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Stochastic Calculus and the Nobel Prize Winning 

Black-Scholes Equation 
 

Frank Morgan 
 
The 1997 Nobel Prize in Economics went to Robert Merton and Myron Scholes 

for their revolutionary Black-Scholes differential equation for the value of financial 
instruments—termed a stochastic differential equation because it includes a random 
element. 

 
 To get started, let’s toss a fair coin n times and let Xi = +1 if the ith toss is heads or 
−1 if the ith toss is tails, each with probability 1/2. Each Xi is called a random variable 
because it takes on certain values with certain probabilities. It has mean 0, which is 
computed by taking each value multiplied by its probability and adding them up:  
 

(1/2)(−1) + (1/2)(1) = 0. 
 
It has variance 1, which is computed as the mean of the square of the difference from the 
mean, which in this case is always 1. The standard deviation, the square root of the 
variance, is also 1, and gives an estimate of how far Xi will deviate from its mean on 
average. The Xi are called independent because no toss is affected by another. In 
particular, the mean of XiXj is 0; if Xi is positive, Xj is equally likely to be positive or 
negative. The sum 

 
f(n) = X1 + ... + Xn 

 
has mean 0, variance n, and standard deviation σ = √n. To compute the variance, just note 
that the square 
 

(X1 + ... + Xn)2 = X1
2 + ... + Xn

2 + cross terms 
 
has mean n because each Xi

2 has mean 1 and the cross terms have mean 0. The fact that 
the mean of f(n) is 0 implies that if you toss a coin n times, the average number of heads 
is n/2. The fact that the standard deviation is √n means that in practice the deviation from 
n/2 should be on the order of √n. 
 
 You could take a random walk on the line by tossing a coin every second and 
taking a unit step forward or backward according to whether the coin came up heads or 
tails. The random function f(n) would give your position after n seconds. 
 
 To get a continuous limit for 0 ≤ t ≤ 1 of random walks with rapid small steps, 
you could try considering 
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X1Δt + ... + XnΔt 

 
with Δt = 1/n and mean 0, but this has standard deviation √n /n = 1/√n, which goes to 0 in 
the limit, and you end up just standing at the origin. The reason is that independent 
identical random variables with mean 0 tend to cancel when you add them up. In the 
stochastic calculus, this can be summarized by saying that 
 
(1) Xt dt = 0 
 
because you always get 0 when you integrate or take limits of sums. If you replace Δt by 
some function a of Δt and consider 
 

X1 a + ... + Xn a , 
 
then the standard deviation is a√n, which is 1 if a = 1/√n = √Δt. Therefore 
 

 X1 √Δt + ... + Xn √Δt 
 

does have a non-zero limit, with mean 0 and standard deviation 1 at time t = 1, called the 
Wiener process or Brownian motion z. This process is a solution to the stochastic 
differential equation 
 

dz = Xt √dt . 
 
At time t, z(t) has mean 0 and standard deviation √t. More generally you can consider a 
generalized Wiener process  x  satisfying the differential equation 
 

dx = a dt + b dz , 
 
with solution x = at + bz. The mean, due to the deterministic component at, is at, while 
the standard deviation, due to the stochastic term bz, is b√t. Still more generally you can 
consider an Ito process 
 
(2) dx = a(x,t) dt + b(x,t) dz , 
 
which can be hard to solve explicitly. 
 
 Stochastic calculus appears much trickier than ordinary calculus because dz2 is on 
the order of dt and hence it is not negligible the way that dt2 is. What makes it all 
manageable is Ito’s Lemma, which in abbreviated form just says that  
 
(3) dz2 = dt . 
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The essence of the proof is that 
 

dz2 = Xt
2dt = 1 dt + (Xt

2−1) dt = dt . 
 
The first equality is definition, the second is trivial. To understand the third, note that 
Xt

2−1 is random variable with mean 0, so that  (Xt
2−1) dt = 0 as in (1). Here is the 

associated stochastic chain rule, also called Ito’s Lemma: 
 
Ito’s Lemma. Consider an Ito process (2) and let y = f(x) be a twice differentiable function 
of x. Then 
 
(4) dy = (f′a + f″b2/2) dt + f′ b dz . 
 
To see how (4) follows from (3), start with the second order Taylor series for y: 
 

dy = f′(x) dx + 

! 

1

2
f″(x)dx2 . 

 
Note that the dx2 term is not negligible; indeed, by (2) and (3), dx2 = b2dz2 = b2dt. 
Equation (4) now follows from (2). The interesting feature is the appearance of the 
second derivative f″ because dz2 = dt . 
 
 Before applying stochastic calculus to stocks, recall how money grows in the bank 
at a risk-free rate r, which governs the relative growth rate of the balance B: 
 

(5) 

! 

dB

B
 = r dt . 

 
For the price S of a stock, in addition to a nonrandom growth rate µ, one considers a 
random component, a multiple of Brownian motion:  
 

(6) 

! 

dS

S
 = µ dt + σ dz . 

 
These two coefficients, the mean growth rate µ and the so-called volatility σ are 
considered the two most important characteristics of a stock. In general, higher growth 
rate entails higher volatility and risk. Probably the most important principle from 
investment mathematics, called diversification, mandates buying many uncorrelated 
stocks with high µ and σ with the expectation that their random fluctuations will tend to 
cancel and thus entail much less risk than any of them individually. 
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 The hard part of investment analysis comes in treating more complicated financial 
instruments. A call is the right to buy for example 100 shares of Sears at $95/share six 
months from now. The challenge facing Black, Scholes, and Merton was to figure out 
what such a call should be worth. The value C(S,t) of such a call varies in time and 
depends on how the price of the stock varies. Even though the current price of Sears is 
$91, the call option is worth something, because the price may go above $95. If the price 
stays at $91, the value of the call will gradually decay over the six months to 0, but if the 
price rises, the value of the call may rise. It will never fall below 0, because it is just an 
option to buy, not an obligation to buy. 
 
 The key to evaluating the call is to note that it can be instantaneously replicated 
by some linear combination G = uS−vB of buying the stock and borrowing money from 
the bank. The call should have the same price as uS−vB. If, for example, the call had a 
higher price, one could go into the business of selling calls, buying replications, and 
making a risk-free profit. The opportunity for such “arbitrage” keeps market prices 
coherent. So the difficult problem of pricing the call seems to be reduced to the easier 
problem of pricing stocks. 
 
 The difficulty is that the coefficients u and v vary in time, depending in part on 
the price of the stock. Such “dynamic arbitrage” was a revolutionary idea. It means that 
instead of classical probability theory, you really need the random or stochastic calculus 
and differential equations we introduced above.  
 
 To replicate the call, the evolving linear combination G = uS−vB must satisfy 
certain conditions. First of all, you need to borrow more money to buy more stock, i.e., 
funds to increase u must come from corresponding increases in v, so that S du = B dv. 
Therefore, 
 

dG = u dS – v dB + S du – B dv = u dS – v dB = (uµS – vrB) dt + uσS dz 
 
by (5) and (6). Meanwhile, by Ito’s Lemma (4), 
 

dC = (

! 

"C

"t
 + 

! 

"C

"S
 µ S + 

! 

1

2

! 

" 2C

"S2
 σ2 S2 ) dt + 

! 

"C

"S
σS dz , 

 
with the extra term ∂C/∂t because here C(S,t) also depends explicitly on t. For G to 
replicate C, dG must equal dC. Equality of the dz terms means that u = ∂C/∂S. 
Consequently, vB = uS – G = (∂C/∂S)S – C. Equality of the dt terms means that 
 

! 

"C

"S
 µ S – ( 

! 

"C

"S
 S – C) r  =  

! 

"C

"t
 + 

! 

"C

"S
 µ S + 

! 

1

2

! 

" 2C

"S2
 σ2 S2 . 
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Canceling the µS terms yields the celebrated Black-Scholes differential equation for the 
value of the call option: 
 

(7) 

! 

"C

"t
 + 

! 

"C

"S
 r S + 

! 

1

2

! 

" 2C

"S2
 σ2 S2  =  r C . 

 
Here again the interesting feature is the appearance of the second derivative of C, 
multiplied by the volatility σ. By great good fortune, it happens that for r and σ 
constant, this differential equation has an exact, analytic solution, although the formula is 
a bit complicated (google “Black-Scholes” and see for yourself). It was discovered because 
it is essentially the same as the solution to the heat equation in physics. The main 
drawback is that the volatility σ is hard to estimate. For variable interest rates r, relatively 
easy to estimate by the prices of short- and long-term bonds, one can solve the 
differential equation numerically. 
 
 Merton’s landmark paper after Black and Scholes appeared in 1973. In 1994 
Merton, Scholes, and others started a hedge fund, Long-Term Capital Management 
(LTCM), which was soon earning 40% a year. In 1997 Merton and Scholes won the 
Nobel Prize in Economics for their work (and Black received posthumous recognition). 
The very next year the LTCM fund crashed, losing $4.6 billion. In an extraordinary move, 
the Federal Reserve intervened to rescue the fund and prevent international financial 
repercussions. 
 
 
Frank Morgan works in minimal surfaces and has published six books, including two 
recent undergraduate texts on real analysis, Calculus Lite, and The Math Chat Book, 
based on his live, call-in TV show and column at MathChat.org. Inaugural winner of the 
MAA Haimo teaching award and founder of the NSF SMALL Undergraduate Research 
Project, he is Atwell Professor of Mathematics at Williams College. This article began as 
a talk at a special “Stochastic Fantastic Day,” which his chair Tom Garrity organized to 
give his colleagues a chance to explore a compelling but unfamiliar topic and enjoy 
dinner at his home afterwards. Morgan then tried it out on his Spring 2008 Investment 
Mathematics class, whom he thanks for many helpful comments. 
Williamstown, MA 01267 
Frank.Morgan@williams.edu 
 
Brief Descriptive Summary 
 
The 1997 Nobel Prize in economics went to Robert Merton and Myron Scholes for their 
revolutionary Black-Scholes differential equation for the value of financial instruments. 
Unlike standard, deterministic differential equations, the Black-Scholes equation is a 
stochastic differential equation, including an element of randomness. 
Frank.Morgan@williams.edu 
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