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1 Introduction

My research centers on explicit class field theory but, more generally, I have a taste
for explicit constructive number theory. This means my research is quite amenable
to undergraduate work. Every one of the problems described in Section 4 have pieces
that a student could work on independently! For example, I would love to work with
a student on getting my software working to compute translates of modular units (a
more or less combinatorial program). I would also love to have a student work with
me on using the new trigonometric identities in Section 2.2 and the relations satisfied
by gamma-monomials to give an independent construction of the squares cited in
Section 2.2. An advanced student with some abstract algebra background would
even be able to work on a further study of the almost abelian extensions introduced
at the end of this section.

Leopold Kronecker (1823-1891) first observed that every field extension of the
rational numbers with abelian Galois group is contained in a pure cyclotomic field.
For example, Q(

√
−3)/Q has Galois group Z/2Z and is contained in Q(ζ3) for ζ3 =

e2πi/3 = 1+
√
−3

2
, a third root of unity. He then noted that the single holomorphic

function, f(z) = e2πiz, evaluated at rational numbers is responsible for every such
extension. Inspired by this observation, he dreamt that a function might be found
to thus classify abelian extensions of imaginary quadratic base fields. His dream
came true in the form of complex multiplication, hailed by David Hilbert (1862-1943)
as “not only the most beautiful part of mathematics but also of all science”[9]. In
fact, the natural generalization, namely to find a function or family of functions
whose special values generate the maximal abelian extension of any extension of the
rationals, or number field, became Hilbert’s twelfth problem.

In [10] Harold Stark put forth a conjectural program about units in number fields
and the special values of L-functions that, in some settings, offers a solution to
Hilbert’s twelfth problem. I will motivate and describe the abelian conjecture where
the order of vanishing at s = 0 is one, but there is a conjecture about the first non-
vanishing coefficient in the non-abelian and higher order of vanishing settings as well.
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I will then map out the related work of Anderson and Kubert-Lang whose work has
inspired my own.

The mingling of algebra and analysis that Hilbert so revered is typified by the
analytic class number formula, which relates the first nonzero Taylor series coefficient
of the Dedekind zeta function to algebraic invariants of the number field K. Let K/k
be a Galois extension of number fields. The Dedekind zeta function of K is defined by
its Euler product in the right half-plane <(s) > 1 and there it factors as the product
of its constituent Artin L-functions

ζK(s) =
∏

p

(1−N p−s)−1 =
∏
χ

LK/k(s, χ)

where N (p) is the absolute norm of p, the first product is taken over prime ideals p
of the ring of integers of K, and the second is the product over irreducible characters
of the Galois group of K/k. Dirichlet’s analytic class number formula then says that
the Dedekind zeta function has a Taylor expansion about s = 0 that looks like

ζK(s) = −hR

W
sr1+r2−1 + O(sr1+r2),

where r1 and r2 are the number of real and half the number of complex embeddings
of K, respectively, h is the class number, R the regulator, and W the number of
roots of unity in K. Stark wanted to split the regulator matrix into character com-
ponents in correspondence with the L-function decomposition of the zeta function.
Furthermore, he wanted to see whether the leading terms of the L-functions factor
into a transcendental part corresponding to the regulator and a rational (or at worst
algebraic) part corresponding to −h/W in the class number formula.

We now state Stark’s conjecture for K/k an abelian extension of number fields.
Let S be a finite set of primes in k containing all infinite and ramified primes of k,
and at least one prime, say v, that splits completely from k to K, and at least two
primes overall. Let LS(s, χ) be the Dirichlet L-function associated to χ ∈ Ĝ with
Euler-factors associated to primes in S removed. Then Stark’s conjecture predicts
the existence of an S-unit ε ∈ K, unique up to roots of unity, such that

L′S(0, χ) = − 1

W

∑
σ

χ(σ) log |ε|wσ , ∀χ ∈ Ĝ.

The sum on the right is over σ in the Galois group of K/k and w is a fixed prime
above v. In this setting, Stark further conjectures that the W th root of ε generates an
abelian extension not only over K, but over k, and experimental data confirms this.

Stark’s conjecture as formulated above is proved only for k = Q, k imaginary
quadratic, and a handful of special cases. In the rank one abelian case, the conjecture
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remains open for other number fields. The higher rank and non-abelian cases remain
largely untouched.

In [1], Anderson defines an almost abelian group to be one such that every com-
mutator is central and squares to the identity. He defines Gab+ε to be the quotient of
G(Q/Q) universal for continuous homomorphisms to almost abelian profinite groups.
He shows that the corresponding Galois extension of Q is, in fact Gab, the maximal
abelian extension of Q with the fourth roots of rational primes and certain gamma-
monomials adjoined (hence, +ε !). As he remarks,

“The relations standing between the Main Formula, the index formulas of Sin-
nott, Deligne reciprocity, the theory of Fröhlich, the theory of Das, the theory of the
group cohomology of the universal ordinary distribution and Stark’s conjecture and
its variants deserve to be thoroughly investigated. We have only scratched the surface
here. Stark’s conjecture is relevant in view of the well known expansion

∞∑
n=0

1

(n + x)s
=

1

2
− x + s log

Γ(x)√
2π

+ O(s2)

of the Hurwitz zeta function at s = 0”[1].

2 Thesis Research

2.1 Units in the field of modular functions

Kubert and Lang prove in [4] that if U is the group of units in the field of modular
functions on congruence subgroups of SL2(Z), and S is the subgroup generated by
the Siegel units, then U/S has exponent two. Their work begs the question of how
to construct explicitly elements in S whose square roots are in U \ S. This relates
to Anderson’s construction over Q because the special values of these functions and
their square roots might together generate almost abelian extensions of an imaginary
quadratic extension of Q.

I was able to find combinations of Siegel units analogous to Anderson’s gamma-
monomials that are conjectured to have a square root in U. I have proved the following
theorem and its corollary. To state them, we first define the level of a modular
function. Let π : SL2(Z) → SL2(Z/NZ) be the natural projection map. Then
Γ(N) = ker π and a meromorphic function on the complex upper half-plane H is a
modular function of level N if f(γ(z)) = f(z) for all γ ∈ Γ(N) and its magnitude is
bounded at the limit points of Γ(N)\H.

Theorem. If f(z) is a modular unit and
√

f(z) is a modular function of level M

for some M ∈ N with N |M then, in fact,
√

f(z) is a modular function of level 2N .
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Corollary. Let FN denote the full field of modular functions of level N . If f(z)
is a modular unit of level N then either

√
f(z) ∈ FN(

√
j(z)− 1728) or

√
f(z) is not

level M for any M ∈ N.
In order to better understand the behavior of these square roots I followed up on

Anderson’s suggestion regarding the relation of his work to the Stark’s conjecture.
What follows is a discussion of that study.

2.2 Explicit squares in cyclotomic fields

Anderson’s result discussed above includes the construction of gamma-monomials
that, together with roots of unity, generate almost abelian extensions of Q. Let k be
the cyclotomic field Q(e2πi/pq) and let α ∈ k be a unit such that k(

√
α)/Q is almost

abelian. Let σ be an element of the Galois group of k/Q. Then α
σ(α)

is the square of
a unit in k and, thus, has a square root in k. By considering the group of relations
satisfied by gamma-monomials, I can find this square root explicitly. Thus, finding a
multiplicative basis for the units of index class number extending these squares would
prove certain class numbers are even.

My work in this area led to two results. First, I found a family of new trigonometric
identities indexed by products of distinct primes pq, exemplified by pq = 15:

4 sin(π/15) sin(4π/15) sin(9π/15)

sin(3π/15)
= 1.

Second, in light of the expansion of the Hurwitz zeta function, and the fact that

Γ(x)Γ(1− x) =
π

sin(πx)
,

these identities show that certain sums of Hurwitz zeta functions vanish to first order
at s = 0. For example,

ζ(s,
3

15
)− ζ(s,

1

15
)− ζ(s,

4

15
)− ζ(s,

9

15
) + ζ(s,

12

15
)− ζ(s,

14

15
)− ζ(s,

11

15
)− ζ(s,

6

15
) =

s log
4 sin(π/15) sin(4π/15) sin(9π/15)

sin(3π/15)
+ O(s2)

vanishes to first order at s = 0. Therefore, the coefficient of s2 is of interest as we
shall see below.
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2.3 L-functions attached to characters of conductor p

The vanishing of these Hurwitz zeta functions is, in turn, connected to the known
first-order vanishing of L-functions associated to even characters of conductor p. Let
χp be a non-trivial even character of conductor p, and χpq its inflation to the group
(Z/pqZ)×. Suppose S = {p, q}, and recall that LS(s, χ) has Euler factors associated
to primes in S removed. Then the second order vanishing of (pq)sL(s, χp)(1 − q−s)
at s = 0 can be expressed in terms of the second order vanishing of Hurwitz zeta
functions as in the following example for S = {3, 5}

15sL(s, χ5)(1− 3−s) =

15sL(s, χ5)(1− χ5(3)3−s)− 35sL(s, χ5)[3
−s(1− χ5(3))] =

15sLS(s, χ15)− 5sL(s, χ5) + 5sχ5(3)L(s, χ5) =

14∑
a=1

(a,15)=1

ζ(s,
a

15
)χ15(a)−

4∑
b=1

ζ(s,
3b

15
)χ5(b) +

4∑
c=1

ζ(s,
3c

15
)χ5(3c).

If we now use the character orthogonality relations to isolate the a = 1, 4, 11, 14,
b = 2, 3, and c = 1, 4 terms then we see that the first non-vanishing coefficient from
the previous section is, in fact, the lead term of −2 · 15sL(s, χ5)(1 − 3−s), which is
known (because the Stark’s conjecture is proved in this setting) to be

−2 log(3)L′(0, χ5) = − log(3)[log |(1− ζ5)(1− ζ−1
5 )|+ log |(1− ζ2

5 )(1− ζ−2
5 )|] =

−2 log(3) log |(1− ζ5)(1− ζ2
5 )−1|,

where ζ5 is a primitive fifth root of unity.

3 Current Research

Anderson says “Perhaps there is an analogue of the Main Formula over an imaginary
quadratic field involving elliptic units. This possibility seems especially intriguing.”[1]
My current research goal is to write down this analogue and thereby give explicit
generators and Galois action for the maximal almost abelian extension of an imaginary
quadratic base field.

Let A be the free group on symbols of the form [a], where [a] is the class of a ∈ Q
modulo the relation [a] = [b] ⇐⇒ b− a ∈ Z. Define the map

sin : A → (Qab)×
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to be the unique homomorphism such that

sin[a] =

{
2 sin(πa) = |1− e2πia| if 0 < a < 1

1 if a = 0.

Now define the symbol apq for 2 < p < q to be

apq =

p−1
2∑

i=1

[
i

p

]
−

q−1
2∑

k=0

[
i

pq
+

k

q

]−

q−1
2∑

j=1

[
j

q

]
−

p−1
2∑

l=0

[
j

pq
+

l

p

]
and for p = 2 to be

apq =

[
1

4

]
−

q−1
2∑

k=0

[
1

4q
+

k

q

]−

q−1
2∑

j=1

([
j

q

]
+

[
− 1

2q
+

j

q

]
−

[
j

2q

]
−

[
− 1

4q
+

j

2q

])

Let S = {−1} ∪ {rational prime numbers }, which is a Z/2Z-basis for Q×/Q×2.
For p ∈ S define ep ∈ H1(Gab, Z/2Z) by

σ(
√

p) = (−1)ep(σ)√p

for σ ∈ Gab. By Kummer Theory, {ep}p∈S is a Z/2Z-basis for H1(Gab, Z/2Z) so ep∧eq

for p > q is a basis for ∧2 H1(Gab, Z/2Z)
Anderson’s Main Formula is

D(apq mod Q×2) = ep ∧ eq

for p > q, which gives an explicit inversion of the isomorphism

D : H0(Gab, Qab×/Qab×2) → ∧2 H1(Gab, Z/2Z).

on a basis of ∧2 H1(Gab, Z/2Z). Explicitly inverting this map is the key step in
Anderson’s construction of Qab+ε.

Let k be an imaginary quadratic field. I am presently working on explicitly in-
verting the isomorphism

D : H0(Gab
k , kab×/kab×2) → ∧2 H1(Gab

k , Z/2Z).

This will give a basis for the maximal almost abelian extension of k.
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4 Future Directions

1. Further investigation of the behavior of the proposed square root under the
action of SL2(Z)?

2. Find a multiplicative basis for the subgroup of cyclotomic units with index class
number in the full unit group of Q(ζm)+.

3. Let k = Q(ζm)+ and G = G(k/Q). Let S be the set containing the infinite
prime of Q and all the finite primes dividing m. Find a Z[G]-submodule of US,
the S-units in k, call it C, that contains the cyclotomic numbers and is of index
class number in US. Show that Ĥq−2(G, X) ∼= Ĥq(G, C), where X is the Z[G]-
module of degree zero divisors of primes of k supported at the primes dividing m.

To accomplish (1), I will compute the transformation of my proposed square root
using software I am developing. There are three possibilities for the outcome. First,
the square root could fail to be in U . Second, the square root could transform under
Γ(N) for some N , but fail to have cyclotomic coefficients. Third, the square root could
transform under Γ(N) for some N and have cyclotomic coefficients. Let the imaginary
quadratic base field be k. In the third case, special values of the function would
generate an abelian extension K/k and its square root would generate a quadratic
extension of K that is abelian over k. In this case, there would exist units that are
squares. Together with (2), this could be used to show certain class numbers are
even. In the second case, the square root would generate quadratic extensions of the
maximal abelian extension of k in analogy with Anderson’s construction. In this case,
the next step would be to investigate to what extent these square roots generate the
maximal almost abelian extension of k.

For (2), I will start with m = pq, for p and q distinct odd primes. Let k = Q(ζpq)
+.

Sinnott proves in [9] that the cyclotomic units have index in the full group of units
equal to the class number of k. I have been working on finding a multiplicative basis
for these units with an eye towards proving certain class number are even using results
of Anderson. I have used Stark’s conjecture in conjunction with explicit group-ring
determinants and successfully accomplished this in examples. There are two avenues
that I plan to explore more thoroughly: using Tate’s representation-theoretic refor-
mulation of Stark’s conjecture [11] to break up the group determinant into character
components; and using Sinnott’s proof to break the construction of a basis into steps
correlated to his intermediate index calculations.

(3) is a natural question that arises in the theory of Tate sequences and was pointed
out to me by Popescu. In the case that m is a prime power, the cyclotomic units, call
them CS, are already index class number in US. In this setting, CS is isomorphic to

7



Z[G]ε, where ε is the Stark unit in k. Furthermore, the group of divisors on primes
above p and infinity, which we shall call YS, is simply YS

∼= Z⊕Z[G]. Thus, the short
exact sequence

0 → XS → YS
deg→ Z → 0

splits and we see that XS is isomorphic to Z[G]. Hence, both CS and XS are coho-
mologically trivial. The next case to treat is m = pq.
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