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Abstract. We introduce the notion of a locally scaling transformation defined on a compact-
open subset of a non-archimedean local field. We show that this class encompasses the Haar
measure-preserving transformations defined by C1 (in particular, polynomial) maps, and
prove a structure theorem for locally scaling transformations. We use the theory of poly-
nomial approximation on compact-open subsets of non-archimedean local fields to demon-
strate the existence of ergodic Markov, and mixing Markov transformations defined by such
polynomial maps. We also give simple sufficient conditions on the Mahler expansion of a
continuous map Zp → Zp for it to define a Bernoulli transformation.

1. Introduction

The p-adic numbers have arisen in a natural way in the study of some dynamical systems,
for example in the study of group automorphisms of solenoids in Lind and Schmidt [LS94];
other situations in dynamics where the p-adic numbers come up are surveyed in Ward [War].
At the same time there has been interest in studying the dynamics (topological, complex, or
measurable) of naturally arising maps (such as polynomials) defined on the p-adics; see for
example Benedetto [Ben01], Khrennikov and Nilson [KN04], and Rivera-Letelier [RL03]. In
particular, Bryk and Silva in [BS05] studied the measurable dynamics of simple polynomials
on balls and spheres on the field Qp of p-adic numbers. The maps they studied are ergodic
but not totally ergodic and they asked whether there exist polynomials on Qp that define
(Haar) measure-preserving transformations that are mixing. Woodcock and Smart in [WS98]
show that the polynomial map x 7→ xp−x

p
defines a Bernoulli, hence mixing, transformation

on Zp. A consequence of our work is a significant extension of the result for this map, placing
it in a greater context (see in particular Example 8.5).

Rather than working on Qp we find that the natural setting for our work is over a non-
archimedean local field K. We introduce a class of transformations, called locally scaling,
and show in Lemma 4.3 that measure-preserving C1 (in particular, polynomial) maps are
locally scaling. In Section 5 we apply the theory of Markov shifts to classify the dynamics
of locally scaling transformations, decomposing the transformation into a disjoint union of
ergodic Markov transformations and local isometries. In particular, we show that a weakly
mixing locally scaling transformation must be mixing. We also show the existence of poly-
nomials defining transformations exhibiting nearly the full range of behaviors possible for
locally scaling transformations, such as ergodic Markov, mixing Markov, and Bernoulli trans-
formations.
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Given a polynomial defined on a compact-open subset of K, our work shows that a finite
computation may check whether it defines a measure-preserving transformation and whether
it defines a mixing transformation; the question of ergodicity is also answered, except in the
case where the polynomial is 1-Lipschitz, which has been studied by Anashin in [Ana02].

We now indicate an outline of the rest of the paper. Section 2 reviews results on Markov
shifts, Section 3 reviews preliminaries on non-archimedean local fields as well as some analytic
definitions, and Section 6 recalls some of the theory of polynomial approximation on rings
of integers of non-archimedean local fields.

Section 4 establishes the relationship that measure-preserving C1 maps are locally scaling,
and Section 5 proves our main structural results, in particular Proposition 5.8 and Theo-
rem 5.9. Section 7, in particular Theorem 7.2, shows that polynomial maps are in a sense a
representative class of locally scaling transformations, and the existence of polynomial maps
defining locally scaling transformation with various behaviors, including mixing. Section 8
and Section 9 are devoted to demonstrating two interesting classes of locally scaling maps
on Zp that arise naturally in the study of polynomial approximations. Specifically, Section 8
studies maps which are isometrically conjugate to the natural realization of the Bernoulli
shift, and shows for instance that the map x 7→

(
x
pℓ

)
on Zp is Bernoulli; these results are

then used in Section 10 to construct maps N → Z whose continous extensions Zp → Zp

are Bernoulli for each prime p. Section 9 then studies similar binomial-coefficient maps
which are locally scaling and so have very regular structures but fail to be Haar measure-
preserving. Finally, Section 11 briefly indicates how our results on polynomials extend to
rational functions.

1.1. Acknowledgements. This paper is based on research by the Ergodic Theory group of
the 2005 SMALL summer research project at Williams College. Support for the project was
provided by National Science Foundation REU Grant DMS - 0353634 and the Bronfman
Science Center of Williams College.

2. Markov shifts

Let S be a finite non-empty set. By a stochastic matrix on S we mean a map A : S2 → R≥0

such that ∑

j∈S

A(i, j) = 1 for each i ∈ S.

Putting S into a bijection with the set {0, . . . , #S − 1} we may regard A as a #S × #S
matrix with non-negative entries and the entries in each row summing to 1. In analogy
with this case, we will refer to the sets {A(i, ·)} and {A(·, j)} as rows and columns of A,
respectively.

By a row vector on S we mean a map λ : S → R. For λ a row vector and A a stochastic
matrix, we define their product as the row vector λA defined by

λA(j) =
∑

i∈S

λ(i)A(i, j).

We will say that λ is non-negative (resp. positive) if it takes values in R≥0 (resp R>0).
To any stochastic matrix A we may associate the following symbolic dynamical system:
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(i) Let

XA = {x ∈
∏

i≥0

S : A(πn(x), πn+1(x)) 6= 0 for all n ≥ 0}

where πn :
∏

i≥0 S → S is projection to the nth coordinate. Give each finite factor
the discrete topology, and XA the subspace topology inherited from the product
topology.

(ii) Let TA be defined by πn ◦ TA = πn+1. Then, (XA, TA) is a topological dynamical
system.

(iii) If in addition λ is a non-negative row vector such that λ = λA, then we may define
a measure on XA by

µA,λ([d0d1d2 . . . dℓ]) = λ(d0)A(d0, d1) · · ·A(dℓ−1dℓ), where [d0 . . . dℓ]
def
=

ℓ⋂

n=0

π−1
n (dn).

We call a set of the form [d0 . . . dℓ] a cylinder set ; we may observe that the cylinder
sets form a base for the topology on XA. Note that if λ is in fact positive, then
µA,λ assigns positive measure to each cylinder set and hence to each open set. We
may check that the condition that λ = λA implies that (XA, µA,λ, TA) is a measure-
preserving measurable dynamical system.

We call such a dynamical system a Markov shift.
We say that a stochastic matrix A is irreducible or ergodic if for each i, j ∈ S there exists a

n ∈ N such that An(i, j) > 0. This has a natural interpretation in terms of the connectedness
of a certain directed graph associated with A. We say that a stochastic matrix A is primitive
if there exists a n ∈ N such that An(i, j) > 0 for all i, j ∈ S.

Using the Perron-Frobenius Theorem on non-negative irreducible and primitive matrices,
along with a graph theoretic interpretation of the stochastic matrix, one may obtain an
ergodic decomposition result for Markov shifts:

Proposition 2.1. Let A be a stochastic matrix, and λ a positive row vector such that λ = λA.
Then, we may partition S into disjoint sets

S =
n⊔

k=1

Sk

such that

(i) A(i, j) = 0 for i ∈ Sk, j ∈ Sℓ with k 6= ℓ; and
(ii) Ak = S|Sk×Sk

is irreducible for k = 1, . . . , n

Then, λk = λ|Sk
satisfies λk = λkAk. And we have the ergodic decomposition of (XA, µA,λ, TA)

as

(XA, µA,λ, TA) =
n⊔

k=1

(XAk
, µAk,λk

, TAk
).

Moreover, the kth summand is mixing if Ak is primitive.

Proof. Construct a graph on S as follows. We place a directed edge from i→ j if and only if
A(i, j) > 0. As λ is strictly positive, this is equivalent to the condition that λ(i)A(i, j) > 0.
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We say that the flow or flux associated to this edge is λ(i)A(i, j). Now, the flow out of i is
∑

j∈S

λ(i)A(i, j) = λ(i)

as A is a stochastic matrix. The flow into i is∑

k∈S

λ(k)A(k, i) = λ(i)

as λ = λA. So, we see that the flux into and out of i are both equal to λ(i).
This implies that for every finite subset of S, the in-flux and out-flux will be equal. For

i ∈ S, let R(i) be the set of points reachable from i, and B(i) the set of points which can
reach i. Note that R(i) has out-flux 0 by construction, and B(i) has in-flux 0 by construction;
as S is finite, these subsets are finite, so both have in-flux and out-flux equal to 0.

Now, we can have no edges into or out of either of these two sets. But, if t ∈ R(i) and
y ∈ B(i), then there is a path from y to t; so we must have t ∈ B(i) and y ∈ R(i), and so
B(i) = R(i). So, B(i) = R(i) is strongly connected, and there are no edges into or out of
this set.

For ℓ > 0, note that Aℓ(i, j) > 0 is equivalent to there being a path of length precisely ℓ
from i to j. It follows that the collection

{B(i) : i ∈ S}

gives our desired decomposition of S.
We readily note that λk = λkAk for for k = 1, . . . , n. Then, as Ak is irreducible, [Wal82,

Theorem 1.19] implies that the kth summand is ergodic, from which the ergodic decomposi-
tion follows. Finally, [Wal82, Theorem 1.31] implies that the kth summand is mixing if Ak

is primitive. �

3. Analytic definitions, preliminaries, and notation

Let K be a non-archimedean local field, which we take to be either a finite field extension
of Qp or Fpn((t)) for some prime p.

Let | · | be a non-archimedean multiplicative valuation on K, such that | · | generates
the topology on K. Denote V = |K×| = {|x| : x ∈ K×}, O = {x ∈ K : |x| ≤ 1} and
p = {x ∈ K : |x| < 1} (note that O, p are independent of the choice of valuation). It is
the case that p is the maximal ideal of O, and O/p is a finite field (the residue field). Let
p = charO/p, q = #O/p, both finite with q a power of p.

We denote
Br(x) = {y ∈ K : |x− y| ≤ r},

and call such a set a ball. Let µ be Haar measure on K, normalized such that µ(O) = 1;
define ρ : V → R>0 by ρ(r) = µ(Br(0)).

Now, we recall the following standard results:

(i) O is the maximal compact subring of K;
(ii) O is a discrete valuation ring with unique maximal ideal p;
(iii) p = πO for any π ∈ p \ p2; we call any such π a uniformizing parameter ;
(iv) V is the discrete abelian (multiplicative) subgroup of Q generated by |π|; in light

of this, we may define a map v : K → Z ∪ {+∞} defined by v(0) = +∞ and
v(x) = log|π| |x| for x ∈ K×; this is the additive valuation on K;
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(v) For r = |π|k, k ≥ 0 it is the case that

ρ(r) = µ(Br(0)) =
(
#O/pk

)−1
= q−k.

Indeed, for r ∈ V we see that ρ(r) = q− log|π| r.
(vi) A subset X ⊆ K is compact-open if and only if X is a finite union of balls.

We direct the interested reader to [Ser62] for a thorough treatment of related topics.
We will continue to use the symbols K, µ, p, q, | · |,O, p, π, v,V, ρ, Br with these meanings

below.
Let X be an open subset of K and a ∈ X. Then, we say that a function f : X → K is

strictly differentiable or C1 at a (denoted f ∈ C1(a)) if the limit

lim
(x,y)→(a,a)

x 6=y

f(x)− f(y)

x− y

exists. We write f ∈ C1(X) if f ∈ C1(a) for each a ∈ X. For more on this notion, see [Sch84]
or [Rob00].

4. Measure preserving C1 maps on non-archimedean local fields

Lemma 4.1. Let X ⊆ K be open. Let f ∈ C1(X) be such that f(X) ⊆ X and such that the
transformation f : X → X is measure-preserving with respect to µ. Then, |f ′(a)| ≥ 1 for all
a ∈ X.

Proof. Say there is an a ∈ X with |f ′(a)| < 1. Take α ∈ V such that |f ′(x)| ≤ α < 1.
As X is open and f is continuous, there exists r′ ∈ V such that Br(a) ⊆ X and Bαr(f(a)) ⊆

X for any r ≤ r′. Moreover, as f ∈ C1(a) we may take r ∈ V, with r ≤ r′, such that for any
x, y ∈ Br(a) with x 6= y ∣∣∣∣

f(x)− f(y)

x− y
− f ′(a)

∣∣∣∣ ≤ α.

Then, for x, y ∈ Br(a) it is the case that

|f(x)− f(y)| ≤ |x− y|max{α, |f ′(a)|} ≤ |x− y|α.

So, Bαr(f(a)) ⊆ X by construction and moreover

f−1 (Bαr(f(a))) ⊇ Br(a).

Taking measure on both sides we get the inequality

ρ(r) = µ(Br(a)) ≤ µ
(
f−1(Bαr(f(a)))

)
.

But as α ∈ V and α < 1 we have the strict inequality

µ (Bαr(f(a))) = ρ(αr) = ρ(α)ρ(r) < ρ(r) = µ(Br(a)).

So,

µ (Bαr(f(a))) < µ
(
f−1 (Bαr(f(a)))

)
,

and in particular f is not measure-preserving. �
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Definition 4.2. For X ⊆ K compact-open, we say that a transformation T : X → X
is locally scaling for r ∈ V if X is a finite-union of r-balls and if there exists a function
C : X → R≥1 such that

|x− y| ≤ r ⇒ |T (x)− T (y)| = C(x)|x− y|.

We will refer to C as the scaling function.

Let us note the following properties of locally scaling transformations:

(i) By the symmetry of x and y, we must have C constant on cosets of Br(0). We will
write H = X/Br(0) for the set of cosets of Br(0) contained in X (recall that X is a
union of such cosets); we treat elements of H as subsets of X. Then, C induces a
map C : H → R≥1.

(ii) If T is also differentiable (say a polynomial) on X, then C(a) = |T ′(a)| for all a ∈ X.
(iii) If T is invertible, then C(a) = 1 for all a ∈ X, so T is locally an isometry.

Now, we prove a lemma relating the above notion to our situation; the idea and proof of
this lemma, as well as the later Lemma 5.1, is similar to results in [Rob00, §5.1.1, 5.1.2] and
[Sch84, Prop. 27.3].

Lemma 4.3. Let X ⊆ K be compact-open. Let f ∈ C1(X) be such that f(X) ⊆ X and such
that |f ′(a)| ≥ 1 for all a ∈ X. Then, f is locally scaling for some r ∈ V. In particular, if
f : X → X is measure-preserving with respect to µ, then f is locally scaling for some r ∈ V.

Proof. For each a ∈ X, it is the case that |f ′(x)| ∈ V. As V is discrete, and f ∈ C1(a), there
exists an ra ∈ V such that Bra(a) ⊆ X and for x, y ∈ Bra(a), x 6= y the inequality

∣∣∣∣
f(x)− f(y)

x− y
− f ′(a)

∣∣∣∣ < |f
′(a)|

holds. In particular, this implies that

|f(x)− f(y)| = |f ′(a)||x− y|.

for all x, y ∈ Bra(a). Note that the existence of f ′(x), f ′(y) along with the continuity of
| · | : K → R≥0 implies that |f ′(x)| = |f ′(y)| = |f ′(a)|.

Now, the collection

{Bra(a) : a ∈ X}

gives an open cover of X. As X is compact, there exists a finite subcover, corresponding to
a1, a2, . . . , ak ∈ X. Let r = min{ra1 , . . . , rak

}.
For |x− y| ≤ r, Br(x) = Br(y) is contained in Brai

(ai) for some i ∈ {1, . . . , k}. Then,

|f(x)− f(y)| = |f ′(ai)||x− y| = |f ′(x)||x− y|.

Letting C : X → R≥1 be given by C(x) = |f ′(x)|, we see that f is locally scaling for r ∈ V.
The final part of the lemma now follows from Lemma 4.1. �

Lemma 4.4. Let f ∈ K[x]. Then, f ∈ C1(K).
Say X ⊆ K is compact-open, with f(X) ⊆ X and such that f : X → X is measure-

preserving with respect to µ. Then, f : X → X is locally scaling for some r ∈ V.
6



Proof. Say

f =
n∑

k=0

akx
k.

Then we have the formal equality

f(x)− f(y)

x− y
=

n∑

k=0

ak

(
k−1∑

ℓ=0

xℓyk−1−ℓ

)
.

So, the difference quotient extends to a continuous map K ×K → K. This suffices to show
the first part of our claim. The final part follows by Lemma 4.3. �

Example 4.5. Consider the map

f(x) =

(
x

2

)
=

x(x− 1)

2

on Z2. Note that f(Z2) ⊆ Z2, as
∣∣∣∣
x(x− 1)

2

∣∣∣∣ = 2|x||x− 1| ≤ 1.

Note also that

|f ′(x)| =

∣∣∣∣
2x− 1

2

∣∣∣∣ = 2|2x− 1| = 2.

Now, we may calculate

|f(x)− f(y)| =

∣∣∣∣
(x− y)(x + y − 1)

2

∣∣∣∣ = 2|x− y||x + y − 1|.

So, we see that f is locally scaling for r = 1/2, as |x + y − 1| = 1 if |x− y| ≤ 1/2 (i.e. if x
and y have the same parity).

We will see in Section 8 that f : Z2 → Z2 is actually measure-preserving and in fact
Bernoulli.

Example 4.6. Consider the map f : Z2 → Z2 given by

f(x) =
x4 + 2x3 − x2 − 2x

8
.

We note that

f ′(x) =
4x3 + 6x2 − 2x− 2

8
=

2x3 + 3x2 − x− 1

4
.

Working modulo 2, we may verify that the numerator is always odd. So, |f ′(x)| = 4 for all
x ∈ Z2

In order to find a radius r ∈ V for which f is locally scaling, we will use the Taylor
expansion of f (this idea is similar to that in [KN04, p. 33, Lemma 1.6]):

f(x + z)− f(x) = zf ′(x) +
z2

2
f ′′(x) +

z3

3!
f ′′′(x) +

z4

4!
f (4)(x).

So, by the strong triangle inequality it suffices to choose r such that
∣∣∣∣
f (n)(x)

n!

∣∣∣∣ r
(n−1) < |f ′(x)| = 4
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for all x ∈ Zp and for n ≥ 2.
We observe that
∣∣∣∣
f ′′(x)

2

∣∣∣∣ =

∣∣∣∣
6x2 + 6x− 1

8

∣∣∣∣ = 8,

∣∣∣∣
f ′′′(x)

6

∣∣∣∣ =

∣∣∣∣
2x + 1

4

∣∣∣∣ = 4,

∣∣∣∣
f (4)(x)

24

∣∣∣∣ =

∣∣∣∣
1

8

∣∣∣∣ = 8.

So, f is locally scaling for r = 1/4.

5. Structure of locally scaling transformations

Lemma 5.1. Let X ⊆ K be compact-open, with T : X → X locally scaling for r ∈ V. Let
C : X → R≥1 be the scaling function of Definition 4.2 Then, for each a ∈ X and r′ ∈ V with
r′ ≤ r, the map

T |Br′(a) : Br′(a)→ Br′C(a)(T (a))

is a bijection.

Proof. Denote B = Br′(a) and B′ = Br′C(a)(T (a)). As C is constant on Br(a), |Tx− Ty| =
C(x)|x − y| = C(a)|x − y| for all x, y ∈ B ⊆ Br(a). This implies that T (B) ⊆ B′, so our
restriction is well-defined. It also implies that the restriction is injective.

For each k ≥ 0 we may take coset representatives a0, . . . , aqk−1 for B/Br′|π|k(0). Then for

i, j ∈ {0, . . . , qk − 1} we have

|T (ai)− T (aj)| = C(a)|ai − aj | > r′C(a)|π|k.

So, T (a0), . . . , T (aqk−1) are precisely the qk coset representatives for B′/Br′C(a)|π|k(0). It
follows that T (B) is dense in B′.

Now, note that T |B is continuous. So, T (B) is the continuous image of a compact set,
thus compact, and so closed. So, T (B) = B′. This proves surjectivity, and the lemma is
proved. �

Corollary 5.2. Let X, T, C be as in Lemma 5.1. Set H = X/Br(0). For any i, j ∈ H,
a ∈ j, and r′ ∈ V with r′ ≤ r, the set

i ∩ T−1 (Br′(a))

is either the empty set or a ball of radius r′/C(i), according as whether i ∩ T−1(j) is empty
or not.

Proof. Denote B = Br′(a). Assume i ∩ T−1(j) is not empty, so there is a y ∈ i ∩ T−1(j).
Then, the map

T |Br(y) : i = Br(y)→ BrC(i)(T (y)) ⊇ j ⊇ B

is a bijection. It follows that i ∩ T−1(B) is non-empty, and we may in fact assume that
y ∈ i ∩ T−1(B).

Then, as

T |Br′/C(i)(y) : Br′/C(i)(y)→ Br′(T (y)) = B

is also a bijection, it follows that i ∩ T−1(B) = Br′/C(i)(y). �
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Definition 5.3. Let X ⊆ K be compact-open, and let T : X → X be locally scaling for
r ∈ V. Let H = X/Br(0) and C : H → R≥0 be the scaling function. Then, we define the
associated transition matrix to be the map A : H2 → R≥0 given by, for i, j ∈ H ,

A(i, j) =

{
0 i ∩ T−1(j) = ∅

ρ (1/C(i)) otherwise

Lemma 5.4. Let X ⊆ K be compact-open and T : X → X be locally scaling for r ∈ V; let
H = X/Br(0) and let A : H2 → R≥0 be the associated transition matrix. Then:

(i) For S ⊆ X measurable and i ∈ H

µ(i ∩ T−1(S)) =
∑

j∈H

µ(S ∩ j)A(i, j).

(ii) A(i, j) = 1
ρ(r)

µ(i ∩ T−1(j));

(iii) A is a stochastic matrix on H;
(iv) T is measure-preserving if and only if the sum of each column of A is 1.

Proof.
(i):
By disjoint additivity of µ, it suffices to prove the equality in the case S ⊆ j for some j ∈ H .
As the balls form a sufficient semi-ring in the Borel σ-algebra of X, we may in addition
assume that S is a ball. Say S = Br′(a) for r′ ≤ r and a ∈ j. Then, by Corollary 5.2 we
know that i∩T−1(S) is either the empty set or a ball of radius r′/C(i), according as whether
i ∩ T−1(j) is empty or not. Taking measures we get

µ
(
i ∩ T−1(S)

)
=

{
0 i ∩ T−1(j) = ∅

ρ(r′/C(i)) otherwise

= µ(S)A(i, j) =
∑

j∈H

µ(S ∩ j)A(i, j).

(ii):
Put S = j in (i). Then we get

µ(i ∩ T−1(j)) = µ(j ∩ j)A(i, j) = ρ(r)A(i, j).

(iii):
Note that for each i ∈ H , by disjoint additivity of µ along with (ii) we have

ρ(r)
∑

j∈H

A(i, j) =
∑

j∈H

µ(i ∩ T−1(j)) = µ(i ∩X) = µ(i) = ρ(r).

(iv):
If T is measure-preserving then for each j ∈ H we have, by disjoint additivity of µ,

∑

i∈H

A(i, j) =
1

ρ(r)

∑

i∈H

µ(i ∩ T 1(j)) =
1

ρ(r)
µ(X ∩ T−1(j)) =

1

ρ(r)
µ(T−1(j)) = 1.
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For the converse we use (i) and disjoint additivity:

µ(T−1(S)) =
∑

i∈H

µ(i ∩ T−1(S)) =
∑

i,j∈H

µ(S ∩ j)A(i, j) =
∑

j∈H

µ(S ∩ j) = µ(S). �

Remark 5.5. Given f ∈ K[x] such that f(X) ⊆ X, Lemma 4.3 and Lemma 5.4 allow us
to determine whether f : X → X is measure-preserving. By a linear change of variables, we
may assume that X ⊆ O. Then, we first check whether |f ′(a)| ≥ 1 for all a ∈ X (writing
f = h/πk with h ∈ O[x] reduces this to checking that |h′(a)| ≥ 1/|πk| for a ∈ X, which
is a finite computation in O/pk). Then, we may take r ∈ V with r ≤ |π|k such that X
is a finite union of r-balls, and f will be locally scaling for r. Then, we may compute the
associated transition matrix in a finite computation (checking which balls intersect under
image). Finally, we check the column sums.

Example 5.6. Consider the transformation on Z2 given by f(x) from Example 4.6. Recall
that f is locally scaling for r = 1/4. Let H = Z2/B1/4(0) = Z2/4Z2. The associated
transition matrix is thus a 4× 4 matrix. As the scaling function is C(a) = 4 for a ∈ X, each
non-zero entry of the associated transition matrix, A, is ρ(4) = 1/4. By Lemma 5.4, A is
a stochastic matrix and so each entry in the matrix must be non-zero and so equal to 1/4.
Then, by Lemma 5.4 we see that the transformation defined by f is measure-preserving.

Example 5.7. We now look at a polynomial map on Z2 that defines a locally scaling but
not measure-preserving transformation:

f(x) =

(
x

3

)
=

x(x− 1)(x− 2)

3!
.

We note that

|f ′(x)| =

∣∣∣∣
3x2 − 6x + 2

6

∣∣∣∣ =

{
1 x ∈ B1/2(0)

2 x ∈ B1/2(1)

where the final equality follows by computing the values of the numerator modulo 4. In
particular, we see that |f ′(x)| ≥ 1 for all x ∈ Z2 and so f is locally scaling by Lemma 4.3.
We note that ∣∣∣∣

f ′′(x)

2

∣∣∣∣ =

∣∣∣∣
x− 1

2

∣∣∣∣ = 2|x− 1|,

and |f ′′′(x)/6| = |1/6| = 2. So, we may carry out a computation as in Example 4.6, using
the different bounds on |f ′(x)| and |f ′′(x)| on B1/2(0) and B1/2(1), to see that f is locally
scaling for r = 1/2.

On B1/2(0), f has scaling constant 1, while on B1/2(1) it has scaling constant 2. We note
that the pre-image of 1 + 2Z2 does not intersect 2Z2, but all other coset/pre-image pairs do
intersect. This gives us the associated transition matrix

A = (A(i, j))0≤i,j≤1 =

(
1 0
1
2

1
2

)
,

identifying i with i + 2Z2 for i ∈ {0, 1}.
So,

(
x
3

)
is not measure-preserving by Lemma 5.4.
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Proposition 5.8. Let X ⊆ K be compact-open, let T : X → X be a locally scaling trans-
formation for r ∈ V, with Σ = (X, µ, T ) the corresponding measurable dynamic system.

Let H = X/Br(0), let A : H2 → R≥0 be the associated transition matrix, and λ : H → R≥0

the positive row vector given by λ(i) = ρ(r) for i ∈ H. Let Σ′ = (XA, µA,λ, TA) be the
corresponding Markov shift.

Then, there exists a continuous and measure-preserving map Φ : X → XA demonstrating
Σ′ as a topological and measurable factor of Σ. Moreover, the pre-image under Φ of a cylinder
set is a ball of the same measure.

Proof. For each k ≥ 0, let πn : XA → H denote projection to the nth coordinate. Let
φ : X → H be the canonical projection. Consider the map Φ : X → XA defined by

πn ◦ Φ = φ ◦ T n,

i.e. the nth slot in XA denotes which element of H the point T n(x) is in. Then Φ◦T = TA◦Φ
by construction.

Let d0, d1, . . . ∈ H . We will prove by induction on the number of slots specified (the
“length” of the cylinder set [d0 . . . dℓ]) the claim that the pre-image of the cylinder set
[d0 . . . dℓ] is a ball of the same measure as the cylinder set. Note that Φ−1([d0]) = d0 is
a ball of the correct measure as

µA,λ([d0]) = λ(d0) = ρ(r) = µ(d0)

by construction. Now,

Φ−1([d0 . . . dℓ]) = Φ−1([d0]) ∩ T−1Φ−1 ([d1 . . . dℓ]) .

By the inductive hypothesis, this is the intersection of two balls, and is thus again a ball.
Noting that Φ−1([d1 . . . dℓ]) ⊆ Φ−1[d1] = d1 and applying claim (i) of Lemma 5.4, along with
the inductive hypothesis, we see that this ball has the correct measure

µ
(
Φ−1([d0 . . . dℓ])

)
=
∑

j∈H

µ
(
j ∩ Φ−1([d1 . . . dℓ])

)
A(d0, j)

= A(d0, d1)µ
(
Φ−1([d1 . . . dℓ])

)

= A(d0, d1)µ([d1 . . . dℓ]) = µ([d0 . . . dℓ]).

As the cylinder sets form a base for the topology on XA, this shows that Φ is continuous.
As the cylinder sets are a sufficient semi-ring in the Borel σ-algebra of XA, this shows that
Φ is measure-preserving. So, Σ′ is indeed a topological and measurable factor of Σ. �

Theorem 5.9. Let X, T, H, Σ, Σ′, Φ be as in Proposition 5.8. Moreover, assume that Σ is
measure-preserving. Then, Σ′ is measure-preserving.

Now, let H =
⊔n

k=1 Sk be a decomposition of H in the sense of Proposition 2.1, so that

Σ′ =
n⊔

k=1

Σ′
k

where Σ′
k = (XAk

, µAk,λ, TAk
) with XAk

regarded as a subset of XA, and µAk,λ, TAk
then the

restrictions of µA,λ, TA to XAk
.

11



For k = 1, . . . , n define

Σ̃k =

{
restriction of Σ to Φ−1(XAk

) #XAk
<∞

Σ′
k otherwise

then we have an isomorphism of topological and measurable dynamical systems

Σ ∼=

n⊔

k=1

Σ̃k.

Moreover, each term in this decomposition is either locally an isometry or ergodic Markov,
according as whether #XAk

<∞ or not.

Proof. By Lemma 5.4, T measure-preserving on X implies that the columns of A sum to
1. This implies that λA = λ. By the observations of Section 2, we thus have that Σ′ is
measure-preserving.

Note that Φ continuous and measure-preserving implies Φ surjective: X is compact and
XA Hausdorff, so the image must be closed; but the image must have full measure and so
must be dense (λ positive implies that all cylinder sets, hence all open sets, have strictly
positive measure).

For k = 1, . . . , n, denote Ck = Φ−1(XAk
), µk = µ|Ck

, Tk = T |Ck
. The decomposition of Σ′

induces the following decomposition of Σ:

Σ =

n⊔

k=1

(Ck, µk, Tn).

To complete the proof of the proposition, it suffices to show that (Ck, µk, Tk) ∼= Σ̃k for
k = 1, . . . , n as topological and measurable dynamical systems, and to classify them as
being locally isometries and ergodic Markov in the two cases. We now handle the two cases
separately:
Case 1: #XAk

<∞

If #XAk
< ∞, then the isomorphism (Ck, µk, Tk) ∼= Σ̃k follows by definition. Note that the

measure on Σ′
k is necessarily atomic; as it is ergodic, it must in fact be the inverse orbit of

a single atom. As TA, hence TAk
, is measure-preserving, each of the atoms must have equal

measure. It follows that each element x ∈ XAk
is of the form

x = (d0, d1, . . . , dℓ, d0, . . . , dℓ, d0, . . . , dℓ, . . .),

with A(d0, d1) = A(d1, d2) = . . . = A(dℓ, d0) = 1. Then, Φ−1(x) = d0, where C(d0) = 1
(here, C is that from the definition of locally scaling).

So, Ck must be a collection of r-balls with C(x) = 1 for x ∈ Ck. Then, for x, y ∈ Ck with

|x− y| ≤ r we have |T (x)− T (y)| = C(x)|x− y| = |x− y|. This shows that Σ̃k is locally an
isometry, as desired.
Case 2: #XAk

=∞

If #XAk
= ∞, then we claim that Φ induces an isomorphism (Ck, µk, Tk) ∼= Σ̃k. In a

measure-preserving Markov shift, any atoms must have finite inverse orbit; so Σ′
k ergodic

and #XAk
=∞ implies that µAk,λk

is non-atomic. We noted above that Φ is surjective. We
12



claim that it is also injective. For x ∈ X let dn = πHT n(x) for n = 0, 1, . . .. Then,

Φ−1(Φ(x)) =
⋂

ℓ≥0

Φ−1 ([d0 . . . dℓ]) .

We have from Proposition 5.8 that each of these pre-images is a ball. Then, Φ−1(Φ(x)) is the
intersection of a nested family of balls. If the intersection contains more than a single point,
then the radii of the balls do not go to 0, and so the intersection has non-empty interior and
thus positive measure. Now, the measure on XAk

is non-atomic, so µAk,λk
(Φ(x)) = 0. As Φ

is measure-preserving, this implies that µ(Φ−1(Φ(x))) = 0; by the above considerations this
implies that Φ−1(Φ(x)) contains at most one point. So, Φ is injective.

Then, Φ is a continuous, measure-preserving, bijection. Observe that Φ takes closed sets
to closed sets by compactness, so its inverse is also continuous. This also implies that Φ−1

is measurable, and then Φ measure-preserving implies Φ−1 measure-preserving. So, Φ is an
isomorphism of topological and measurable dynamic systems (Ck, µk, Tk) ∼= Σ̃k as desired.
As the later is ergodic Markov, the former is as well. �

Corollary 5.10. Let X ⊆ K be compact-open and T : X → X a measure-preserving locally
scaling transformation. If T is ergodic then it is either Markov or locally an isometry.
In particular, if it is weakly mixing then it also Markov and so mixing. So, for a measure-
preserving locally scaling transformation on a compact-open X, weakly mixing implies mixing.

Proof. If T is ergodic, then the decomposition in Theorem 5.9 must be trivial. So, T must
be either Markov or locally an isometry. If it is locally an isometry, then it cannot be weakly
mixing. So, weakly mixing implies weakly mixing Markov which in turn implies mixing. �

Corollary 5.11. For a locally scaling transformation, the following properties depend only
on the associated transition matrix:

(i) Measure-preserving;
(ii) Weakly mixing, mixing, exact, Bernoulli.

Proof. By Lemma 5.4, the property of being measure-preserving depends only on the asso-
ciated transition matrix.

Note that the decomposition in Theorem 5.9 depends only on the associated transition
matrix. Given an associated transition matrix, we have the following cases:

(i) The decomposition is trivial, and the system is a local isometry. Then, it is not
weakly mixing (or any of the stronger properties listed).

(ii) The decomposition is trivial, and the system is ergodic Markov. In this case, the
system is determined up to isomorphism by the matrix.

(iii) The decomposition is not trivial. In this case, the system is not ergodic and cannot
satisfy any of the stronger properties listed. �
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Example 5.12. Consider a measure-preserving locally scaling map T : Z2 → Z2 that acts
as follows on the balls

4Z2 2 + 4Z2

C = 1

C = 1

1 + 4Z2 3 + 4Z2

C = 2

C = 2

where the arrows show what the image of a given ball is, and the labels give the value of the
scaling function C.

In this example, we want the 4Z2 ball and the 2+4Z2 ball to be surjectively mapped onto
one another, while the 1 + 4Z2 and 3 + 4Z2 balls are surjectively mapped onto the 1 + 2Z2

ball (which has twice the radius).
One map that will accomplish this is the following:

T (n) =





n + 2 n ≡ 0 (mod 4)

n− 2 n ≡ 2 (mod 4)

1 + 2⌊n
4
⌋ n ≡ 1 (mod 2)

where ⌊·⌋ : Q2 → Z2 is defined on 2-adic expansions by
⌊
∑

k≥−ℓ

ak2
k

⌋
=
∑

k≥0

ak2
k, where ak ∈ {0, 1}.

The reader may note that this is the unique continuous extension of the floor function
⌊·⌋ : Q→ Z.

In order to motivate this definition of T , and make evident that it does behave as indicated
in the diagram, let us note its action on 2-adic expansions. Letting ak ∈ {0, 1} for each k ≥ 0
we have

T
(
a0 + 2a1 + 4a2 + 8a3 + · · ·+ 2kak + · · ·

)
=

=

{
2(1− a1) + 4a2 + 8a3 + · · ·+ 2kak + · · · if a0 = 0

1 + 2a2 + 4a3 + 8a4 + · · ·+ 2kak+1 + · · · if a0 = 1

We see immediately that the restrictions T |4Z2
and T |2+4Z2

are surjective onto 2 + 4Z2 and
4Z2 respectively, and preserve distances (leaving the first 2-adic digit which differs in the
same position). We also observe that T |1+4Z2

and T |3+4Z2
are surjective onto 1 + 2Z2, and

multiplies distances by 2 (shifting the first 2-adic digit which differs one position to the left).
Now, the fact that T is locally scaling for r = 1/4 is clear. We may construct the associated

transition matrix by using the diagram and Lemma 5.4:

A = (A(i, j))0≤i,j<4 =




0 0 1 0
0 1

2
0 1

2
1 0 0 0
0 1

2
0 1

2



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where i ∈ {0, 1, 2, 3} is identified with i + 4Z2.
Applying Lemma 5.4 we note that T is measure-preserving. Indeed, we can see this

immediately from the diagram: the pre-image under T of a ball contained in 2Z2 is a ball of
the same radius, while the pre-image of a ball contained in 1 + 2Z2 is two balls of half the
radius. Applying Theorem 5.9, we see that T |2Z2

is locally isometric, as we already observed
above, while T |1+2Z2

is ergodic Markov (and indeed isomorphic to the Bernoulli shift on two
symbols).

6. Polynomial approximation in O

The above results dealt with C1 functions, extending to polynomial maps as a special
case. In the next sections we will be interested in finding polynomial maps with specified
associated transition matrices. In preparation for this, we will need some results on the
approximation of continuous maps O → K. For the reader’s convenience, we will sketch
here the definitions and results of [Ami64], slightly simplified for our applications.

Say X ⊆ O is compact-open. Moreover, assume that X is a finite union of r balls for
r ∈ V. Then, for r′ ≤ r each r′-ball contained in X is a union of precisely q balls of radius
|π|r′ contained in X. In the terminology of [Ami64], this makes X a regular valued compact
(compact valué régulier in the original French).

For k ≥ v(r), we may define Hk = X/R|π|k(0), and a projection map πk : X → Hk. Then,
we say that a sequence {uk ∈ X : k ∈ N} is very well distributed (très bien répartie) if for
each k ≥ v(r), h ∈ Hk, and m ≥ 1 we have

#{i < m#Hk : ui ∈ h} = m.

That is, the terms of the sequence must be equally distributed among the possible values
mod pk for k ≥ v(r). Note that the condition that the {uk} are very well distributed implies
that they are distinct.

Now, given such a sequence {u0, u1, . . .}, we may define the corresponding interpolating
polynomials for k ≥ 0:

Pk(x) = (x− u0)(x− u1) · · · (x− uk−1) and Qk(x) =
Pk(x)

Pk(uk)
.

Then, we may summarize some of the results of [Ami64, §II.6.2] as follows:

Theorem 6.1 (Amice). Let X ⊆ O be compact-open, and let {uk} be a very well distributed
sequence with values in X with Pk, Qk the corresponding interpolating polynomials. Let
f : X → K be continuous, and for k ≥ 0 set

ak = Pk(uk)

(
k∑

j=0

f(uj)

P ′
k+1(uj)

)
.

Then:

(i) |ak| → 0 as k →∞;
(ii)

∑
k≥0 akQk(x)→ f(x) uniformly on X;

(iii) The decomposition in (ii) is unique;
(iv) supx∈K |f(x)| = supk∈N |ak|.

15



A very well distributed sequence {uk} is said to be well ordered (bien ordonnée) if |un −
um| = |π|

vq(n−m) for all n, m ≥ 0 where vq(n −m) is the exact power of q dividing n −m.
Following our sources, we will call such a sequence very well distributed (très bien répartie
bien ordonnée). This allows us to state results of Helsmoortel and Barsky, characterizing
Lipschitz and C1 functions on O in terms of the coefficients in their expansions. This result
may be found in [Bar73].

Theorem 6.2 (Helsmoortel, Barsky). Let {uk} be a very well distributed sequence with
values in O, with Pk, Qk the corresponding interpolating polynomials. Let f : O → K be
continuous with

f(x) =
∑

k≥0

akQk(x)

the expansion of f in the sense of Theorem 6.1. For k ≥ 0, define

κk = |π|−⌊logq k⌋.

Then:

(i) f is r-Lipschitz if and only if r ≤ κk|ak| for all k ≥ 0;
(ii) f ∈ C1(O) if and only if κk|ak| → 0 as k →∞.

Example 6.3. Note that {0, 1, 2, . . .} ⊆ Zp satisfies the conditions of a well distributed
sequence, and is in fact trivially very well distributed. Then,

Qk(x) =
x(x− 1) · · · (x− k + 1)

k · (k − 1) · · · · 1
=

(
x

k

)
.

So, in this case the above reduces to the Mahler expansion.
More generally: Let a0, . . . , aq−1 be a complete set of coset representatives for O/p. For

k ∈ N, we will define uk in terms of the base-q expansion of k:

k =
ℓ∑

i=0

kiq
i 7−→

ℓ∑

i=0

aki
πi = uk.

Then, say we have n, m ∈ N with n =
∑

i≥0 niq
i and m =

∑
i≥0 miq

i. Let ℓ = vq(i − j) =
min{i : ni 6= mi}. Then,

|un − um| = |π|
ℓ = |π|vq(n−m),

and {uk} is very well distributed. In particular, this implies that there is always a very
well distributed sequence for O, and corresponding interpolating polynomials such that the
results cited in this section hold.

7. Polynomial maps on O realizing locally scaling transformations

The above characterizes measure-preserving polynomial transformations on O in terms of
locally scaling transformations. It does not show the existence of any measure-preserving
polynomial transformations. We will show that in fact the polynomials, in a sense, provide
a representative class among the measure-preserving locally scaling maps.

For S ⊆ K we say that T : S → K is affine if it is given by x 7→ ax+ b for some constants
a, b ∈ K. We say that T : O → O is locally affine if for each x ∈ O there exists a r ∈ V such
that T |Br(x) is affine.
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Lemma 7.1. Let {uk} be a very well distributed sequence in O with corresponding interpo-
lating polynomials Pk, Qk Then, for n ∈ N:

(i) Qk(O) ⊆ O;
(ii) Qk is κk Lipschitz, with κk as in Theorem 6.2;
(iii) For k = qℓ for some ℓ ≥ 1, and

|Qk(x)−Qk(y)| = κk|x− y| for all x, y ∈ O with |x− y| ≤ 1/κk.

Proof. Claim (i) follows by Theorem 6.1(iv). Claim (ii) follows by Theorem 6.2.
Assume k = qℓ. Then, note that κk = |π|−ℓ. So, our claim is equivalent to the statement

that v(Qk(x)−Qk(y)) = v(x− y)− ℓ if v(x− y) ≥ ℓ. Now, we may observe that

Qk(x)−Qk(y) =
(x− uk−1) · · · (x− u0)− (y − uk−1) · · · (y − u0)

(uk − uk−1) · · · (uk − u0)

=
k∑

j=1

(x− y)jΞj

where Ξj =
∑

0≤i1<i2<···<ij<k

(y − u0) · · · ̂(y − ui1) · · ·
̂(y − uij) · · · (y − uk−1)

(uk − uk−1) · · · (uk − u0)
.

We will prove the following two statements, which together with the strong triangle in-
equality imply our desired result:

(i) v(Ξ1) = −ℓ;
(ii) v(Ξj) > −jℓ for 1 < j ≤ k.

That this suffices is clear, for the j = 1 term will dominate in valuation.
As the {uk} are very well distributed, they are dense in O. So, it suffices to prove our claim

for y ∈ {uk}. Indeed, say y = un. Then, for any 1 ≤ j ≤ k and 0 ≤ i1 < i2 < · · · < ij < k,
that {uk} is very well distributed implies that

v

(
(y − u0) · · · ̂(y − ui1) · · ·

̂(y − uij ) · · · (y − uk−1)

(uk − uk−1) · · · (uk − u0)

)

= vq

(
(n− 0) · · · ̂(n− i1) · · · ̂(n− ij) · · · (n− k − 1)

(k − k − 1) · · · (k − 0)

)

= vq

(
n · · · ̂(n− i1) · · · ̂(n− ij) · · · (n− k + 1)

k!

)

As {n− k + 1, n− k + 2, . . . , n− 1, n} is a collection of precisely k = qℓ consecutive natural
numbers, precisely one element of this set will have maximal valuation — that is, the unique
element divisible by qℓ. Say this is n− i for some i ∈ {0, . . . , k − 1}. Then, the equality

vq (n(n− 1) · · · (n− k + 1))− vq(k!) = vq(n− i)− ℓ

holds, as there are ⌊k/qt⌋ multiples of qt in {n, . . . , n − k + 1} (and also in {k, . . . , 1}) for
each 1 ≤ t ≤ ℓ and one multiple of qt in {n, . . . , n − k + 1} (and none in {k, . . . , 1}) for
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ℓ < t ≤ vq(n− i). Then, for j ≥ 1

vq

(
n · · · ̂(n− i1) · · · ̂(n− ij) · · · (n− k + 1)

k!

)
= vq (n(n− 1) · · · (n− k + 1))− vq(k!)

≥ (vq(n− i)− ℓ)− (vq(n− i) + (j − 1)(ℓ− 1))

= −jℓ + (j − 1),

as removing n− i lowers the valuation by precisely vq(n− i), while removing any other term
lowers it by at most ℓ − 1. Moreover, we note that for j = 1 precisely one term in the
summation defining Ξj attains this bound, so we in fact have v(Ξ1) = −ℓ. This proves our
claim. �

Theorem 7.2. Let r ∈ V and H = O/Br(0). Let A be a stochastic matrix on H. Then, let

TA = {T locally scaling for r : A is the associated transition matrix for T}.

If TA is non-empty then:

(i) TA contains a locally affine transformation;
(ii) TA contains infinitely many polynomials.

Proof.
(i):
Say T ∈ TA. Let C : H → R≥1 be the scaling function in the definition of locally scaling and
observe that its image is contained in V. So, for each h ∈ H we may let S(h) ∈ K be such
that |S(h)| = C(h). Let M(h) be any point in T (h) = {T (x) : x ∈ h}. We may regard S, M
as maps with domain O. Define TS,M(x) = S(x)x + M(x).

We claim that TS,M ∈ TA. First note that TS,M is locally scaling for r as S, M are constant
on elements of H and |S(x)| ≥ 1 for all x. Also, note that C is also the scaling function for
TS,M . So, it suffices to verify that for i, j ∈ H we have i ∩ T−1(j) 6= ∅ ⇔ i ∩ T−1

S,M(j) 6= ∅.
But indeed,

TS,M(i) = {x : |x−M(i)| ≤ rC(i)} = T (i).

(ii):
Let T ∈ TA. By (i), we may assume that T is locally affine and hence strictly differentiable.
Let {uk} be a very well distributed sequence in O (which must exist by the remark at the
end of the preceding section) with corresponding interpolating polynomials Pk, Qk. Let

T =
∑

k≥0

akQk.

be the decomposition of T in the sense of Theorem 6.1
Take α ∈ V with α < 1. By Theorem 6.2, κk|ak| → 0 as k →∞, so there exists an N ∈ N

such that for k > N we have k|ak| ≤ α < 1. Moreover, take N such that N > #H .
Let

f(x) =
N∑

k=0

akQk(x).
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Note that f is a polynomial. As T (O) ⊆ O, Theorem 6.1(iv) gives us that |ak| ≤ 1 for all k;
applying Theorem 6.1(iv) again we obtain that f(O) ⊆ O. Denote

R(x) = T (x)− f(x) =
∑

k>N

akQk(x).

Also by Lemma 7.1, we have |R(x) − R(y)| ≤ α|x − y| for all x, y ∈ O. Note that for
|x− y| ≤ r we then have α|x− y| < C(x)|x− y| = |T (x)− T (y)|. So, by the strong triangle
inequality, for |x− y| ≤ r we have

|f(x)− f(y)| = |T (x)− T (y) + R(y)−R(x)| = C(x)|x− y|.

So, f is locally scaling for r ∈ V, with C its scaling function. So, as before it suffices to
verify that i ∩ T−1(j) = ∅ ⇔ i ∩ f−1(j) = ∅. But, for x ∈ {u0, . . . , u#H−1} we have that
T (x)− f(x) = 0 as 0 = Qk(u0) = · · · = Qk(u#H−1) for k > N > #H . As the {uk} are very
well distributed, {u0, . . . , u#H−1} gives a complete set of coset representatives for H . Then,
for i ∈ H we have ℓ ∈ {0, . . . , #H − 1} such that uℓ ∈ i and so

T (i) = T (Br(uℓ)) = BrC(i)(T (ℓ)) = BrC(i)(f(ℓ)) = f(Br(uℓ)) = f(i).

Finally,

i ∩ T−1(j) = ∅ ⇔ T (i) ∩ j = ∅

⇔ f(i) ∩ j = ∅

⇔ i ∩ f−1(j) = ∅. �

In particular, Theorem 7.2 shows the existence of measure-preserving mixing transforma-
tions on the p-adics given by polynomial maps. In the following example we show how the
construction in the Proposition yields such maps.

Example 7.3. Consider a locally scaling map T : Z3 −→ Z3 whose action on the balls of
radius 1/9 is as indicated in the following diagram:

0

3 6

1

4 7

2

5 8

For instance, the 0 + 9Z3 ball maps surjectively onto the 3Z3 ball while the 6 + 9Z3 ball
maps surjectively onto the 2 + 3Z3 ball, and in each case T scales distances by a factor of 3.
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An example of a map which has the desired properties is

T (x) = 3
⌊x

9

⌋
+ (x mod 3)− g(x)

where

g(x) =

{
1 x ≡ 6, 7, or 8 (mod 9)

0 otherwise

The x mod 3− g(x) terms ensures that T (x) has the proper remainder modulo 3, while the
3⌊x/9⌋ term ensures surjectivity, just as in Example 5.12.

We see that T is locally scaling for r = 1/9, hence continuous. Then, it admits a Mahler
expansion as

T (x) =

∞∑

k=0

ak

(
x

k

)

where ak = ∆kT (0) and ∆f(x) = f(x+1)−f(x). Note that T is locally affine, so κk|ak| → 0.
We now proceed to compute the Mahler expansion for T . We get the following:

k ak |ak| κk|ak|

0 0 0 0
1 1 1 1
2 0 0 0
3 −3 1/3 1
4 9 1/9 1/3
5 −18 1/9 1/3
6 26 1 3
7 −21 1/3 1
8 −21 1/3 1
9 141 1/3 3
10 −405 1/81 1/9
11 918 1/27 1/3
12 −1851 1/3 3
13 3501 1/9 1

Further computation suggests that κk|ak| ≤ 1 for k > 12. Consider the truncated Mahler
series

f(x) =
12∑

k=0

ak

(
x

k

)
.

If we in fact knew that κk|ak| ≤ 1 for k > 12, then applying Theorem 6.2 would yield that
T − f is 1-Lipshitz, and we could use the strong-triangle inequality to get that f is locally
scaling for r = 1/9 for the same function C. Without proving that this inequality holds, we
may still use the methods of Example 4.6 to prove this. Indeed, we have that 81f ∈ Zp[x],
and computing 81f ′(x) (mod 8)1 we may show that |f ′(x)| = 3 for all x ∈ Zp, computing
mod27 we may show that |f ′′(x)/2| = 9 and computing mod9 that |f ′′′(x)/3!| ≤ 27 for all
x ∈ Zp; this will imply our desired claim.

Once we know that f is locally scaling for r = 1/9 for the same function C, noting that
T (x) = f(x) for x ∈ {0, . . . , 8}, we see that the associated transition matrices for T and
f must in fact coincide. Computing the associated transition matrix from the diagram, we
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may observe that it is primitive. So, the transformation defined by f is ergodic Markov by
Theorem 5.9, and mixing by Proposition 2.1. Note also, that unlike the maps of Section 8,
it is not manifestly Bernoulli.

8. Polynomial Bernoulli maps on O

The construction of the preceding section gives infinite classes of measure-preserving poly-
nomials with different kinds of measurable dynamics. Among these maps are Markov mixing
maps. We will now study the class of such polynomials whose associated transition matrix
has all entries equal, in which case the Markov transformation is in fact Bernoulli. The main
upshot of this study is a class of explicitly given and relatively simple measure-preserving
Bernoulli polynomial maps.

Definition 8.1. We say that a measure-preserving locally scaling map T : O → O is
isometrically Bernoulli for r ∈ V if it is locally scaling for r ∈ V and all entries of the
associated transition matrix are equal.

Let V = O/pk ∼= Fk
q and define

BV =

(
∏

i≥0

V, µV , TV

)

where µV is the product probability measure, and TV the left-shift. We may let d′
V be the

quotient metric on V . Then, we may define a metric dV on
∏

i≥0 V by

dV ((a0, a1, a2, . . .), (b0, b1, b2, . . .)) = |π|−k(ℓ−1)d′
V (aℓ, bℓ) where ℓ = min{i : ai 6= bi}.

We give two justifications for this metric:

(i) View elements of V as k-tuples under the isomorphism Fk
q
∼= V corresponding to

π-adic expansion (i.e., the isomorphism induced by the map shown in (ii)). Then,
expanding each element in the product to a k-tuple, dV is just the dictionary metric
(with base |π|).

(ii) For each a ∈ V we may let a ∈ O be a coset representative for the quotient. Then,
the map

(a0, a1, . . .) 7−→
∑

i≥0

aiπ
ki

gives a bijection
∏

i≥0 V → O. This metric is the unique metric making this map
an isometry.

Now, the term isometrically Bernoulli is partially motivated by the following:

Lemma 8.2. Let T : O → O be a transformation. Then, the following are equivalent:

(i) T is isometrically Bernoulli for r = |π|k;
(ii) T is |π|k-Lipschitz and

|T (x)− T (y)| = |π|−k|x− y| for all x, y ∈ O satisfying |x− y| ≤ |π|k.

(Observe that the Lipschitz condition is implied by the second stated condition.)
(iii) Let V = O/pk. There exists an invertible isometry Φ : O →

∏
i≥0 V such that

Φ ◦ T = TV ◦ Φ; that is, (O, µ, T ) is metrically isomorphic to BV .
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Proof. (i)⇒(ii):
Let H = O/Br(0), and A : H2 → R≥0 the associated transition matrix. Note that if T is
isometrically Bernoulli, then each entry of A must be equal, and hence must be equal to

1
#H

= ρ(r). Now, T must be locally scaling for r ∈ V, so |T (x) − T (y)| = C(x)|x − y| for

|x − y| ≤ r = |π|k. But, we must have ρ(1/C(x)) = ρ(r), so C(x) = 1/r = |π|−k. So,
the second half of (ii) follows. But, as the image of T lies in O, the Lipschitz condition is
vacuous for |x− y| > |π|k.

(ii)⇒(iii):
Let V = O/pk. Now, (ii) implies that T is locally scaling for r. Letting A be the associated
transition matrix, we readily note that all non-zero entries of A must be equal to |π|k; as A
is a stochastic matrix, this implies that all entries of A are non-zero.

Now, let Σ′ = (XA, µA,λ, TA) be as in Theorem 5.9. We see that BV = Σ′. We observed
above that all entries of A are non-zero; then, A is irreducible and Theorem 5.9 gives us
a topological and measurable isomorphism Φ : O → XA. Note that the balls of XA with
respect to dV are just the cylinder sets. Moreover, one may check that for each ℓ ≥ 0,
XA is a disjoint union of qℓ balls of radius r = |π|ℓ, which must then each have measure
q−ℓ = ρ(r). Then, Proposition 5.8 implies that Φ−1 takes balls of a given radius to balls of
the same radius; moreover, Φ−1 must take each of the qℓ distinct balls of radius |π|ℓ in XA to
a distinct ball of radius |π|ℓ in O. So each ball of radius |π|ℓ in O must be the pre-image of
precisely one ball of the same radius in XA. It follows that Φ and Φ−1 are both isometries.

(iii)⇒(i):
Note that for x, y ∈ O we have

|T (x)− T (y)| = |Φ(T (x))− Φ(T (y))| = |TV (Φ(x))− TV (Φ(y))|.

Then, for |Φ(x)− Φ(y)| = |x− y| ≤ |π|k we compute

|TV (Φ(x))− TV (Φ(y))| = |π|−k|Φ(x)− Φ(y)| = |π|−k|x− y|. �

Now, we may combine Lemma 7.1 with Lemma 8.2 to get:

Corollary 8.3. Let {uk} be a very well distributed sequence with values in O, with corre-
sponding interpolating polynomials Pk, Qk. Say T : O → O is given by the expansion, in the
sense of Theorem 6.1,

T (x) =
∑

k≥0

akQk(x), with ak ∈ O, |ak| → 0.

Assume that

(i) M = maxk≥0 κk|ak|;
(ii) There is a unique kM ≥ 0 attaining this maximum, and moreover it is of the form

kM = qℓ for some ℓ ≥ 0;
(iii) |akM

| = 1 (hence, M = κkM
).

Then, T is isometrically Bernoulli for r = 1/M ∈ V.
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Proof. As kM is the unique value attaining the maximum, we have by the strong triangle
inequality along with Lemma 7.1 imply that

|T (x)− T (y)| =

∣∣∣∣∣
∑

k≥0

ak [Qk(x)−Qk(y)]

∣∣∣∣∣ = κkM
|akM
||x− y| = M |x− y|

for |x− y| ≤ 1/κkM
= 1/M . Then, our claim follows by Lemma 8.2. �

Example 8.4. Let K = Qp and O = Zp. Then, {0, 1, 2, . . .} is a very well distributed
sequence, and letting Pk, Qk be the corresponding interpolating polynomials we can check
that Qk(x) =

(
x
k

)
(c.f. Example 6.3). In this case, κk = p⌊logp k⌋. Therefore, we can rewrite

the sufficient conditions in Corollary 8.3 as follows. Given T : Zp −→ Zp defined by

T (x) =
∑

k≥0

ak

(
x

k

)

assume that

(i) M = maxk≥0 |ak|p
⌊logp k⌋;

(ii) There is a unique kM ≥ 0 attaining this maximum, and moreover it is of the form
kM = pℓ for some ℓ ≥ 0;

(iii) |akM
| = 1 (thus, M = pℓ).

Then T is isometrically Bernoulli for r = p−ℓ. In particular, the polynomials
(

x
pℓ

)
for ℓ > 0

clearly satisfy these conditions, and so defines a Bernoulli transformation on Zp.
Note, in particular, that this criterion applies to any map Zp → Zp defined by u

(
x
p

)
+F (x)

with u ∈ Z×
p and F ∈ Zp[x]. An example of such a map is that given by xp−x

p
from [WS98].

In this context, the polynomials
(

x
p

)
and xp−x

p
are in a sense the most natural isometrically

Bernoulli maps:

Example 8.5. Take a set of coset representatives for Zp/pZp. Then, using Example 6.3
we may form a very well distributed sequence from these, and then the pth corresponding
interpolating polynomial (and unit multiples of it) will be Bernoulli by Corollary 8.3.

Let’s look at the two most common sets of coset representatives for the quotient Zp/pZp:

(i) Take as coset representatives 0, 1, 2, . . . , p − 1. The resulting very well distributed
sequence is {0, 1, . . .}. Then, Pp(x) = x(x− 1) · · · (x− p + 1) and Qp(x) =

(
x
p

)
is the

pth corresponding interpolating polynomial.
(ii) Take as coset representatives 0 and the (p − 1)st roots of unity (there are exactly

p−1 by Hensel’s Lemma); these are called the “Teichmuller representatives.” Then,
Pp(x) = xp − x and

Qp(x) =
Pp(x)

Pp(p)
=

1

pp−1 − 1

xp − x

p
.

So, the polynomials
(

x
p

)
and xp−x

p
(up to unit) are analogs, arising by the same construction

from the two most natural choices for the coset representatives of Zp/pZp.
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Example 8.6. Let K = Fq((t)) and O = Fq[[t]]. We may construct a very well distributed
sequence as in Example 6.3, having 0, 1, 2, . . . , q − 1, t as its first q + 1 terms. Then

Qq(x) =
x(x− 1) . . . (x− q + 1)

t(t− 1)(t− 2) . . . (t− q + 1)

and that it is isometrically Bernoulli by Corollary 8.3. However, t − 1, t − 2, . . . , t − q + 1
are all units in O, thus

t(t− 1) . . . (t− q + 1)Qq(x) =
x(x− 1) . . . (x− q + 1)

t
defines a Bernoulli transformation as well.

Now, we will give two examples of isometrically Bernoulli polynomial maps on the rings of
integers of finite extensions of Qp. First, we briefly motivate our choice of examples. For K
a finite extension of Qp, let n = [K : Qp],f = [O/p : Fp], and e = log|π| |p|. It is a standard
result that ef = n. It is evident that the nature of how O compares to Zp depends on the
values of e and f . The two extreme cases are f = 1, e = n (in which case we say that the
extension is totally ramified) and e = 1, f = n (in which case we say that the extension is
unramified). We give an example from each of these two extremes. For more background on
the relevant theory, including the “standard” results invoked in this paragraph and in the
following two examples see [Ser62], particularly Ch. I §7, 8., Ch. III §5, Ch. IV §4.

Example 8.7. Take p > 2 and let

K = Qp(ζp) where ζp is a primitive pth root of unity.

It is a standard result that 1− ζp may be taken as a uniformizing parameter and that the
extension is totally ramified and so the set {0, . . . , p− 1} gives a complete set of coset rep-
resentatives for O/p. We may construct a very well distributed sequence as in Example 6.3.
The first p terms would be just 0, . . . , p − 1, with the next term 1 − ζp. The first p2 terms
would be {i + j(1 − ζp)} for 0 ≤ i, j < p, with the next term (1 − ζp)

2. Noting that q = p
and applying Corollary 8.3 shows that the transformations defined by the polynomials

x(x− 1) . . . (x− p + 1)

1− ζp

and
1

(1− ζp)3

∏

0≤i,j<p

(x− i− j(1− ζp))

are isometrically Bernoulli for r = |π|1 = |p|
1

p−1 and r = |π|2 = |p|
2

p−1 , respectively.

Example 8.8. Take f > 1 and let

K = Qp(ζ) where ζ is a primitive (pf − 1)th root of unity.

It is a standard result that K is the unique unramified extension of degree f . So, p may
be taken as a uniformizing parameter. Let ζ ∈ O/p be the image of ζ under the quotient
map. We note that ζ must generate the residue field extension, i.e. O/p = Fp(ζ) = Fp[ζ].
So, S = {a0 + a1ζ + . . . + af−1ζ

f−1}, with 0 ≤ a0, a1, . . . , af−1 < p, is a complete set of coset
representatives for O/p. Applying the construction of Example 6.3 we may construct a very
well distributed sequence whose first q = pf terms are precisely the elements of S, with the
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following term being p. Then, applying Corollary 8.3 shows that the transformation defined
by the polynomial

1

p

∏

0≤a0,a1,...,af−1<p

(x− a0 − a1ζ − · · · − af−1ζ
f−1)

is isometrically Bernoulli for r = |p|.

9. Polynomial almost Bernoulli maps on Zp

An important condition shared by isometrically Bernoulli polynomials maps is their deriva-
tives must have constant valuation. We may use this observation to come up with a class
of interesting non-examples. Our non-examples will be polynomial maps whose derivatives
have constant valuation, but such that the maps need not be measure-preserving.

Proposition 9.1. The map f : Zp → Zp given by

f(x) =

(
x

n

)

for n ∈ N satisfies |f ′(x)| = C for some C ∈ V and for all x ∈ Zp if and only if n = apℓ,
with 1 ≤ a < p and ℓ ∈ Z≥0, and

1

u
+ . . . +

1

u + a− 1
6≡ 0 (mod p)

for each u ∈ {1, 2, . . . , p− a}.

Proof. We note that each n may be written uniquely as n = apℓ with p ∤ a. We will first
show that it is necessary that a < p.

Observe that

f ′(x) =
1

n!

n−1∑

i=0

x(x− 1) · · · (̂x− i) · · · (x− n + 1).

We note that |f ′(0)| =
∣∣∣ (n−1)!

n!

∣∣∣ =
∣∣ 1
n

∣∣ = pℓ. So, in order for |f ′(x)| to be constant, it must be

equal to this value for all x ∈ Zp. There exists a b ∈ {0, 1, . . . , p−1} such that bp⌊logp n⌋ ≤ n <
(b+1)p⌊logp n⌋; then, we may take x ∈ N such that such that {x, x−1, . . . , x−n+1} contains
precisely b numbers divisible by p⌊logp n⌋ with exactly one of these divisible by p1+⌊logp n⌋.
Then, |f ′(x)| = p⌊logp n⌋. This in turn implies that ℓ = ⌊logp n⌋, and so a < p.

Henceforth, we assume n = apℓ, 1 ≤ a < p. As N is dense in Zp, it suffices to check our
condition for x ∈ N. Then, we have two cases:
Case I: One of {x, x− 1, . . . , x− n + 1} is divisible by pℓ+1:
As a < p, this implies that exactly one element in the set is divisible by pℓ+1. Then,
the corresponding term in the summation giving f ′ will dominate in valuation, yielding
|f ′(x)| = pℓ.
Case II: None of {x, x− 1, . . . , x− n + 1} is divisible by pℓ+1:
Then say {pℓu, pℓ(u + 1), . . . , pℓ(u + a− 1)} is the subset of {x, . . . , x− n + 1} consisting of
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the terms divisible by pℓ; note that u, . . . , u + a − 1 are units, that is u, . . . , u + a − 1 6≡ 0
(mod p). Then

|f ′(x)| =

∣∣∣∣
x(x− 1) · · · (x− n + 1)

n!

∣∣∣∣

∣∣∣∣∣

n−1∑

i=0

1

x− i

∣∣∣∣∣ =

∣∣∣∣∣

n−1∑

i=0

1

x− i

∣∣∣∣∣

≤ max{pℓ

∣∣∣∣∣

a−1∑

j=0

1

u− j

∣∣∣∣∣ , p
ℓ−1},

where the final inequality is an equality if the first expression in the max is strictly greater
than the second.

In order that |f ′(x)| be constant, we must have |f ′(x)| = pℓ for all x ∈ Zp. It follows that
a necessary and sufficient condition for this is that

∣∣∣∣∣

a−1∑

j=0

1

u− j

∣∣∣∣∣ ≥ 1

whenever u, . . . , u− a− 1 ∈ Z×
p . The condition in the statement of the proposition is merely

a restatement of this, so our result follows. �

Corollary 9.2. Let p > 3. Then,

f(x) =

(
x

(p− 2)pℓ

)

satisfies |f ′(x)| = pℓ for all x ∈ Zp.

Proof. The map u 7→ 1
u

is a group automorphism on the cyclic group F×
p . Viewing the

elements of Fp as being {0, 1, 2, . . . , p − 1} with operations performed modulo p, it follows
that ∑

u∈{1,2,...,p−1}

1

u
=

∑

u∈{1,2,...,p−1}

u ≡ 0 (mod p).

So, for u ∈ {1, 2} we have

1

u
+ . . . +

1

u + (p− 2)− 1
≡ −

1

u
6≡ 0 (mod p).

It follows that a = p − 2 satisfies the conditions of Proposition 9.1. Writing n = (p − 2)pℓ

and applying the proposition yields our desired result. �

Example 9.3. Let p = 5, and define a transformation f : Z5 → Z5 by

f(x) =

(
x

15

)
.

By the Corollary, we have that |f ′(x)| = 5 for all x ∈ Z5. Note that 125f(x) ∈ Z5[x]; then, a
computation modulo 5 yields that |f ′′(x)| ≤ 25, and we have the trivial bound |f (ℓ)(x)| ≤ 125
for ℓ ≥ 3. Then, by a computation as in Example 4.6 we may conclude that f is locally
scaling for r = 1/25.
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Now, the study of the dynamics of f reduces to looking at its associated transition matrix.
We note that x mod 25 determines f(x) mod 5, and that the collection of this datum suffices
to determine the associated transition matrix. A computation yields that

x ≡ 0, 1, 2, . . . , 14 (mod 2)5⇒ f(x) ≡ 0 (mod 5)

x ≡ 15, 16, . . . , 19 (mod 2)5⇒ f(x) ≡ 1 (mod 5)

x ≡ 20, 21, . . . , 24 (mod 2)5⇒ f(x) ≡ 4 (mod 5)

Identifying i ∈ {0, 1, . . . , 24} with i+25Z5, we may write the associated transition matrix
as

A = (A(i, j))0≤i,j<25 =






1/5 0 ≤ i ≤ 14 and j ≡ 0 (mod 5)

1/5 15 ≤ i ≤ 19 and j ≡ 1 (mod 5)

1/5 20 ≤ i ≤ 24 and j ≡ 4 (mod 5)

0 otherwise

and we may observe that A has a left eigenvector of eigenvalue 1

λ = (λ(i))0≤i<25 =






3/5 i ≡ 0 (mod 5)

1/5 i ≡ 1, 4 (mod 5)

0 otherwise

This eigenvector is not positive, so we cannot use the construction of Proposition 2.1; how-
ever, µA,λ assigns zero measure to [2], [3], so we may (up to measurable isomorphism) dis-
regard those symbols. The resulting symbolic system on 0, 1, 4 has an irreducible, indeed
primitive, matrix.

Let µ denote Haar measure on Z5. Then, we may define a f -invariant measure µ̃ on Z5:

µ̃(A) = 3µ
(
A ∩ B1/5(0)

)
+ µ

(
A ∩ B1/5(1)

)
+ µ

(
A ∩B1/5(4)

)

for any µ-measurable set A ⊆ Z5. Moreover, the map Φ of Proposition 5.8 gives a measurable
isomorphism of (Z5, µ̃, f) with (XA, µA,λ, TA), where the latter dynamical system is mixing
Markov; so, in a sense µ̃ is the f -invariant measure corresponding to the eigenvector λ of A
(or more precisely, to µA,λ).

10. Bernoulli maps on Ẑ

Let us define
Ẑ = lim←−

n,|

Z/nZ ∼=
∏

p

Zp.

Using the result of Section 8, we may construct various maps N → Z which extend to

Bernoulli maps on Zp for each p, and hence to a Bernoulli map on Ẑ. Explicitly:

Proposition 10.1. Let f : N→ Z be defined by

f(n) =

n∑

k=0

ak

(
n

k

)

with ak ∈ Z for k ≥ 0 satisfying the following for each prime rational prime p:

(i) |ak| = 1 for k = p;
(ii) |ak| < p−⌊logp k⌋ for k > p.
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Then, f extends to an isometrically Bernoulli transformation f : Zp → Zp for each prime
p.

Proof. For each prime p, note that the quantity p⌊logp k⌋|ak|p attains its maximum for k = p.
Then, the result is immediate by Corollary 8.3. �

Example 10.2. Let f : N→ Z be defined by

f(n) =
∑

p≤n

∏

p′<p

p′
1+⌊logp′ p⌋

(
n

p

)

where the summation is over primes bounded by n, and the product over primes bounded
by p.

In the notation of the Proposition, we have

ap =
∏

p′<p

p′
1+⌊logp′ p⌋

,

and ak = 0 for k not a prime. So, for each prime p it is the case that |ap|p = 1. Moreover,
for k > p we see that |ak|p ≤ p−1−⌊logp k⌋ < p−⌊logp k⌋. So, the conditions of the Proposition
are satisfied, and f extends to an isometrically Bernoulli transformation Zp → Zp for each
prime p.

Example 10.3. Let f : N→ Z be defined by

f(n) =
∑

k≤n

(k − 1)!k
(

n

k

)
.

That is, we set ak = (k − 1)!k. Then, |ap|p = |(p− 1)!p|p = 1. And, for k > p we see that

certainly |ak|p = |(k − 1)!k−1|p < p−⌊logp k⌋. So, the conditions of the Proposition are again
satisfied.

11. Rational functions

We have thus far been primarily concerned with polynomial maps. However, the tools we
develop suffice to say a great deal about maps given by rational functions.

For X ⊆ K compact-open, we say that T : X → X is given by a rational function on X
if there exist f, g ∈ K[x] with g non-vanishing on X such that

T (x) =
f(x)

g(x)
for all x ∈ X.

Note that the condition that g is non-vanishing on X is not too strict:

Lemma 11.1. Let X ⊆ K be compact-open and non-empty. Say f, g ∈ K[x] with g not
identically 0, and say T : X → X is such that

T (x) =
f(x)

g(x)
for all x ∈ X satisfying g(x) 6= 0.

Then, there exist f̃ , g̃ ∈ K[x], g̃ non-vanishing on X, such that T (x) =
ef(x)
eg(x)

for all x ∈ X

satisfying g(x) 6= 0, and in particular off of a set of µ measure zero.
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Proof. It suffices to show that for a ∈ X, x − a has greater multiplicity in the numerator
than the denominator. But indeed, as X is compact, it is bounded. So, this result follows
at once upon noting that for ℓ ≥ 1 the expression

∣∣∣∣
1

(x− a)ℓ

∣∣∣∣

is unbounded as x→ a. �

Lemma 11.2. Let X ⊆ K be compact-open. Say T : X → X is given by a rational function
on X, as T = f

g
, with f, g ∈ K[x] and g non-vanishing on X. Then, T ∈ C1(X). In

particular, the results of Section 5 apply to transformations of compact-open sets that are
given by rational functions.

Proof. Say K is a union of r-balls. Then, for |z| ≤ z and x ∈ X we have x + z ∈ K. In
particular, the non-vanishing of g(x) implies the non-vanishing of g(x + z). Then, observe
that

T (x + z)− T (x)

z
=

f(x + z)g(x)− f(x)g(x + z)

g(x)g(x + z)z

=

(
1

g(x)g(x + z)

)(
g(x)

f(x + z)− f(x)

z
− f(x)

g(x + z)− g(x)

z

)
.

So, our result follows from the proof of Lemma 4.4. �

As with polynomials, it remains to ask whether there are actually rational functions with
any interesting dynamical behavior. In fact, we may readily extend the results of Section 7.

Lemma 11.3. Let f ∈ K[x] be such that f(O) ⊆ O. Assume moreover that f : O → O
is locally scaling for r ∈ V. Then, there exists g ∈ K[x] non-vanishing and non-constant
on O such that T = f

g
is a locally scaling transformation O → O with the same associated

transition matrix as f .

Proof. Say

f =

n∑

k=0

akx
k,

is locally scaling for r ∈ V and let C : O → R≥0 be its scaling function.
Take N such that

N > max{deg f,
n

sup
k=0

logπ r|ak|}.

Now, set g(x) = 1− πNxℓ for any ℓ ≥ 1, and let T = f
g
. For k ∈ N, let k ∈ {0, . . . , N − 1}

be the reduction of k (mod N), and define

bk =

{
|π|⌊k/N⌋ak k ∈ {0, . . . , n}

0 otherwise
.

Then,

T (x) =
∑

ℓ≥0

n∑

k=0

akx
k+ℓN =

∑

k≥0

bkx
k.
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So,

T (x)− f(x) =
∑

k≥N

bkx
k ∈ p

1+log|π| rO[[x]].

So, |T (x) − f(x)| ≤ r and T − f is |π|-Lipschitz. Then for |x − y| ≤ r, and hence
|f(x)− f(y)| = C(x)|x− y| ≥ 1, we have

|T (x)− T (y)| =

∣∣∣∣f(x)− f(y) +
f(x)

g(x)
− f(x)−

f(y)

g(y)
+ f(y)

∣∣∣∣ = |f(x)− f(y)| = C(x)|x− y|.

Moreover, it is the case that

T (Br(a)) = BrC(a)(T (a)) = BrC(a)(f(a)) = f(Br(a)).

Our desired result follows. �
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