, and total precipitation. The NLDAS data

provides a balanced panel of weather data from January 1, 1990 through December 31, 2010 for

3,109 counties in the contiguous United States.

Physiology research suggests that heat index, a measure of apparent temperature that incorpo-

rates humidity, is a better measure of temperature exposure than dry temperature. However, we

focus on results using maximum temperature in order to generate estimates compatible with future

temperature projections under climate change. We run sensitivity analysis using heat index.

3.3 Employment Data

Finally, we use county-level employment data from the Quarterly Census of Employment and

Wages (QCEW), a cooperative program between the BLS and the State Employment Security

Agencies (SESAs) that produces monthly employment data by industry and by county for the entire

United States. To match our accident data, we restrict to private sector employment. The QCEW

suppresses data whenever it may reveal employment data for particular firms; we approximate

missing county-specific employment by linearly interpolating between non-missing data wherever

possible. This interpolation accounts for about 0.2% of our final employment data. While our

primary analysis explores the impacts of temperature among all private-sector accidents reported

to OSHA, we will also explore any differential impact of temperature in plausibly temperature-

sensitive (TS) industries. Appendix section 1.2 describes our method for estimating TS employment

by county.

In total, our final sample includes a balanced panel of 21 years of total private employment

and weather data for 3,093 counties. Counties in our balanced panel account for 99.9% of the

private-sector accidents reported to OSHA between 1990 and 2010.
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4 Econometric Strategy

We use temporal and geographic fixed effects to identify the causal impact of short-term, plausibly

exogenous variation in weather on the rate of workplace accidents across the United States. We

model workplace accident count as a Poisson-distributed random variable, estimating variants of

the following model:

E[accidentsit] = exp(ln(zim) +

23∑
j=1

βj tmaxitj +

12∑
k=1

λk prcpitk + αi + γy + θm + νd) (1)

where i denotes county, t denotes calendar day, y denotes year, r denotes U.S. census region, m

denotes month, and d denotes day of week. Here, we include temperature-sensitive employment in

county i in month m (zim) as the Poisson “exposure” variable, setting its coefficient to 1. Taking

the natural log of our simplified model then yields the following:

ln(accidentsit) = ln(zit) + x′itβ ⇐⇒ ln(accidentsit)− ln(zit) = x′itβ (2)

⇐⇒ ln

(
accidentsit

zit

)
= x′itβ (3)

While our immediate outcome variable is the number of temperature-sensitive accidents in county

i on day t, we effectively estimate the impact of temperature on accident rate per recorded worker.

We regress accident rate on a series of 23 five-degree bins for maximum temperature on day

t, tmaxj for j in {1, 2, 3, . . . 23}, ranging from maximum temperature below 0◦F and maximum

temperature between 0 and 5◦F to daily maximum temperature above 105◦F. In all regressions,

we omit the temperature bin corresponding to daily maximum temperature between 65◦and 70◦F,

which physiology research suggests may be ideal working conditions (Hancock and Vasmatzidis,

2003; Ramsey and Kown, 1992; Pilcher et al., 2002). Each βi gives the incidence rate ratio of

accidents on a day with maximum temperature in bin i relative to a day with maximum temperature

between 65◦and 70◦F. We control for precipitation using a similar set of indicator bins.2

Next, we control for a suite of temporal and geographic fixed effects, allowing us to isolate

the impacts of plausibly exogenous local weather variation. Our primary specification includes

2In particular, we control for a dummy variable indicating zero precipitation, eleven bins split at 10-percentile
intervals from the 10th through 90th percentiles of the distribution of non-zero precipitation in our sample, and a
bin indicating precipitation above the 95th percentile of this distribution.
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county fixed effects, αi, year fixed effects, γy, month fixed effects, θm, and day-of-week fixed effects,

νd. Therefore, we exploit county-specific variation in weather and accident rates about long-term

county averages after controlling for national averages by year and for seasonal cycles. Altogether,

this fixed effect structure allows us to plausibly estimate the causal effects of short-term weather

variation. We cluster standard errors at the county level throughout our analysis to account for

potential auto-correlation in county errors.

This empirical strategy improves on past research on temperature and accidents by using some

of the methodological innovations of the recent climate-economy literature in economics. First,

while past work has assumed either a linear or single-splined piecewise linear relationship between

temperature and accidents, our specification only assumes that the impact of temperature is con-

stant within these 5-degree ranges (Adam-Poupart et al., 2015; Xiang et al., 2014a, 2014b). Next,

our panel fixed effect structure allows us to analyze a broader geographic study area than does

recent public health research on temperature and accidents, which focuses on particular cities or

sub-country regions (Adam-Poupart et al., 2015; Xiang et al., 2014a, 2014b). Our analysis covers

the contiguous United States, which allows us to make use of greater variation in weather and

improves the external validity of our estimates (Deschênes, 2014).

Our empirical strategy also draws from recent public health research on temperature and ac-

cidents in key ways. While much of the climate-economy literature uses OLS regression, we use

the Poisson count model common to the public health literature. Next, like this literature, we

analyze daily accident counts (Xiang et al., 2014a, 2014b; Adam-Poupart et al., 2015). In contrast,

most economic analyses of the impacts of climate change use annual or monthly data on economic

outcomes (Deschênes, 2014). In studies of temperature and mortality, this longer exposure win-

dow helps to prevent confounding by harvesting, or the accelerated death of those already nearing

death due to chronic conditions. To the extent that accidents occur randomly within a population

of workers and not among a subset of workers that were “due” for an accident, harvesting is unlikely

to be relevant to the incidence of workplace accidents. Daily-level analysis allows us to more closely

capture the immediate relationship between temperature and accident risk today.

In summary, we present the first analysis of accident incidence and temperature to make use

of a broad geographic scale and to flexibly model the impacts of temperature, while retaining a

framework of daily-level Poisson analysis that is well-suited to analysis of accident counts.
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5 Estimates

We present the results of our primary Poisson regression in graphical form in Figure 2 and in

column 2 of Table A1 in the Appendix. Coefficients on temperature bins give ratios of accident

rates relative to a day with maximum temperature between 65◦and 70◦F, our omitted category.

We find that accident rates are closely tied to ambient temperature. First, accident rates rise

monotonically with temperature for all temperature bins above 65◦to 70◦F, spiking up sharply at

maximum daily temperature over 100◦F. Days with maximum temperature between 90◦and 95◦F

have 9.9% more accidents, days between 95◦and 100◦F have 13.4% more accidents, days between

100◦and 105◦F have 29.3% more accidents, and days with maximum temperature over 105◦F have

41.0% more accidents, all relative to days with maximum temperature between 65◦and 70◦F.

Figure 2: Poisson estimates of the impact of daily maximum temperature on daily private accident rate. Coefficients
give incident rate ratios relative to maximum temperature between 65◦and 70◦F. Regression includes a balanced panel
of 2,807 counties; the remaining counties in our full panel of 3,093 counties are dropped from the regression because
they reported no accidents to OSHA between 1990 and 2010. Dashed lines give 95% confidence intervals. See
Appendix Table A1 column 2 for the regression coefficients.

In contrast, we find that cold days significantly reduce accident rates; these coefficients largely

decrease monotonically with colder temperatures before losing precision at very low temperatures.

We estimate that days with maximum temperature between 35◦and 40◦F have 8.8% fewer accidents,

days between 20 and 25◦F have 12.4% fewer accidents, days between 15 and 20◦F have 21.5% fewer
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accidents, and days with maximum temperature between 5 and 10◦F have 37.0% fewer accidents,

all relative to a day with maximum temperature between 65◦and 70◦F.

Table A1 in the Appendix presents a series of robustness checks to these primary results, where

our primary results are given in column 2. In particular, our results are robust to using any available

data rather than restricting to a balanced panel by county, to controlling for region-specific seasonal

cycles with region-month fixed effects, to measuring heat exposure with maximum daily heat index,

and to excluding California, which accounts for almost 40% of accidents in our sample.

It is important to note that these estimates are net of any protective behaviors that workers

or their employers have historically taken in response to temperature shocks. These adaptive be-

haviors may account for the drop in accident rates at low temperatures, while physiology research

predicts that accident risk would rise at both high and low temperature extremes. For example,

if industries typically operating in winter more flexibly allow for postponement of work to better

weather conditions than those operating in summer, we could expect to see that cold temperatures

have smaller impacts on accident rate than do hot temperatures, or that accident rates even fall on

particularly cold days. Previous studies have found similar decreases in accident rates at temper-

ature extremes, which they attribute to a reduction in work volume or protective measures taken

under those conditions (Xiang et al., 2014a). We more closely explore the role of adaptation in

Section 6 below.

So far, we have estimated these impacts in the full sample of private-sector accidents reported to

OSHA. But do these temperature impacts hold across all industries, or are they driven by industries

where workers are directly exposed to weather? We now estimate our model separately in a sample

of “temperature-sensitive” (TS) industries and non-TS industries. We loosely base this classification

on Graff Zivin and Neidell’s (2014) set of “at-risk” industries, defining TS industries as agriculture,

forestry, and fishing; construction; manufacturing; transportation, communications, electric, gas,

and sanitary services; oil and gas extraction; and other miscellaneous outdoor services. (See Tables

A2 and A3 in the Appendix for our full list of TS industry codes.) Our set of non-TS accidents

then includes accidents associated with retail, restaurants, schools, and hospitals, for example. We

have been deliberately over-inclusive in identifying TS industries to limit misclassification into the

non-TS category. In total, we classify about 90% of the private-sector accidents in our sample as

TS.

12



Figure 3 plots our estimates for the impact of temperature in TS and non-TS industries. We

focus only on the impacts of high temperature, since our estimates for low temperature bins are

highly imprecise in our small sample of non-TS accidents. We present our full set of estimates in

Table A4 in the Appendix. In columns 2 and 4, we check that our results are robust to exclud-

ing counties where QCEW data suppression has severely limited data on TS employment. (See

Appendix section 1.2 for details on how we estimate TS employment.)

Figure 3: Poisson estimates of the impact of daily maximum temperature on daily accident rate in temperature-
sensitive (TS) industries and non-TS industries. Coefficients give incident rate ratios relative to maximum temper-
ature between 65◦and 70◦F. The TS regression includes 2,789 counties, while the non-TS regression includes 1,014
counties. This gap arises because the regression mechanically drops any county with no (non-)TS accident in 1990
through 2010 from the (non-)TS regression. The red dashed lines give 95% confidence intervals for TS industries,
while the blue shaded region gives 95% confidence intervals for non-TS industries. See Appendix Tables A2 and A3
for our full list of TS industries and see Appendix Table A4 for these regression coefficients. Columns 2 and 4 of
Table A4 restrict to county-months without substantial missing employment data, while we estimate these results in
our full sample.

We find that heat shocks increase accident risk even in our conservative set of non-TS industries.

Our estimates are less precisely estimated in the much smaller sample of non-TS industries, but our

point estimates are similar across TS and non-TS industries. In particular, days with maximum

temperature between 90◦and 95◦F raise accident rates by 4.5% in non-TS industries and 10.3% in TS

industries, days between 95◦and 100◦F raise accident rates by 13.4% in non-TS industries and 12.7%
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in TS industries, days between 100 and 105◦F raise accident rates by 17.5% in non-TS industries

and 29.4% in TS industries, and days with maximum temperature over 105◦F raise accident rates

by a full 54.5% in non-TS industries, while increasing accidents by 37.8% in TS industries. These

impacts only become statistically significant in non-TS industries at temperatures over 105◦F.

Our point estimates for the impacts of cold temperatures in non-TS industries are irregular and

statistically insignificant.

Thus, we find that heat shocks increase accidents even in indoor industries like retail and

healthcare, not just in industries where workers are directly exposed to weather. This work adds to

a growing body of literature, led by Cachon et al. (2012), that finds that temperature impacts even

those production processes that are not obviously vulnerable to weather. Here, workers in indoor

industries might still be prone to workplace accidents due to heat exposure overnight, during a

commute, or because workplace cooling systems are insufficient.

6 Exploring Long-Run Adaptation

Altogether, our results suggest that we might expect to see more workplace accidents as extremely

hot days become more frequent and cold days become less frequent under climate change. However,

future adaptation will play a key role in dictating how our short-run estimates map into the long-

run impacts of climate change on workplace safety.3 This adaptation could take many forms. In the

short term, workers or employers could reduce the risks associated with heat shocks by postponing

work to cooler hours or scheduling additional breaks. Workers may also physically acclimatize to

consistently hotter or colder weather. In the long term, we might see the development of new

worker safety regulations or additional investments in protective technologies. In this section, we

document preliminary exploration of the role of long-term adaptation in the impacts of temperature

on worker safety.

We investigate the prevalence of long-run adaptation in our data by exploring how the impacts

of heat shocks change over the course of our twenty-year panel, splitting our full panel into four

3While adaptation would likely lessen the long-run impacts of climate change relative to the short-run impacts
we’ve estimated, any intensification could increase them. Intensification would occur if longer stretches of hot weather
under a changed climate have more severe impacts than isolated heat shocks (Dell, Jones, and Olken, 2014). In this
setting, for example, companies might lose the flexibility to postpone work to cooler days if an increasing share of
the summer is extremely hot.
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periods: 1990-1994, 1995-1999, 2000-2004, and 2005-2010. At first pass, we might simply be

interested in how the impact of heat shocks changes across these periods. However, any such

changes might just be driven by changes in the geographic incidence of heat shocks. For example,

the impacts of heat shocks might rise over time if heat shocks increasingly occur in historically cold

areas, which may be less adapted to heat risks. Thus, we estimate a model that assesses changes in

the impact of temperature across time while also controlling for differential impacts of temperature

across counties. In particular, we allow for differential impacts of temperature across historically

hot, medium, and cool counties, which we define by terciles of the distribution for average number

of days per year over 90◦F from 1990 through 2000. We estimate the following model:

E[accidentsit] =exp(ln(zim) +

4∑
p=1

12∑
j=1

βjp tmaxitj ∗ periodp (4)

+
3∑

g=1

12∑
j=1

βjg tmaxitj ∗ county groupg +
12∑
k=1

λk prcpitk + αi + γy + θm + νd)

where, as before, i denotes county, t denotes calendar day, y denotes year, r denotes U.S. census

region, m denotes month, and d denotes day of week. Here, we separately include interactions be-

tween temperature bins and dummies both for period and county group. Note that this specification

constrains adaptation over time to be constant across the US. Instead of using the 23 five-degree

temperature bins that we use throughout the rest of our analysis, we estimate this model using a

set of 12 ten-degree temperature bins ranging from denoting maximum temperature below 0◦F and

maximum temperature between 0 and 10◦F to maximum temperature over 100◦F. OSHA-reported

accidents are sufficiently rare that we cannot estimate standard errors in a model with the full set

of interactions and five-degree temperature bins. We present our results in Table 1, and we plot

the impacts of temperature in the historically hottest tercile of counties in Figure 4. We give the

parallel figures for the coolest and middle terciles in Figures 1 and 2 in the Appendix.4

4Note that while the level of the temperature impacts vary across these groups, our Poisson model constrains the
multiplicative changes in these coefficients across time for a given temperature bin to be constant across the county
groups. Thus, we can visually assess adaptation over time by plotting temperature impacts across time periods for
only a single county group.
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Table 1: Temperature impacts by yearblock and region

Private Accident IRR

1990-1994 1995-1999 2000-2004 2005-2010

80-90 F Interaction 0.956 0.927 0.970
(0.17) (0.10) (0.46)

Cool 1.101 1.053 1.020 1.067
(0.01) (0.14) (0.60) (0.07)

Medium 1.092 1.045 1.012 1.059
(0.04) (0.24) (0.73) (0.08)

Hot 1.123 1.074 1.041 1.090
(0.00) (0.02) (0.22) (0.01)

90-100 F Interaction 0.988 0.959 0.997
(0.82) (0.46) (0.95)

Cool 1.254 1.239 1.203 1.250
(0.01) (0.01) (0.01) (0.00)

Medium 1.116 1.102 1.070 1.112
(0.07) (0.05) (0.11) (0.02)

Hot 1.128 1.114 1.081 1.124
(0.01) (0.00) (0.06) (0.00)

≥ 100 F Interaction 0.855 0.840 1.032
(0.08) (0.16) (0.77)

Cool 1.231 1.053 1.034 1.270
(0.73) (0.93) (0.96) (0.69)

Medium 1.752 1.499 1.472 1.808
(0.00) (0.01) (0.01) (0.00)

Hot 1.391 1.190 1.169 1.435
(0.00) (0.02) (0.02) (0.00)

Note: P-values derived from robust standard errors are given in parentheses. “Inter-
action” coefficients measure the differential effect of temperature in that year block
relative to 1990-1994. “Cool” refers to the first (coolest) tercile of the county-level
distribution for average annual number of days above 90◦F between 1990 and 2000,
“Medium” refers to the second tercile, and “Hot” refers to the third (hottest) tercile.
Rows labeled with “Cool,” “Medium,” or “Hot” give the estimated full effect of a
day in that temperature bin and time period on accident rate in that county group.

We find no evidence that the impacts of temperature have fallen over time due to adaptation.

The time period interaction terms given in Table 1, all of which are multiplicative IRRs relative

to 1990-1994, are not statistically significant, and Figure 4 shows no clear trend downwards in any

of the top three temperature bins. In interpreting these time trends, it is important to keep in

mind that they might in part reflect falling measurement error over time. While the total volume

of accidents reported to OSHA has remained relatively constant from 1990-2010 (see Figure 1), the
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Figure 4: Impacts of heat shocks over time in the historically hottest tercile of counties

Note: Estimated incident rate ratios of the four highest 10-degree temperature bins relative to days with maximum
temperature between 60◦and 70◦F, plotted over time. These coefficients give estimated temperature impacts in
counties in the third tercile of the county-level distribution of average number of days with max temperature over
90◦F per year from 1990 through 2000. The dashed lines mark 95% confidence intervals.

quality of accident reporting may have risen over time, making accidents more accurately matched

to particular dates and counties in the later years of our panel. Then, it is possible that attenuation

bias in our estimates in early time period could obscure actual adaptation.

Besides evaluating how the impacts of temperature have changed over time, this specification

allows us to explore how heat risks vary across counties with different historical climates. We

might expect historically hot counties to be better adapted to heat shocks, and thus to see smaller

temperature impacts among the highest bins. We see some limited evidence of this in Table 1,

where, again, we explore the impacts of temperature across terciles of the county-level distribution

for average number of days over 90◦F per year from 1990 through 2010 (labelled “Cool,” “Medium,”

and “Hot.”) Here, note that we have constrained the relative impacts of temperature between
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county groups to remain constant across time periods.

While days with maximum temperature between 80 and 90◦F have similar impacts across these

county groups, our point estimates suggest that days between 90 and 100◦F have impacts about

twice as large in historically cool counties as in historically medium or hot counties. Next, while the

impact of days over 100◦F is imprecisely estimated in cool counties, those extremely hot days have

impacts that are almost twice as high in historically medium counties as in historically hot counties.

While the differential IRRs of heat shocks in hot or medium counties relative to cool counties

are not statistically significant, they provide some suggestive evidence of adaptation; namely, our

coefficients suggest that extreme heat shocks may have less impact in historically hotter places.

7 Conclusions

Using plausibly exogenous day-to-day fluctuations in temperature, we estimate the impact of tem-

perature on workplace accident rates in a daily panel of 2945 counties in the United States from

1990 through 2010. We find that while cold shocks reduce accident rates, heat shocks substan-

tially increase them. The impacts of heat shocks rise monotonically with temperature, with heat

increasing accident rates by up to 38.6% at maximum temperature over 105◦F, relative to a day

between 65◦and 70◦F. Heat shocks are not just costly in obviously temperature-sensitive industries

like construction and agriculture, but also in a conservative set of industries like schools, hospitals,

and restaurants. We find no evidence that the impacts of heat shocks have fallen over our 21-year

panel.

Under the possibly naive assumption that no further adaptation will occur, our estimates suggest

that climate change may substantially increase the rate of workplace accidents in the US. To assess

the possible magnitude of these impacts, we pair our model predictions with climate projections

produced by Rasmussen, Meinshausen, and Kopp (2016). We find that the US will suffer 134,518

additional severe workplace injuries per year by 2099 under a scenario in which CO2-equivalent

concentrations rise above 1200 ppm, relative to a scenario in which concentrations remain below

450 ppm. The impact varies widely across US counties and regions, with the largest predicted

increases in the South Atlantic and West South Central census regions. We predict smaller impacts

in the Pacific, New England, and North Atlantic. Using estimates from Leigh (2011), we estimate
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that this increase in injuries could cost the US economy more than $3.6 billion per year by 2099,

valued at 2019 prices. We present details of these calculations and a map of estimated impacts in

the Appendix.

It is important to note that these estimates of climate impacts are highly uncertain. In particu-

lar, our estimates of the short-term impact of temperature on accident incidence might diverge from

the long-term impacts of climate change on accident incidence through a combination of adaptation,

or the process by which economic actors develop behavioral mechanisms, policies, or technologies

that reduce the impacts of temperature shifts, and intensification, where shifts in weather patterns

associated with climate change produce larger damages than those revealed by transient, short-

term weather fluctuations. While these long-run shifts may yet occur, we find no evidence that the

impact of temperature changed significantly between 1990 and 2010.

Our work adds to a growing literature estimating the impacts of weather variation on economic

outcomes ranging from mortality rates to human capital formation (Deschênes and Greenstone,

2011; Graff Zivin, Hsiang, and Neidell, 2018). These studies have helped to identify the crucial

links between climate, labor productivity, and health. Subject to the uncertainties identified above,

our analysis suggests that changes in worker safety may be another such link. If so, future research

on the impacts of temperature on accident rate may prove salient both to climate and worker safety

and productivity.
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Appendix: Heat Stress: Ambient Temperature and
Workplace Accidents in the US
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Table A1: Primary robustness checks

(1) (2) (3) (4) (5)
Private Accident IRR

Unbalanced Balanced Full Excluding CA

Max temp < 0 F 0.942 0.946 0.972 0.941 0.927
(0.23) (0.23) (0.24) (0.23) (0.23)

0-5 F 0.941 0.944 0.970 0.941 0.945
(0.22) (0.22) (0.23) (0.22) (0.22)

5-10 F 0.628 0.630 0.646 0.628 0.635
(0.12) (0.12) (0.12) (0.12) (0.12)

10-15 F 0.971 0.974 0.997 0.971 0.983
(0.10) (0.10) (0.11) (0.10) (0.11)

15-20 F 0.788 0.785 0.801 0.783 0.798
(0.06) (0.06) (0.06) (0.06) (0.06)

20-25 F 0.874 0.876 0.890 0.874 0.889
(0.05) (0.05) (0.05) (0.05) (0.05)

25-30 F 0.890 0.888 0.900 0.886 0.900
(0.04) (0.04) (0.04) (0.04) (0.04)

30-35 F 0.908 0.907 0.919 0.906 0.925
(0.03) (0.03) (0.03) (0.03) (0.03)

35-40 F 0.912 0.912 0.920 0.911 0.922
(0.03) (0.03) (0.03) (0.03) (0.03)

40-45 F 0.955 0.955 0.962 0.955 0.984
(0.03) (0.03) (0.03) (0.03) (0.03)

45-50 F 0.944 0.942 0.946 0.942 0.971
(0.03) (0.03) (0.03) (0.02) (0.03)

50-55 F 0.983 0.983 0.984 0.982 1.010
(0.02) (0.02) (0.02) (0.02) (0.03)

55-60 F 0.955 0.955 0.956 0.955 0.954
(0.02) (0.02) (0.02) (0.02) (0.03)

60-65 F 0.987 0.986 0.985 0.986 0.997
(0.02) (0.02) (0.02) (0.02) (0.03)

70-75 F 1.039 1.040 1.041 1.033 1.015
(0.02) (0.02) (0.02) (0.02) (0.02)

75-80 F 1.042 1.042 1.044 1.049 1.026
(0.02) (0.02) (0.02) (0.02) (0.02)

80-85 F 1.051 1.050 1.051 1.046 1.057
(0.02) (0.02) (0.02) (0.02) (0.03)

85-90 F 1.066 1.066 1.061 1.070 1.095
(0.03) (0.03) (0.02) (0.02) (0.03)

90-95 F 1.099 1.099 1.094 1.089 1.117
(0.03) (0.03) (0.03) (0.02) (0.04)

95-100 F 1.134 1.134 1.135 1.171 1.224
(0.04) (0.04) (0.04) (0.03) (0.05)

100-105 F 1.293 1.293 1.304 1.242 1.417
(0.05) (0.05) (0.05) (0.04) (0.08)

Max temp ≥ 105 F 1.410 1.410 1.434 1.417 1.585
(0.09) (0.09) (0.09) (0.06) (0.19)

Balanced X X X X
Uses heat index X

Standard FE X X X X
+ Region month FE X

Nr. observations 21594330 21529690 21529690 21529690 21084830
Nr. counties 2817 2807 2807 2807 2749

Note: Robust standard errors are given in parentheses.

25



1 Temperature-Sensitive (TS) Accidents and Employment

1.1 Identifying TS industries

In this section, we outline our procedure for identifying temperature-sensitive TS accidents and
employment. First, Tables A2 and A3 list the industry codes that we classify as TS. The BLS
Quarterly Census of Employment and Wages (QCEW) categorizes industries by Standard Industrial
Classification (SIC) Codes throuhg 2000, after which it classifies them by North American Industry
Classification System (NAICS) codes, so we identify industries under both coding systems. OSHA
accident data categories accidents by SIC codes.

Table A2: TS Standard Industrial Classification (SIC) codes

Temperature-Sensitive Industry SIC Code

SIC Divisions

Agriculture, Forestry, and Fishing Division A
Mining Division B
Construction Division C
Manufacturing Division D
Transportation, Communications, Electric, Division E
Gas, and Sanitary Services
Wholesale Trade Division F

SIC Major Groups (2-digit codes)

Automotive Dealers and Gasoline Service Stations Division G, Major Group 55
Automotive Repair, Services, and Parking Division I, Major Group 75
Miscellaneous Repair Services Division I, Major Group 76

SIC 4-Digit Codes

Lumber and Other Building Materials Dealers Division G, 5211
Retail Nurseries, Lawn and Garden Supply Stores Division G, 5261
Sporting and Recreational Camps Division I, 7032
Recreational Vehicle Parks and Campsites Division I, 7033
Other Building Cleaning and Maintenance Services Division I, 7349
Heavy Construction Equipment Rental and Leasing Division I, 7353
Public Golf Courses Division I, 7992
Amusement Parks Division I, 7996
Membership Sports and Recreation Clubs Division I, 7997
Police Protection Division J, 9221
Fire Protection Division J, 9224
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Table A3: TS North American Industry Classification System (NAICS) codes

Temperature-Sensitive Industry NAICS Code

NAICS Sectors

Agriculture, Forestry, Fishing, and Hunting Sector 11
Mining, Quarrying, and Oil and Gas Extraction Sector 21
Utilities Sector 22
Construction Sector 23
Manufacturing Sector 31-33
Wholesale Trade Sector 42
Transportation and Warehousing Sector 48-49

NAICS Subsectors

Motor Vehicle and Parts Dealers Subsector 441
Building Material and Garden Supply Stores Subsector 444
Gasoline Stations Subsector 447
Waste Management and Remediation Services Subsector 562
Repair and Maintenance Subsector 811

NAICS Industry Groups

Machinery and Equipment Rental and Leasing Industry Group 5324
Services to Buildings and Dwellings Industry Group 5617
Other Amusement and Recreation Industries Industry Group 7139
RV Parks and Recreational Camps Industry Group 7212

NAICS Industries

Amusement and Theme Parks NAICS Industry 71311
Police Protection NAICS Industry 92212
Fire Protection NAICS Industry 92216
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1.2 Calculating TS employment

We collect monthly employment data, broken down by county and SIC code, from the BLS Quar-
terly Census of Employment and Wages (QCEW). Extensive county-level data suppression within
the QCEW prevents us from directly calculating TS employment as the simple sum of employment
across TS industries. Instead, we undertake the following process:

• Given county A and TS industry B in month C, we calculate the share of county A’s private
employment that is in industry B for month C separately for all years from 1990 through
2010 for which data is available.

• We then average this proportion across all years, generating estimates for the average pro-
portion of county A’s total private employment that is in industry B in month C.

• Then, we sum these average proportions over all TS industries to generate a measure of the
average share of total private employment in county A in month C that is in TS industries.

• Finally, we estimate TS employment in county A, month C, year D by multiplying total
private employment for that county-year-month by the TS employment ratio for county A in
month C.

Note that this method creates a single value for the share of private employment in TS industries
for each county-month in our data, assuming that the total proportion of county-level employment
in TS industries stays constant from 1990 through 2010. Then, all variation in our measure of TS
employment comes from variation in total private employment.

While this method reduces missing data by pooling data from any years in which it is available,
many counties are still missing estimates of the proportion of employment in a subset of TS indus-
tries due to QCEW data suppression. Then, we estimate TS employment using only the subset of
industries for which data are available. To identify counties where our TS employment measures
are based on incomplete data, we create a simple quality index. For the years 1990 through 2010,
we construct the index as follows:

• For a county with employment data for every temperature-sensitive industry at some point
in our sample period, this index takes the value of 0.

• We add 1 to a county’s index for each TS SIC Division with no available employment data

• We add 0.1 to a county’s index for each TS SIC Major Group (2-digit code) with no available
employment data.

• We add 0.01 to a county’s index for each TS SIC 4-digit code with no available employment
data

We create a parallel index based on NAICS codes for the years 2001 through 2010, and finally we
average these two indices by county to generate a single measure of data quality for TS employment.
When we separately estimate the impact of temperature in TS and non-TS industries in section ??,
we verify that our results are robust to excluding counties with an index greater than 1, i.e. those
that are on average missing data for more than one TS industry division. These results appear in
Table ?? below.
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Table A4: Primary regressions with TS and non-TS accidents

(1) (2) (3) (4)
Private Accident IRR

Non-TS Accidents TS Accidents

Max temp < 0 F 2.705 3.551 0.821 0.765
(1.50) (2.00) (0.24) (0.29)

0-5 F 1.736 1.471 0.892 0.849
(1.01) (1.05) (0.21) (0.25)

5-10 F 1.098 1.373 0.598 0.587
(0.56) (0.71) (0.12) (0.14)

10-15 F 1.561 1.880 0.935 0.934
(0.47) (0.56) (0.11) (0.12)

15-20 F 1.478 1.340 0.734 0.714
(0.30) (0.29) (0.06) (0.07)

20-25 F 1.093 1.007 0.864 0.846
(0.19) (0.17) (0.05) (0.06)

25-30 F 0.991 1.015 0.885 0.859
(0.13) (0.14) (0.04) (0.04)

30-35 F 1.006 0.977 0.904 0.916
(0.10) (0.10) (0.03) (0.03)

35-40 F 0.887 0.852 0.918 0.912
(0.08) (0.08) (0.03) (0.03)

40-45 F 0.978 0.991 0.956 0.958
(0.09) (0.09) (0.03) (0.03)

45-50 F 0.909 0.911 0.948 0.944
(0.07) (0.07) (0.03) (0.03)

50-55 F 0.942 0.932 0.988 0.984
(0.05) (0.05) (0.02) (0.02)

55-60 F 0.871 0.876 0.966 0.965
(0.06) (0.06) (0.02) (0.02)

60-65 F 0.961 0.946 0.990 0.992
(0.07) (0.06) (0.02) (0.02)

70-75 F 1.082 1.069 1.035 1.031
(0.07) (0.07) (0.02) (0.02)

75-80 F 0.985 0.986 1.049 1.053
(0.07) (0.07) (0.02) (0.02)

80-85 F 1.014 1.011 1.055 1.052
(0.06) (0.06) (0.02) (0.02)

85-90 F 0.986 0.988 1.075 1.083
(0.08) (0.08) (0.02) (0.03)

90-95 F 1.045 1.053 1.103 1.110
(0.09) (0.10) (0.03) (0.03)

95-100 F 1.134 1.155 1.127 1.133
(0.12) (0.13) (0.04) (0.04)

100-105 F 1.175 1.187 1.294 1.307
(0.19) (0.20) (0.05) (0.05)

Max temp ≥ 105 F 1.545 1.577 1.378 1.382
(0.31) (0.32) (0.09) (0.10)

Quality restricted X X
Standard FE X X X X

Nr. observations 7777380 6180041 21391630 15878368
Nr. counties 1014 826 2789 2179

Note: Robust standard errors are given in parentheses. Columns 2 and 4 restrict to county-months without
substantial missing data for TS employment. We describe this “quality restricted” sample in Appendix Section
1.2 above. The variation in sample size between the TS and non-TS regressions arises because the regression
mechanically drops any county with no (non-)TS accident in 1990 through 2010 from the (non-)TS regression.
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2 Long-run adaptation results

Figure 1: Impacts of heat shocks over time in the historically coolest tercile of counties

Note: Estimated incident rate ratios of the four highest 10-degree temperature bins relative to
days with maximum temperature between 60◦and 70◦F, plotted over time. These coefficients give
estimated temperature impacts in counties in the third tercile of the county-level distribution of
average number of days with max temperature over 90◦F per year from 1990 through 2000. The
dashed lines mark 95% confidence intervals.
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Figure 2: Impacts of heat shocks over time in the historically middle tercile of counties

Note: Estimated incident rate ratios of the four highest 10-degree temperature bins relative to
days with maximum temperature between 60◦and 70◦F, plotted over time. These coefficients give
estimated temperature impacts in counties in the second tercile of the county-level distribution of
average number of days with max temperature over 90◦F per year from 1990 through 2000. The
dashed lines mark 95% confidence intervals.
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3 Projecting workplace accidents under climate change

Our model estimates can be used to infer the increase in occupational injuries that might be
expected with climate change in the coming decades. To make these inferences we utilize the
Monte-Carlo simulations of global climate outcomes over the coming century imputed to the US
county-level that have been undertaken and discussed more fully by Rasmussen, Meinshausen, and
Kopp (2016).

Rasmussen, et al. produce temperature forecasts for US counties that are based on four IPCC
Relative Concentration Pathways (RCP). These are different assumed levels of radiative forcing or
energy input minus energy output for the entire planet. The scenarios are identified by the watts
per meter2 increase in radiative forcing relative to the year 1750. We undertake a comparison
between the RCP 8.5, a ‘baseline’ scenario in which CO2 equivalent concentrations rises to 1313
ppm by the end of this century, and RCP 2.6 as a ‘mitigation’ scenario in which CO2 equivalent
concentrations are held below 475 ppm. Rasmussen, et al. develop dual approaches to estimating
the maximum temperature in US counties under these (and other) scenarios. We make use of their
Monte Carlo simulations of the two scenarios.

Their Monte-Carlo simulations provide county level temperatures for each percentile of global
mean temperature under each scenario. We take these data and calculate, for each county and
day, the median temperature obtained in these simulations. We use this as a predicted future
temperature for each US county and calculate the appropriate indicator variable for the temperature
range for each day.

In addition to the indicator for temperature range, we need to make some assumptions about
future values of precipitation and total private employment. In order to focus attention on the
effects of future temperature change, and because forecasting future changes in employment is well
beyond the scope of this study, we take the mean value of private sector employment for each
county over the period 2001-2010, and assume that will prevail in the future.

Although there are forecasts available of future precipitation levels, these remain even more
uncertain than the temperature forecasts. Therefore, again to focus attention on the expected
future changes in ambient temperatures, we assume each county experiences a daily precipitation
amount that is the mean of that recorded in our sample from 2001 through 2010.

Using these data, we estimate our core model whose results are presented above and then use
the estimated parameters to predict the number of accidents for each day and each county for future
days. We summarize in Table A5 the associated increase in workplace accidents for the entire year
2099.

Table A5 presents the estimated impact by US Census districts and presents a total for the 49
contiguous jurisdictions in the continental United States. The first column identifies the geographic
area. The second column, labeled ‘Increased Accidents’ provides the sum over all counties in the
jurisdiction and all days in 2099 of the predicted accidents under RCP 8.5 median temperature
minus predicted accidents under RCP 2.6 median temperature.

The predicted increase in accidents, being based on our analysis of workplace accidents involving
injuries reported to OSHA, represent only a fraction of the total number of workplace injuries. This
under-reporting of workplace injuries arises from variation in state-level and regional practices in
reporting these mishaps, as well as OSHA regulations themselves that may only require reporting
of accidents that involve several workers.

Obtaining an estimate of the extent of under-reporting in each county is probably impossible,
but we can obtain an idea by comparing the number of fatalities resulting from workplace acci-
dents reported to OSHA and the more complete data on fatalities generated by workplace injuries
collected by the Bureau of Labor Statistics and the Census of Fatal Occupational Injuries. These
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Table A5: Predicted increase in accidents in 2099

Region
Increased

Accidents
Scaled

Accidents
Private

Employment
Increase per

Employment Cost

New England 686 2,071 5,707,723 363 $56,096,163
North Atlantic 1,667 5,029 14,820,070 339 $136,234,310
East North Central 5,325 16,068 17,057,635 942 $435,283,384
West North Central 8,306 25,065 8,028,194 3,122 $678,991,367
South Atlantic 8,409 25,374 20,225,760 1,255 $687,388,104
East South Central 5,895 17,789 5,954,958 2,987 $481,904,829
West South Central 8,607 25,971 11,909,701 2,181 $703,550,114
Mountain 4,166 12,570 7,645,967 1,644 $340,510,465
Pacific 1,518 4,581 16,173,030 283 $124,106,151

Total 44,579 134,518 107,523,038 1,251 $3,644,064,890

data indicate that from 2003 to 2010 there were 42,577 fatalities due to workplace injury in our
49 sample geographies. During the same period, our OSHA data record 14,110 fatalities resulting
from reported injuries. Using this ratio as a conservative estimate of the fraction of total workplace
injuries that are reported in our data suggests that the true number of workplace injuries is larger
than our reported number by a factor of approximately 3.018. The third column labeled ‘Scaled
Accidents’ reports the difference in accidents in the two RCP scenarios, scaled by this factor. Figure
3 presents a map of the US with counties colored according to this scaled estimated increase in
workplace injuries.

Figure 3: Predicted increase in accidents in US Counties, 2099

Note: Derived from difference between median temperature at county level under IPCC RCP 8.5
(baseline) and RCP 2.6 (aggressive abatement), scaled to account for OSHA under-reporting.
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It should be noted that the map presented in Figure 3 reveals a very different pattern than
mapping the predicted increase in temperature. The largest absolute increases in temperature are
generally predicted to be in the northern portions of the Mountain and West North Central districts.
Much of this increase, however, still leaves the local area with relatively moderate temperatures
where the risk of workplace accident is not highly elevated. The estimated increase in workplace
accidents illustrated in the map takes into account the non-linear relationship between temperature
range and accident risk, plus the number of local workers who are exposed to this risk.

As indicated in column four of Table A5, the total employment varies considerably across regions
(and implicitly across counties). Column five of Table A5 shows the estimated increase in workplace
accidents per million private sector workers. As shown, this varies from low levels of increased risk
in New England, the North Atlantic and Pacific regions to high increased risk in the East South
Central, and West North Central regions.

Finally, to provide an estimate of the burden that this increase in workplace accidents might
place on the US economy, we use the estimated costs of workplace accidents provide in Leigh (2011).
Updating those estimates to 2019 prices and applying the cost to the scaled estimated accidents
produces the figures presented in the final column of Table A5. The total cost to the US economy
is estimated to be over $3.6 billion per year in 2099.
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