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Abstract. For a differential form on a manifold, having constant components

in suitable local coordinates trivially implies being parallel relative to a tor-

sion-free connection, and the converse implication is known to be true for
p-forms in dimension n when p = 0, 1, 2, n − 1, n. We prove the converse for

(n− 2)-forms, and for 3-forms when n = 6, while pointing out that it fails to
hold for Cartan 3-forms on all simple Lie groups of dimensions n ≥ 8 as well

as for (n, p) = (7, 3) and (n, p) = (8, 4), where the 3-forms and 4-forms arise in

compact simply connected Riemannian manifolds with exceptional holonomy
groups. We also provide geometric characterizations of 3-forms in dimension

six and (n−2)-forms in dimension n having the constant-components property

mentioned above, and describe examples illustrating the fact that various parts
of these geometric characterizations are logically independent.

1. Introduction

Manifolds (by definition connected) and tensor fields are always assumed to be
smooth. A differential p-form µ on an n-dimensional manifold M may be called

(i) algebraically constant if it has the same algebraic type at all points,
(ii) locally constant when it has constant components in suitable local coor-

dinates around each point,
(iii) parallel if ∇µ = 0 for some torsion-free connection ∇.

In [8] our ‘parallel’ forms are referred to as integrable, while [15] uses for (ii) the
term forms with constant coefficients. With the aid of partitions of unity one easily
sees that ∇ in (iii) only needs to exist locally. Thus,

(1.1) (iii) follows from (ii), which is its local version with a flat connection,

if we agree to treat the items (i)–(iii) as conditions rather than definitions, Including
(1.1), we then have the well-known implications

(1.2) (ii) =⇒ (iii) =⇒ (i), and (iii) =⇒ (dµ = 0),
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cf. [15, Prop. 2.1], [8, formula (1.1)], as well as the equivalences

(1.3) when p ∈ {0, 1, 2, n− 1, n}, (ii) ⇐⇒ (iii) ⇐⇒ (µ is closed).

See [15, Examples 1.5-1.8], [8, Prop. D]. As pointed out by Muñoz Masqué et al.
in [15], the questions of this kind raised, but not answered, by (1.3) start from
(n, p) = (5, 3). Regarding such questions, let us note here that the converse of the
last implication in (1.2) is false except in the case (1.3): [8, formula (1.7)] provides
simple counterexamples for all (n, p) with n ≥ 5 and 3 ≤ p ≤ n− 2.

Given an algebraically constant differential form µ on a manifold and a distri-
bution E naturally associated with µ, as E is obviously ∇-parallel when ∇µ = 0,

(1.4) integrability of E follows if µ happens to be parallel.

Our first main result, Theorem 9.1, states that the equivalence (ii)⇐⇒ (iii) in (1.3)
remains true also when p = n− 2, as well as for (n, p) = (6, 3).

In general, however, (ii) implies (iii), but not conversely, with specific coun-
terexamples (Theorem 14.1): some related to exceptional holonomy groups [12],
with (n, p) = (7, 3) and (n, p) = (8, 4), others provided by the Cartan 3-forms
on all simple Lie groups of dimensions n ≥ 8. The latter can be further general-
ized (Remark 14.2) to all semisimple Lie groups without normal Lie subgroups of
dimensions 3 or 6.

The next two results, Theorems 9.2 and 9.3, provide geometric characterizations
of the case where µ, a 3-form in dimension 6 or an (n−2)-form in dimension n, is
parallel (or, equivalently, locally constant, cf. Theorem 9.1). The characterizations
involve closedness of µ and, for (n− 2)-forms, of a certain 2-form arising from µ,
as well as integrability of an almost-complex structure (in the case of 3-forms) and
of specific distributions naturally associated with µ.

In Sect. 15–16 we describe examples showing that there are no redundant parts
in the characterizations just mentioned. One source of these examples is The-
orem 16.1, dealing with the natural duality between nondegenerate differential
2-forms σ in (necessarily even) dimension n and (n − 2)-forms µ which are in-
divisible at each point. It states that, even though dµ = 0 whenever dσ = 0, the
converse implication, obvious when n ≤ 4, fails in all even dimensions n ≥ 6.

2. Preliminaries

Our convention about the exterior product of 1-forms ξ i and vectors vj is

(2.1) [ξ1∧ . . . ∧ ξp](v1, . . . , vp) = [v1 ∧ . . . ∧ vp](ξ1, . . . , ξp) = det[ξ i(vj)].

Given a differential p-form ζ, with ̂ meaning ‘delete’ one has the following well-
known expression for the exterior derivative in terms of Lie brackets:

(2.2)
[dζ](v0, . . . , vp) =

∑
i(−1)idvi [ζ(v0, . . . , v̂i , . . . , vp)]

+
∑

i,j(−1)i+jζ([vi , vj ], v0, . . . , v̂i , . . . , v̂j , . . . , vp),

v0, . . . , vp being any tangent vector fields, the summation ranges 0 ≤ i ≤ p and
and 0 ≤ i < j ≤ p. See, e.g., [2, formula (1.5a)].

We call a vector field w on a manifold projectable along an integrable distribu-
tion D if, locally, it is projectable onto local leaf spaces of D. As is easily seen in
coordinates such that some coordinate vector fields span D,

(2.3)
w is projectable along D if and only if, for every sec
tion v of D the Lie bracket [w,v] is also a section of D.
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One says that a (0, r) tensor field ξ on a manifold M annihilates a distribution
D (or, is projectable along D) if ξ(v1, . . . , vr) = 0 whenever one of the vector fields
v1, . . . , vr is a section of D or, respectively, if D is integrable, and ξ, locally, equals
the pullback to M of a (0, r) tensor field on a local leaf space of D.

Lemma 2.1. Let D be a ∇-parallel distribution on a manifold M with a tor-
sion-free connection ∇. If a (0, r) tensor field ξ on M annihilates D, then so
does ∇v ξ, for any vector field v, while ∇v ξ = 0 when, in addition, ξ is projectable
along D and v is a section of D.

We get both claims evaluating [∇v ξ](v1, . . . , vr) from the Leibniz rule; the
second, as v1, . . . , vr may be assumed projectable along D, so that ξ(v1, . . . , vr) is
constant along D, while, by (2.3), each [v, vi ], and hence ∇vvi , is a section of D.

Lemma 2.2. With the index ranges j = 1, . . . , r and k = r+1, . . . , n, let func-
tions xk on an n-dimensional manifold M have dxr+1∧ . . .∧ dxn 6= 0 everywhere
and be constant along mutually commuting vector fields ej that are linearly inde-

pendent at each point. Then, locally, there exist coordinates x1, . . . , xn including
our xk for which ej, j = 1, . . . , r, are the coordinate vector fields ∂j.

Proof. Fix a codimension r submanifold Q transverse to the span of our ej .

Let F (z, x1, . . . , xr) = x(1) for z ∈ Q and real x1, . . . , xr such that x(1) exists for
the integral curve t 7→ x(t) of the combination xjej with x(0) = z. By the inverse
mapping theorem, F provides a diffeomorphic identification of a neighborhood of
any given point z in M with the Cartesian product of a neighborhood of z in Q
and a neighborhood of zero in the Euclidean r-space. This turns the variables xj

into the required additional coordinate functions. �

Lemma 2.3. For a closed differential p-form η on a Cartesian-product man-
ifold M with TM = H+⊕ H− for the factor distributions H±, let η = η++ η−,
where each of the p-forms η± annihilates H∓. Then both η± are the pullbacks to
M of some closed p-forms on the factor manifolds.

Proof. Applying (2.2) to suitable coordinate vector fields for a Cartesian-
product coordinate system we see that dη± = 0 and the component functions of
η± are constant along H∓, as required. �

Remark 2.4. Locally in IRn, every function φ is the divergence of some vector
field w, for instance, w = (ψ, 0, . . . , 0) with ψ such that ∂1ψ = φ.

Remark 2.5. Given an n-dimensional manifold M and a local trivialization
ξ1, . . . , ξn of T ∗M dual to a local trivialization e1, . . . , en of TM with functions
Ck

ij such that [ei, ej ] = Ck
ijek, one has, by (2.2) and (2.1), [dξk](ei, ej) = −Ck

ij, and

hence dξk = −Ck
ij ξ

i∧ ξj.

Remark 2.6. If p ≥ 2, any (p, 0) differential form ω on a complex manifold,
having a closed real part, must itself be closed (that is, holomorphic). In fact,
dω = ∂ω + ∂ω is then imaginary, and hence opposite to its conjugate dω, while
dω has bihomogeneous components of bidegrees (0, p + 1) and (1, p), different of
the bidegrees (p+ 1, 0) and (p, 1) for dω unless p ∈ {0, 1}.
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3. Some invariants of exterior forms

Throughout this section V is a real vector space of dimension n. We call a p-
vector β ∈ V ∧p or an exterior p-form µ ∈ [V ∗]∧p decomposable if it is the exterior
product of p vectors or 1-forms. A volume form in V is a nonzero exterior n-form,
which amounts to a nonzero scalar when n = 0.

Let µ ∈ [V ∗]∧p be an exterior p-form in V, where 1 ≤ p ≤ n. Its rank is the
minimum dimension of a vector space W such that µ equals the pullback of an
exterior p-form in W under some linear operator V →W. Since V →W may be
assumed surjective, when r = rank µ and µ 6= 0,

(3.1) p 6= r − 1 and p ≤ r ≤ n with p = r if and only if µ is decomposable,

due to the well-known decomposability of r-forms and (r− 1)-forms in dimension
r. See, for instance, [13, pp. 287-288], [15, Examples 1.6, 1.8] or [8, Sect. 11].

We associate with µ two vector subspaces of V. One is the kernel Z of µ, in
other words, the kernel of the operator V → [V ∗]∧(p−1) sending v to µ(v, · , . . . , · ).
The other space, which we call the divisibility space of µ and denote by D, is the
polar space (annihilator) of the subspace D′ of [V ∗] consisting of 1-forms ξ ∈ V ∗
such that µ is ∧-divisible by ξ (or, equivalently, ξ ∧ µ = 0). Thus, D is the
simultaneous kernel of all such 1-forms ξ. Then, for r = rank µ and k = dimZ,

(3.2) a) k = n − r, b) Z ⊆ D unless µ = 0.

In fact, (3.2-a) follows since µ clearly equals the pullback under the projection
operator V → V/Z of the exterior p-form in V/Z that µ descends to, the min-
imum-dimension clause being obvious as a pullback form vanishes on the kernel
of the operator used to pull it back. To obtain (3.2-b), note that, if v ∈ Z and
ξ ∈ D′, one has ξ(v)µ(v1, . . . , vp) = [ξ ∧ µ](v, v1, . . . , vp) = 0 for all v1, . . . , vp ∈ V .

When µ = 0 and V 6= {0}, (3.2-b) fails to hold: Z = V and D = {0}. For
nonzero scalars (0-forms) µ we set Z = {0} and D = V. Generally,

(3.3) we call an exterior form µ indivisible if D = V,

that is, if ξ ∧ µ 6= 0 whenever ξ ∈ V ∗r {0}. We will repeatedly assume that

(3.4) ξ1, . . . , ξn is the basis of V ∗ dual to a basis e1, . . . , en of V .

Then, by (2.1), for ξ = µ( · , ej2 , . . . , ejp) with µ = ξi1∧ . . . ∧ ξip 6= 0,

(3.5)
ξ = ±ξ i if {i1, . . . , ip} = {i} ∪ {j2, . . . , jp}, and ξ = 0
when {i1, . . . , ip}r {j2, . . . , jp} is not a one element set.

Lemma 3.1. If ξ1, . . . , ξs ∈ V ∗ are linearly independent, any exterior form η
with ξ1∧ . . . ∧ ξs∧ η = 0 lies in the ideal generated by ξ1, . . . , ξs.

Proof. Let η ∈ [V ∗]∧p. Expanding η as a linear combination of the obvious
basis of [V ∗]∧p arising from a basis ξ1, . . . , ξn of V ∗ which includes our ξ1, . . . , ξs,
we see that the p-fold exterior products without any of the factors ξ1, . . . , ξs oc-
curring in the expansion of η with nonzero coefficients would remain linearly in-
dependent even after being ∧-multiplied by ξ1∧ . . . ∧ ξs. As ξ1∧ . . . ∧ ξs∧ η = 0,
there are no p-fold products with the above properties. �
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Remark 3.2. The image of µ ∈ [V ∗]∧p, defined to be the span in V ∗ of all
µ( · , v2, . . . , vp) for v2, . . . , vp ∈ V. Obviously,

(3.6)
the image of µ is the polar space of Kerµ, so that, by
(3.2 a), the dimension of the image of µ equals rank µ

Assuming (3.4), we easily see that

(3.7) the image of µ is spanned by {µ( · , ej2 , . . . , ejp) : 1 ≤ j2 < . . . < jp ≤ n}

and so, as a consequence of (3.5), the image of µ is then

(3.8) contained in the span of all ξ i occurring in µ.

The word ‘occurring’ means here that the expansion of µ as a linear combination
of the obvious basis of [V ∗]∧p includes, with a nonzero coefficient, a p-fold exterior
product involving the factor ξ i.

Remark 3.3. Under the assumption (3.4), we will say that a p-element set
I ⊆ {1, . . . , n} occurs in an exterior p-form µ if the expansion of µ as a linear
combination of the obvious basis of [V ∗]∧p includes ξi1∧ . . . ∧ ξip with a nonzero
coefficient, where I = {i1, . . . , ip}. Let S be the union of the distinct p-element

subsets I1, . . . , Il of {1, . . . , n} occuring in µ. If p ≥ 2 and any (p − 1)-element
subset of {1, . . . , n} is contained in at most one of I1, . . . , Il (for instance, I1, . . . , Il
are pairwise disjoint), then the image of µ is the span of {ξ i : i ∈ S} (and hence,
by (3.6), rank µ = |S|, so that rank µ = p if µ is decomposable, with l = 1). In
fact, one inclusion is provided by (3.8). For the other one, we fix ξ i with i ∈ S
and apply (3.5) to j2, . . . , jp such that {i} ∪ {j2, . . . , jp} is one of I1, . . . , Il.

Remark 3.4. The kernel of any nonzero decomposable p-form µ coincides
with its divisibility space: writing µ = ξ1∧ . . . ∧ ξp, with (3.4), we see that both
have the same polar space Span(ξ1, . . . , ξp). (The former according to (3.6) and
Remark 3.3, the latter since the equality ξ1∧ . . .∧ ξp∧ ξ = 0 for a 1-form ξ amounts
to linear dependence of the system ξ1, . . . , ξp, ξ.)

Remark 3.5. For p ≥ 2 and linearly independent 1-forms ξ1, . . . , ξp+2 ∈ V ∗,
the p-form µ = (ξ1∧ ξ2+ ξ3∧ ξ4) ∧ ξ5∧ . . .∧ ξp+2 is not decomposable: Remark 3.3
gives rank µ = p+ 2 for our µ, and rank equal to p for decomposable p-forms.

Lemma 3.6. The divisibility space of an exterior p-form µ = θ∧ ζ is {0}×D
whenever θ and ζ are the pullbacks to the direct-product vector space V = W×D
of a volume form in W and an indivisible exterior form in D.

Proof. For e1, . . . , en with (3.4) having the first s vectors in W × {0} and
the last n− s in {0} ×D, such that θ = ξ1∧ . . . ∧ ξs, expanding ξ ∧ µ as a linear
combination of the obvious basis of [V ∗]∧p, where ξ = aiξ

i, and “canceling” the
factor ξ1∧ . . .∧ ξs in each nonzero term of the expansion, we see that ξ ∧ µ = 0 if
and only if ζ is ∧-divisible by as+1ξ

s+1+ . . .+ anξ
n when viewed as a form in D,

which amounts to as+1 = . . . = an = 0. �

4. Further invariants

As before, V is a real vector space of dimension n. The following lemma may
be thought of as a converse of Lemma 3.6.
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Lemma 4.1. Let µ ∈ [V ∗]∧p be a nonzero exterior p-form of rank r in V,
with k = n− r = dimZ and s = n−dimD ≤ r for the kernel Z and divisibility
space D of µ, cf. (3.2). This has four consequences.

(a) s 6= p− 1 and s ≤ p, with equality if and only if µ is decomposable.
(b) For any basis ξ1, . . . , ξn of V ∗ such that ξ1, . . . , ξs is a basis of D′, the

polar space of D, one has µ = ξ1∧ . . . ∧ ξs∧ ζ, where the indivisible
exterior (p−s)-form ζ is a linear combination of (p−s)-factor exterior
products of 1-forms from the set {ξs+1, . . . , ξn}.

(c) If µ = ξ1∧ . . .∧ ξs∧ ζ for some basis ξ1, . . . , ξs of D′ and some exterior
(p− s)-form ζ, then the restriction of any such ζ to D is, uniquely, up
to a nonzero scalar factor, determined by µ.

(d) The above restriction of ζ to D is indivisible in D.

Proof. Given a basis ξ1, . . . , ξn as in (b), µ is a nonzero-coefficients linear
combination of several exterior products ξi1 ∧ . . . ∧ ξiq with i1 < . . . < iq. The

equalities ξ i∧ µ = 0 for i = 1, . . . , s amount to {1, . . . , s} ⊆ {i1, . . . , iq} for each

ξi1 ∧ . . . ∧ ξiq present in the combination, leading to the required decomposition
µ = ξ1∧ . . . ∧ ξs∧ ζ, where ζ arises by “canceling” the factor ξ1∧ . . . ∧ ξs in each
(nonzero) term of our expansion of µ, so that ζ is “built” from ξs+1, . . . , ξn. Any
1-form ξ, ∧-dividing ζ, also divides µ, and so ξ = a1ξ

1 + . . . + asξ
s for some

a1, . . . , as. Since ξ1, . . . , ξs are not present in ζ, writing ξ ∧ ζ = 0 we see that
a1 = · · · = as = 0, and (b) follows. So does (a): if our ζ were a 1-form, obviously
∧-dividing µ, it would have to be a linear combination of ξ1, . . . , ξs rather than
being built from ξs+1, . . . , ξn.

Next, let µ = ξ1∧ . . . ∧ ξs∧ ζ = ξ1∧ . . . ∧ ξs∧ ζ ′, as in (c). Lemma 3.1 for
η = ζ − ζ ′, combined with uniqueness of ξ1∧ . . . ∧ ξs up to a factor, yields (c).

For (d), choose ζ as in (b). The restrictions of ξs+1, . . . , ξn to D form a basis
of D∗. Any linear combination of these restrictions, ∧-dividing ζ, thus ∧-divides
µ, which makes it also a linear combination of ξ1, . . . , ξs, and hence zero. �

We will refer to the restriction to D of the exterior (p − s)-form ζ in part
(c) of Lemma 4.1 as an indivisible factor of the exterior p-form µ in V, and to
θ = ξ1∧ . . . ∧ ξs in (c) as a volume factor of µ. Since (n− s)− (p− s) = n− p,
(4.1) an indivisible factor of µ has the same codegree in D as µ does in V.

Also, ξ1, . . . , ξs descend to a basis of V/D, and so

(4.2) θ = ξ1∧ . . . ∧ ξs descends to a volume form in V/D.

When s = p (which is the decomposable case in Lemma 4.1(a)) we can obviously
make ζ unique, by setting ζ = 1.

Remark 4.2. If n = 6 and ξ1, . . . , ξ6 is a basis of V ∗, consider the equality

(4.3)
ξ1∧ ξ2∧ ξ3 + ξ3∧ ξ4∧ ξ5 + ξ5∧ ξ6∧ ξ1

= ξ̂1∧ ξ̂2∧ ξ̂3 + ξ̂3∧ ξ̂4∧ ξ̂5 + ξ̂5∧ ξ̂6∧ ξ̂1

for some ξ̂1, . . . , ξ̂6 ∈ V ∗ (which must then form a basis since, according to Re-
mark 3.3, the 3-form on the left-hand side has rank six, while linear dependence

of ξ̂1, . . . , ξ̂6 would make the rank of the right-hand side less than six, due to the

original definition of rank at the beginning of this section). In such ξ̂1, . . . , ξ̂6,

(a) ξ̂1, ξ̂3, ξ̂5 can be any triple with Span(ξ̂1, ξ̂3, ξ̂5) = Span(ξ1, ξ3, ξ5), or
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(b) ξ̂2 may be any nonzero 1-form in Span(ξ2, ξ4, ξ6).

In fact, we get (a) by substituting for ξ1, ξ3, ξ5 in (4.3) arbitrary linearly inde-

pendent linear combinations of ξ̂1, ξ̂3, ξ̂5 and gathering terms which have the form

ξ̂j∧ . . . ∧ ξ̂k for (j, k) equal to (1, 3), (3, 5) and (5, 1). To obtain (b), note that

the above process replaces ξ2 with ξ̂2 = c5ξ
2 + c1ξ

4 + c3ξ
6, where (c1, c3, c5) ∈ IR3

is the vector product of the first two rows of the 3 × 3 matrix B satisfying the

matrix equality [ξ1 ξ3 ξ5] = [ ξ̂1 ξ̂3 ξ̂5]B. Any prescribed nonzero vector product
is realized in this way by some nonsingular 3× 3 matrix.

Lemma 4.3. Given an exterior 3-form µ in a six-dimensional real vector space
V and a basis ξ1, . . . , ξ6 of V ∗, let H ′ be the set of all 1-forms ξ ∈ V ∗ such that
the 4-form ξ ∧ µ is decomposable.

(i) If µ = ξ1∧ ξ2∧ ξ3+ ξ3∧ ξ4∧ ξ5+ ξ5∧ ξ6∧ ξ1, H ′ equals the vector subspace
of V ∗ spanned by ξ1, ξ3, ξ5.

(ii) When µ = ξ1∧ ξ2∧ ξ3 + ξ4∧ ξ5∧ ξ6, our H ′ is the set-theoretical union
of two vector subspaces of V ∗, the spans of ξ1, ξ2, ξ3 and ξ4, ξ5, ξ6.

Proof. In (i), or (ii), ξ ∧ µ is decomposable, for a 1-form ξ = aiξ
i, if and

only if (a2, a4, a6) = (0, 0, 0) or, respectively, one of (a1, a2, a3), (a4, a5, a6) equals
(0, 0, 0). Namely, the ‘if’ part is easily verified in both cases.

For the converse, in (i), let (a2, a4, a6) 6= (0, 0, 0). Remark 4.2(b) allows us to
assume that ξ = ξ2 + a1ξ

1 + a3ξ
3 + a5ξ

5, and so

ξ ∧ µ = ξ2∧ ξ5∧ (ξ3∧ ξ4 + ξ6∧ ξ1) + (a1ξ
4 + a3ξ

6 + a5ξ
2) ∧ ξ1∧ ξ3∧ ξ5.

In terms of the basis e1, . . . , e6 of V dual to our basis ξ1, . . . , ξ6 of V ∗, if we now
set ηijk = [ξ ∧ µ]( · , ei, ej , ek), (3.5) will give η234 = ξ5, η245 = ξ3 and η256 = ξ1,

as well as η354 = ξ2 + a1ξ
1 and η253 = ξ4 + a5ξ

1. Thus, by (3.6), rank [ξ ∧ µ] ≥ 5
and ξ ∧ µ is not decomposable: if it were, it would have rank four (Remark 3.3).

In (ii), let ξ̂1 = a1ξ
1 + a2ξ

2 + a3ξ
3 and ξ̂4 = a4ξ

4 + a5ξ
5 + a6ξ

6 be both

nonzero, and choose ξ̂ i for i ∈ {2, 3, 5, 6} with ξ1∧ ξ2∧ ξ3 = ξ̂1∧ ξ̂2∧ ξ̂3 and

ξ4∧ ξ5∧ ξ6 = ξ̂4∧ ξ̂5∧ ξ̂6. Then ξ ∧ µ = (ξ̂1+ ξ̂4) ∧ µ = ξ̂1∧ ξ̂4∧ (ξ̂5∧ ξ̂6− ξ̂2∧ ξ̂3)
is not decomposable as a consequence of Remark 3.5. �

5. The Hodge star duality

Again, V denotes a real vector space of dimension n.
We use the multiplicative notation µβ = βµ for the natural bilinear pairing

which associates with µ ∈ [V ∗]∧p and β ∈ V ∧` the result of contractions of µ
against β involving the maximum possible number of initial indices. Thus, µβ is
a (p − `)-form if p ≥ `, an (` − p)-vector when ` ≥ p, and hence a scalar in the
case ` = p, and, when β = v1∧ . . .∧ v` and p ≥ ` (or, µ = ξ1∧ . . .∧ ξp and ` ≥ p),
µβ = µ(v1, . . . , v`, · , . . . , · ) or, respectively, µβ = βµ = β(ξ1, . . . , ξp, · , . . . , · ).
Note that µv is the interior product ıvµ = µ(v, · , . . . , · ) for p ≥ 1 and v ∈ V.

For an `-vector β, a p-form µ and a p′-form µ′ one has the associative law

(5.1) [βµ]µ′ = β[µ ∧ µ′] if p+ p′ ≤ `.

which are obvious due to (2.1) under the assumption that

(5.2) the bases v1, . . . , vn, of V and ξ1, . . . , ξn of V ∗ are each other’s duals,
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and β = v1∧ . . . ∧ v`, while µ = ξ1∧ . . . ∧ ξp and µ′ = ξp+1∧ . . . ∧ ξp+p′
. By skew-

symmetry, (5.1) thus follows for β, µ, µ′ that are all decomposable into factors from
the bases (5.2), and the general case is immediate from trilinearity.

We now fix a volume n-form ω in V and the corresponding reciprocal n-vector
α, with αω = 1. By (2.1), in the case (5.2), if α = v1∧. . .∧vn, then ω = ξ1∧. . .∧ξn.
The Hodge star isomorphisms µ 7→ ∗µ and β 7→ ∗β of [V ∗]∧p onto V ∧(n−p), and
vice versa, depending on ω, are then given by ∗µ = αµ and ∗β = ωβ. By (5.1),

∗[ξ1∧ . . . ∧ ξp] = [v1 ∧ . . . ∧ vn][ξ1∧ . . . ∧ ξp] = vp+1 ∧ . . . ∧ vn
with (5.2): both sides agree on any (n−p)-tuple ξ ip+1∧. . .∧ξ in with ip+1 < . . . < in
(as they equal 1 for (ip+1, . . . , in) = (p + 1, . . . , n) and 0 otherwise). Evenly

permuting the ξ i and, simultaneously, the vj , we now get, in the case (5.2),

(5.3) ∗[ξi1∧ . . . ∧ ξip ] = vip+1
∧ . . . ∧ vin , ∗[vi1 ∧ . . . ∧ vi` ] = ξi`+1∧ . . . ∧ ξin

whenever i1, . . . , in is an even permutation of 1, . . . , n, the second equality imme-
diate from the first when one switches the roles of V and V ∗. Hence

(5.4)
∗ : V ∧(n−p)→ [V ∗]∧p equals (−1)(n−p)p

times the inverse of ∗ : [V ∗]∧p→ V ∧(n−p).

With the volume n-form ω still fixed, let β = ∗µ. Then

(5.5)
the image of β is the divisibility space of µ, and
the divisibility space of β equals the kernel of µ,

the two spaces associated with an `-vector β being defined in the obvious way:
{βµ′ : µ′ ∈ [V ∗]∧(`−1)} and {v ∈ V : v ∧ β = 0}. In fact, obviously,

(5.6) the image of β is polar to its kernel {ξ ∈ V ∗ : β(ξ, · , . . . , · ) = 0}.
Now (5.1) for α rather than β and p′ = 1 yields the first line of (5.5) by showing
that the two spaces in question have the same polar space, and the first line then
clearly follows if one switches V with V ∗.

If a 2-form σ in V is nondegenerate (Kerσ = {0}), and so n = 2m is even,

(5.7)
we define the dual of σ to be the (n− 2) form µ = ωβ for the vol
ume form ω = (m!)−1σ∧m, where β is the bivector reciprocal to σ.

Thus, under the assumption (3.4),

(5.8)
the dual of σ = σ1 + . . .+ σm with σi = ξ2i−1 ∧ ξ2i equals
µ = µ1 + . . .+ µm for µi = −σ1 ∧ . . . ∧ σi−1∧ σi+1∧ . . . ∧ σm.

In fact, the bivector reciprocal to σ is β = −e1 ∧ e2 − . . . − en−1 ∧ en, so that

ωβ = µ for ω = (m!)−1σ∧m = ξ1∧ . . . ∧ ξn, as ω[e2i−1 ∧ ei] = −µi. By (5.8),

(5.9) the dual of σ equals −1 if n = 2 and −σ when n = 4.

Remark 5.1. Let µ be a nonzero exterior (n − 2)-form in an n-dimensional
real vector space V. For the kernel Z and divisibility space D of µ, (3.1) and
(3.2-a) give k = dimZ ∈ {0, 2}, whereas q = dimD is even and 2 ≤ q ≤ n as a
consequence of (5.5) and Lemma 4.1(a) for p = n− 2 and s = n− q.

Lemma 5.2. Any (n − 2)-form in V, with n = 2m, dual to a nondegenerate
2-form, is indivisible, as in (3.3). Conversely, any indivisible (n − 2)-form µ is
equal or opposite to the dual of a nondegenerate 2-form σ, and µ determines such
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σ uniquely up to a sign. For even m, the phrases ‘or opposite to’ and ‘up to a sign’
may be deleted. Furthermore, ±σ has an explicit expression in terms of µ.

Proof. With the index ranges i = 1, . . . ,m and k = 1, . . . , n = 2m, let µ be
dual to σ. For ξ = ak ξ

k ∈ V ∗ and θk = ξ1∧ . . . ∧ ξk−1∧ ξk+1∧ . . . ∧ ξn, where
we use (5.8), ξ ∧ µ equals the combination of θ2i and θ2i−1 with the coefficients

a2i−1 and a2i. Linear independence of all θk now gives ξ = 0 whenever ξ ∧µ = 0,
proving our first claim. Also, µ uniquely determines the reciprocal β of σ, and
hence σ itself, up to a nonzero scalar factor: if µ = ωβ = ∗β for any volume form
ω, (5.4) with p = 2 gives β = ∗µ.

Conversely, let µ ∈ [V ∗]∧(n−2) be indivisible. With ω and α as in the lines
preceding (5.2), αµ is – by (5.5) – a nondegenerate bivector, and so it has a
reciprocal nondegenerate 2-form λ. Hence (m!)−1λ∧m equals κω for some κ ∈ IR.

Replacing ω with ω̃ = cω leads to α̃ and λ̃ equal, respectively, to c−1α and cλ,

so that (m!)−1λ̃∧m = κ̃ ω̃, where κ̃ = cm−1κ. Some choice of c, unique up to a
sign, now gives |κ̃| = 1 and, if m is even, a unique c yields κ̃ = 1. The 2-form

σ = λ̃ = cλ, for this c, has the reciprocal bivector β = c−1αµ and (m!)−1σ∧m =
±ω̃ = ±cω. Thus, by (5.4), ±ω̃β = ±ωαµ = ±µ with the required sign ±. �

By Lemma 5.2, indivisible (n− 2)-forms exist only in even dimensions n.
We use the term duality for the natural bijective correspondence, established

in Lemma 5.2, for even dimensions n, between nondegenerate exterior 2-forms σ
and indivisible (n− 2)-forms µ, with both σ, µ only defined up to a sign.

6. Exterior 3-forms in dimension six

The algebraic classification of exterior 3-forms µ in a six-dimensional real
vector space V, known since Reichel’s 1907 thesis [16], is copied here, with minor
changes, from Bryant’s paper [4, p. 599]: the possible (nonzero) types appear as

(6.1)

a) µ = ξ1∧ ξ2∧ ξ3 + ξ3∧ ξ4∧ ξ5 + ξ5∧ ξ6∧ ξ1 + ξ2∧ ξ4∧ ξ6,
b) µ = ξ1∧ ξ2∧ ξ3 + ξ3∧ ξ4∧ ξ5 + ξ5∧ ξ6∧ ξ1,
c) µ = ξ1∧ ξ2∧ ξ3 + ξ4∧ ξ5∧ ξ6,
d) µ = ξ1∧ ξ2∧ ξ3 + ξ4∧ ξ5∧ ξ1,
e) µ = ξ1∧ ξ2∧ ξ3

in some basis ξ1, . . . , ξ6 of V ∗, dual to a basis e1, . . . , e6 of V. Following Hitchin
[11, pp. 551-552], we call (6.1-a) and (6.1-c) the complex/real stable cases.

The five types (6.1) are illustrated by the diagrams on p. 11.
Each of the first four types (6.1) has an associated pair of invariants:

(6.2) a) ± J and µ(J · , · , · ), b) H and Θ, c) H± and η±, d) D and IRζ ,

reflecting their stabilizer groups; see the exposition by Bryant [4, p. 602, Remark
31]. For the reader’s convenience, our presentation of (6.2) is self-contained. The
invariant character of the objects in question is, in each case, due to their being
uniquely determined by µ.

In the complex stable case (6.1-a), as pointed out by Hitchin [11, p. 552],

(6.3) µ equals the real part of ω = (ξ4 + iξ1) ∧ (ξ6 + iξ3) ∧ (ξ2 + iξ5).

Our basis ξ1, . . . , ξ6 of V ∗ is dual to a basis e1, . . . , e6 of V. Setting

(6.4) Je4 = e1 , Je6 = e3 , Je2 = e5 ,
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we define a complex-structure tensor J : V → V, making the factor complex 1-forms
in (6.3) complex-linear, so that ∧ in (6.3) is also the complex exterior product,

(6.5)
ω in (6.3) is complex trilinear, and so µ(J · , J · , · ) = −µ,
which in turn implies total skew symmetry of µ(J · , · , · ).

As shown by Bryant [4, p. 596],

(6.6) ±J are the only complex structure tensors with µ(J · , J · , · ) = −µ.

We now justify (6.6). Let µk = µ(ek, · , · ) and ξjk = ξj∧ ξk. From (6.1-a),

(6.7) µ1 = ξ23 + ξ56, µ2 = ξ31 + ξ46, µ4 = ξ53 + ξ62, µ5 = ξ34 + ξ61.

Assuming just that µ(J · , J · , · ) = −µ, we get µ( · , J · , · ) = µ(J · , · , · ). Thus,

(6.8) µ(e2, Je1, · ) = µ(Je2, e1, · ), µ(e4, Je2, · ) = µ(Je4, e2, · ),

and – for the same reason – as µ is skew-symmetric, µ(Jv, v, · ) = 0 for any vector
field v. Applied to the vector fields e1, . . . , e6, this implies that each Jek is a
section of Kerµk, and so, by (6.7), (3.6) and Remark 3.3, the spans of {e1, e4}
and {e2, e5} are J-invariant. Writing Je1 = ae1 + ce4, Je4 = c̃e1 + ãe4, and
Je2 = a22e2 + a25e5, then using (6.7) and (6.8), we obtain

−aξ3 + cξ6 = −a22ξ3− a25ξ6, −a22ξ6 + a25ξ
3 = c̃ξ3− ãξ6.

Thus, (ã, c̃) = (a,−c) and the matrix of J in Span(e1, e4) has the rows (a,−c),
(c, a), making it conjugate to the multiplication by a + ci in C, so that (a, c) =
(0,∓1) and Je4 = ±e1. As (6.1-a) is invariant under simultaneous cyclic permuta-
tions of (1, 3, 5) and (2, 4, 6), Je6 = ±e3 and Je2 = ±e5. The three ± signs must
all be the same, since the last displayed formula, with (a, c, ã, c̃) = (0,∓1, 0,±1)
and (therefore) a22 = 0, gives a25 = −c = ±1. The third sign falls in line due to
the aforementioned cyclic-permutation invariance, implying (6.6).

Next, (6.1-b) implies that, by Lemma 4.3(i), the subspace H ′ = Span(ξ1, ξ3, ξ5)
of V ∗ equals {ξ ∈ V ∗ : ξ ∧ µ is decomposable}. With e1, . . . , e6 dual to ξ1, . . . , ξ6

as before, we define H = Span(e2, e4, e6) ⊆ V to be the polar space of H ′. Setting
Θv = µ(v, · , · ) we now obtain a linear isomorphism Θ : H → [H ′ ]∧2. In fact,
e2, e4, e6 form a basis of H, while, by (6.1-b),

(6.9) Θe2 = ξ3∧ ξ1, Θe4 = ξ5∧ ξ3 Θe6 = ξ1∧ ξ5.

Suppose next that we have (6.1-c). By Lemma 4.3(ii), the set of all 1-forms ξ
such that ξ ∧ µ is decomposable is the union of the subspaces Span(ξ1, ξ2, ξ3)
and Span(ξ4, ξ5, ξ6) of V ∗. The resulting unordered pair {H+, H−} of their polar
spaces in V is therefore uniquely determined by µ and, consequently, so is the
unordered pair {η+, η−} of the 3-forms η+ = ξ1∧ ξ2∧ ξ3 and η− = ξ4∧ ξ5∧ ξ6.
Note that H+ = Span(e4, e5, e6) and H− = Span(e1, e2, e3).

In the case (6.1-d), µ is not decomposable (Remark 3.5). The vector subspace
D′ of V ∗, polar to the divisibility space D of µ, is thus the line spanned by ξ1, as
Lemma 4.1(a), with p = 3 and s ≥ 1, gives s = 1. By (6.1-d), Lemma 4.1(c) now
applies to s = 1 and ζ = ξ2∧ ξ3+ ξ4∧ ξ5, turning ζ ∈ [D∗]∧2 into an indivisible
factor of µ, defined (up to multiplications by scalars) as in the lines preceding (4.2).
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Figure 1. The five types (6.1) of 3-forms in dimension six. Each
maximal solid line segment corresponds to one summand in (6.1),
and so does the small inscribed 5 triangle in (a). They are all
oriented as indicated by the arrows.
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6

Figure 2. The octahedron version of (6.1-a). Four mutually non-
adjacent faces correspond to µ = Re ω and the remaining four to
Im ω, where seven faces (all but one of the latter, namely, 531)
represent the same orientation of the boundary surface. The four
µ-faces are also characterized by being coherently oriented by the
arrow-marked orientations of their sides.

7. The simplest invariants of differential forms

Given a manifold M, we say that vector subbundles D of TM and E of T ∗M
are polar to each other when each is the other’s “orthogonal complement” relative
to the obvious pairing between tangent vectors and 1-forms.
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For an algebraically constant differential p-form µ on an n-dimensional man-
ifold M it obviously follows that, with Dx denoting the divisibility space of µx,

(7.1)
a) the function x 7→ rank µx is constant on M,
b) Dx has the same dimension q at all x ∈M.

The case (7.1-a), or (7.1-b), gives rise to the natural distribution Z, or D, on
M, obtained by declaring Zx, or Dx, at any x ∈ M, to be the subspace Z or,
respectively, D of V = TxM associated with µ = µx as in Sect. 3. We call Z and
D the kernel and the divisibility distribution of µ. Thus, D is polar to the sub-
bundle D′ of T ∗M having as sections the 1-forms ξ with ξ∧µ = 0. Smoothness of
Z and D, under the respective assumptions (7.1-a) or (7.1-b), follows since Z, or
D′, is the the kernel of a constant-rank vector-bundle morphism: the former, from
TM to [T ∗M ]∧(p−1), sending v to µ(v, · , . . . , · ), the latter defined analogously,
just with TM and T ∗M switched; see (5.5) and (5.6). By (3.2-b),

(7.2) if (7.1 a) and (7.1 b) both hold, Z ⊆ D unless µ = 0.

When dµ = 0, the distribution Z is easily seen to be integrable (Lemma 7.4
below). However, D need not be: see [8, Sect. 12].

By a volume form on a manifold we mean a nowhere-zero top degree differential
form, which amounts to a function without zeros in dimension 0.

For a nonzero differential p-form µ satisfying (7.1-b) on an n-dimensional
manifold M and its divisibility distribution D, let s = n− q in Lemma 4.1(a), so
that s ≤ p and, by Remark 5.1,

(7.3) D has some even fibre dimension q ∈ {2, . . . , n} if p = n − 2.

Whether or not p = n − 2, assuming integrability of D, we now replace M with
a sufficiently small neighborhood of any given point so as to make D the vertical
distribution of a fibration π : M → Σ, which gives rise to

(7.4)
the π pullback ξ1∧ . . . ∧ ξs of a volume s form on Σ, for the
pull backs ξ1, . . . , ξs under π of some 1 forms trivializing T ∗Σ,
and then µ = ξ1∧ . . . ∧ ξs∧ ζ for some (p− s) form ζ on M,

the last line due to Lemma 4.1(b) applied to µ and ξ1, . . . , ξs at any point x ∈M,
with D = Dx and V = TxM. By Lemma 4.1(c), the restriction of ζ to each leaf
L of D is uniquely determined by our µ and ξ1, . . . , ξs. Replacing ξ1, . . . , ξs by
another such s-tuple of π-pullbacks causes ξ1∧ . . . ∧ ξs to be replaced with its
product by a function constant along the leaves of D. Thus, the restriction of ζ
to each leaf L is unique up to multiplications by nonzero constants, and

(7.5) we call this (p− s) form ζ the indivisible factor of µ on the leaf L.

Lemma 7.1. For a nonzero closed differential p-form µ on an n-dimensional
manifold M, satisfying the condition (7.1-b) and having the divisibility distribution
D of codimension s = n−q, integrability of D implies closedness of the indivisible
factor ζ of µ on every leaf of D.

Proof. Since dimΣ = s, a volume s-form on Σ chosen as in (7.4) is closed,
leading to closedness of ξ1∧ . . . ∧ ξs in (7.4). With µ = ξ1∧ . . . ∧ ξs∧ ζ as in the
lines following (7.4), ξ1∧ . . . ∧ ξs∧ dζ = dµ = 0. Thus, by Lemma 3.1, dζ lies in
the ideal generated by ξ1, . . . , ξs, that is, dζ = 0 on each leaf of D. �
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Whenever a nonzero differential (n − 2)-form µ with (7.1-b) on a manifold
M dimension n is indivisible in the sense – cf. (3.3) – of having the divisibility
distribution D equal to TM, Lemma 5.2 gives rise to a further invariant:

(7.6) the 2 form dual to µ, locally unique up to a sign.

More generally, for a differential (n− 2)-form µ on an n-dimensional manifold M
satisfying (7.1-b) and having an integrable divisibility distribution D, we can, by
(4.1), apply the last paragraph to any leaf L of D, rather than M, and – instead
of µ itself – to an indivisible factor ζ of µ on L mentioned in (7.5), obtaining

(7.7)
a nondegenerate 2 form σ on L, unique up to multiplications
by nonzero constants, which is dual to an indivisible factor of µ.

Lemma 7.2. If a nonzero differential (n − 2)-form µ on an n-dimension-
al manifold M satisfies (7.1-b) and its divisibility distribution D, having the fibre
dimension q, is integrable, the bivectors on the leaves of D reciprocal to the nonde-
generate 2-forms σ mentioned in (7.7) may be viewed, via an obvious push-forward,
as forming a bivector β defined locally in M, and determined by µ uniquely up to
multiplications by functions constant along D. Then

(a) locally in M there exist 1-forms ξs+1, . . . , ξn with σ = ξs+1∧ ξs+2 +
. . .+ ξn−1∧ ξn along each leaf, q = n− s being even due to (7.3),

(b) for any 1-forms ξ1, . . . , ξs chosen as in (7.4) and any ξs+1, . . . , ξn as
above, ξ1, . . . , ξn is a local trivialization of T ∗M such that µ = ωβ for
the volume form ω = ξ1∧ . . . ∧ ξn.

Proof. Being nondegenerate, σ has the standard algebraic type [5, p. 13],
and so ξs+1, . . . , ξn ∈ T ∗xM required in (a) exist at each point x, and may be
augmented with s additional 1-forms in TxM to constitute a basis of T ∗xM. Now
(a) follows: ξs+1, . . . , ξn are just final portions of local trivializations of T ∗M dual
to local trivializations of TM that are the smooth local sections of a G-principal
bundle over M, for a suitable matrix group G ⊆ GL(n, IR). See, e.g., [8, Sect. 6].

For (b), note that the definition (5.7) of duality gives ζ = θβ on each leaf
L of D, with M,m,µ and ω replaced by L, q/2, ζ and some suitable θ. By
(7.4), µ = ξ1∧ . . . ∧ ξs∧ [βθ] and hence, as q is even, (5.1) yields ωβ = βω =
β[θ ∧ ξ1∧ . . . ∧ ξs] = [βθ] ∧ ξ1∧ . . . ∧ ξs = µ. �

The following obvious consequence of Lemma 3.6 will be used in Sect. 16.

Remark 7.3. Given manifolds Π and Σ, a volume form θ on Σ, and an in-
divisible closed differential r-form ζ on Π satisfying the condition (7.1-b), let the
symbols θ and ζ also stand for the corresponding pullback forms on the product
manifold M = Π×Σ. Then µ = θ∧ζ is a closed differential p-form on M with the
property (7.1-b), for p = r + s and s = dimΣ, while the divisibility distribution
D of µ is the factor distribution on M tangent to the Π factor manifold, and the
restriction of ζ to D is the indivisible factor of µ.

Lemma 7.4. For a closed differential p-form µ with (7.1-a) on an n-mani-
fold M, the kernel Z is integrable, and µ is projectable along Z, in the sense of
Sect. 2, onto a closed p-form on a local leaf space Σ.

In fact, Z is integrable by (2.2). In local coordinates such that some of the
coordinate fields ∂i span Z, (2.2) applied to (p+1)-tuples of ∂i implies constancy
along Z of the components of µ and closedness of the projected p-form.
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Remark 7.5. The Darboux theorem with parameters. Let ζ be a constant-
rank section of [D∗]∧2 for an integrable distribution D of fibre dimension q on a
manifold M. If the restriction of ζ to each leaf of D is closed, then, locally in M,
and there exist functions x1, . . . , xq, constituting local coordinates on each leaf of
D, and such that ζ = dx1∧ dx2 + . . . + dxr−1∧ dxr, where r is the (even) rank
of ζ. Namely, when r = q this is [1, Lemma 3.10]. The general case follows: the
vector subbundle Ker ζ of D is integrable (Lemma 7.4), and we may replace M
with a local leaf space of Ker ζ.

Remark 7.6. It is well known – see, e.g., [15, Example 1.6] or [8, Sect. 11] –
that locally, in any dimension n, any given volume form equals dx1∧ . . . ∧ dxn
for suitable coordinates x1, . . . , xn. This remains true in the holomorphic category,
with the same argument just cited from [15] or [8].

Remark 7.7. Let a decomposable differential p-form µ on a manifold be
algebraically constant (that is, either identically zero, or nonzero everywhere). Then
closedness of µ is equivalent to its local constancy, as well as to its parallelism.
This is obvious from Remark 3.4, Lemma 7.4, and Remark 7.6 for n = p.

Remark 7.8. The condition (7.1-b) for a differential (n−2)-form µ in dimen-
sion n is equivalent to algebraic constancy of µ. Namely, in the lines following
(7.4), µ = ξ1∧ . . .∧ ξs∧ ζ, where s is the codimension of the divisibility distribution
D and, by (4.1), the indivisible factor ζ restricted to D has codegree two. Being
uniquely associated, via (7.7), with its dual 2-form σ, our ζ is thus algebraically
constant due to nondegeneracy of σ.

8. Differential 3-forms in dimension six

For a nonzero algebraically constant differential 3-form on a 6-dimensional
manifold M, each of the five cases of (6.1) is realized, locally, by

(8.1)
smooth 1 forms ξ1, . . . , ξ6 trivializing T ∗M,
dual to a local trivialization e1, . . . , e6 of TM.

In fact, such e1, . . . , e6 are well known [8, Sect. 6] to be precisely the smooth local
sections of a G-principal bundle over M, for some matrix group G ⊆ GL(n, IR).
Consequently, the invariants (6.2) give rise, locally, to analogous smooth objects
in M, namely, an almost-complex structure J , the differential 3-forms η+, η− and
µ(J · , · , · ), the distributions H and H±,

(8.2) the vector bundle isomorphism Θ : H → [H′]∧2,
the divisibility distribution D of µ, and finally – if, in addition, D is assumed to
be integrable – the indivisible-factor 2-form ζ of µ defined, as in (7.5), along each
leaf of D, and only unique on the leaf up to multiplications by nonzero constants.
Note that, in Sect. 6,

(8.3) H is spanned by e2, e4, e6, and H+, H− by e4, e5, e6 and e1, e2, e3 .

9. Local constancy and parallelism of differential forms

The next result is immediate from Theorems 9.2 and 9.3, proved in Sect. 10–11.

Theorem 9.1. The local constancy of an algebraically constant differential
(n− 2)-form on an n-dimensional manifold is equivalent to its being parallel.

This is also the case for 3-forms in dimension six.
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The analog of Theorem 9.1 is known [8, Prop. D] to hold for differential p-forms
in dimension n, where p ∈ {0, 1, 2, n− 1, n}. Thus, in dimensions n ≤ 6, a differ-
ential form of any degree is locally constant if and only if it is parallel. However,
parallel forms that are not locally constant exist in infinitely many dimensions,
starting from 7 and 8. See Theorem 14.1.

The objects J,H,H±,D, ζ in next theorem were described in Sect. 8.

Theorem 9.2. The following three properties of a nonzero algebraically con-
stant differential 3-form µ on a 6-dimensional manifold are mutually equivalent.

(i) Local constancy.
(ii) Being parallel.
(iii) Closedness of µ, coupled with

(a) integrability of the almost-complex structure J, in case (6.1-a),
(b) integrability of the distribution H, when (6.1-b) holds,
(c) integrability of both H± under the assumption (6.1-c),
(d) integrability of the divisibility distribution D, for (6.1-d),
(e) no further condition in case (6.1-e),

The notions of indivisible factor and duality used below were defined in Sect. 7.

Theorem 9.3. Given a nonzero algebraically constant differential p-form µ
on an n-dimensional manifold M, with the divisibility distribution D and the
indivisible factor ζ, the following two assumptions can be made about µ.

(a) µ is locally constant.
(b) µ is parallel.

The condition (b) always follows from (a), while (b) implies that

(i) µ is closed and the distribution D is integrable.

If p = n− 2, (b) has a further consequence, namely,

(ii) along each leaf of D, the 2-form σ dual to ζ is closed.

Conversely, for p = n− 2, (i) and (ii) together imply (a), and hence (b).

10. Proof of Theorem 9.2

That (i) =⇒ (ii) =⇒ (iii) is obvious from (1.2) and (1.4), since J in (iii-a), due
to its naturality, is ∇-parallel when a torsion-free connection ∇ has ∇µ = 0. This
last claim easily follows from the Newlander-Nirenberg theorem, as pointed out by
various authors [6, Sect. 2.3], [3, Definition 2.2].

We now proceed to show that (iii) implies (i) by establishing, for suitable local
coordinates x1, . . . , xn and ξ1, . . . , ξ6 mentioned in (8.1),

(10.1) each of the five equalities (6.1) with every ξ i replaced by dxi.

First, in the case (6.1-a), ω given by (6.3) is, by (6.5), a complex volume (3, 0) form
on the complex manifold M, so that ω must be holomorphic, due to closedness
of its real part µ and Remark 2.6. The final clause of Remark 7.6 gives, locally,
ω = dz1∧dz2∧dz3 in some holomorphic coordinates z1, z2, z3. The real coordinates
x1, . . . , x6 with (z1, z2, z3) = (x4+ ix1, x6+ ix3, x2+ ix5) now turn (6.3) into (10.1).

Next, assume (iii) and (6.1-b). The equality in (6.1-b) still holds, according to

Remark 4.2(a), with suitable ξ̂2, ξ̂4, ξ̂6 instead of ξ2, ξ4, ξ6, if one replaces ξ1, ξ3, ξ5

with any local trivialization ξ̂1, ξ̂3, ξ̂5 of H′, the vector subbundle of T ∗M polar to

the distribution H (and ξ̂1, . . . , ξ̂6 will then still, locally, trivialize T ∗M). Due to
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integrability of H, we are therefore free to choose the triple (ξ1, ξ3, ξ5) in (6.1-b)
equal to (dx1, dx3, dx5), with some functions x1, x3, x5 constant along the leaves of
H. For e1, . . . , e6 dual to ξ1, . . . , ξ6 as in (8.1), e2, e4, e6 form a local trivialization
of H. Let the index ranges now be i, j = 2, 4, 6 and k, l = 1, 3, 5. In (6.9),
Θei = µ(ei, · , · ) must thus be equal to the corresponding ξk∧ ξl = dxk∧ dxl, and
consequently annihilate H. Closedness of all ξk = dxk implies (see Remark 2.5)
that all Lie brackets of e1, . . . , e6 are tangent to H. From the last two sentences
and (2.2) with dµ = 0 we now get

0 = −[dµ](ei, ej , · , · ) = µ([ei, ej ], · , · ) = Θ[ei, ej ], i, j = 2, 4, 6.

Thus, due to the injectivity of Θ in (8.2), e2, e4, e6 commute with one another,
and Lemma 2.2 allows us to augment x1, x3, x5 with three more functions so as
to obtain, locally, a coordinate system x1, y2, x3, y4, x5, y6 for which ei, i = 2, 4, 6,

are the coordinate vector fields ∂i. As [dyj ](ei) = [dyj ](∂i) = δji = ξj(ei), each
ξj− dyj, j = 2, 4, 6, annihilates H, while (ξ1, ξ3, ξ5) = (dx1, dx3, dx5). Therefore,
ξ2 (or ξ4, or ξ6) equals dy2 + φ5dx

5 (or dy4 + φ1dx
1, or dy6 + φ3dx

3) plus a
functional combination of dx1, dx3 (or dx3, dx5 or, respectively, dx1, dx5), with
some functions φ1, φ3, φ5. Substituting the expressions just obtained for ξ2, ξ4, ξ6,
we rewrite (6.1-b) with (ξ1, ξ3, ξ5) = (dx1, dx3, dx5) as

(10.2)
µ = ξ1∧ ξ2∧ ξ3 + ξ3∧ ξ4∧ ξ5 + ξ5∧ ξ6∧ ξ1 = dx1∧ dy2∧ dx3

+ dx3∧ dy4∧ dx5 + dx5∧ dy6∧ dx1 − φdx1∧ dx3∧ dx5,

where φ = φ1 + φ3 + φ5. Since µ is closed, (10.2) gives dφ ∧ dx1∧ dx3∧ dx5 = 0
and, by Lemma 3.1, φ is a function of the variables x1, x3, x5, thus equal – see
Remark 2.4 – to the divergence of some vector field w = (w1, w3, w5), with each wk

depending only on x1, x3, x5. If we now set (x2, x4, x6) = (y2+w5, y4+w1, y6+w3),
(10.2) becomes (10.1) for the case (6.1-b), x1, . . . , x6 being local coordinates as
linear independence of dx1, . . . , dx6 is immediate from the lines following (4.3).

Suppose now that (iii) and (6.1-c) hold. The subbundles H± of TM, being in-
tegrable, are, locally, the factor distributions of a Cartesian-product decomposition
of M, and so, by Lemma 2.3, η± are the pullbacks to M of some volume forms
on the factor manifolds. Remark 7.6 now gives, locally, η+ = dx1∧ dx2∧ dx3 and
η− = dx4∧dx5∧dx6 for some local coordinates x1, x2, x3 and x4, x5, x6 in the factors,
proving (10.1) for (6.1-c).

For (iii-d), Lemma 7.1 and Remark 7.5 yield, locally, ζ = dx2∧ dx3+ dx4∧ dx5
for suitable functions x2, . . . , x6 constituting local coordinates on each leaf of D,
cf. (6.2-d), while ξ1 then becomes the volume 1-form on Σ, appearing in (7.4)
with s = 1. One-dimensionality of Σ now gives, locally, ξ1 = dx1 for some
function x1 with dx1 6= 0, constant along the leaves of D, so that µ = ξ1∧ ζ =
dx1∧ (dx2∧dx3+dx4∧dx5) in the resulting local coordinates x1, . . . , x6, as required.

Finally, assuming (iii) and (6.1-e), we get (10.1) directly from Remark 7.7.
This completes the proof of Theorem 9.2.

11. Proof of Theorem 9.3

By (1.2) and (1.4), (a) =⇒ (b) =⇒ (i). Deriving (ii) from (b) requires a more
subtle argument, the indivisible factor ζ of µ being defined, along each leaf of D,
only uniquely up to multiplications by nonzero constants. To this end, we assume
(b). For torsion-free ∇ with ∇µ = 0, the 1-forms ξ1, . . . , ξs in (7.4) annihilate
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the ∇-parallel distribution D. By Lemma 2.1, ξ i are all ∇-parallel along D, and
hence so is θ = ξ1∧ . . . ∧ ξs. Thus, along each leaf L of D, the restriction of ζ
to L being, due to Lemma 4.1(c) uniquely determined by µ (and our fixed θ), is
parallel relative to the torsion-free connection induced by ∇ on the totally geodesic
submanifold L. The same then follows for the 2-form dual to the restriction of ζ,
as the latter determines the former up to a sign (Lemma 5.2). Now (ii) follows.

To prove the final clause of the theorem, suppose now that a nonzero alge-
braically constant differential (n − 2)-form µ on a manifold M of dimension n
satisfies (i) and (ii). Being nondegenerate, the 2-form σ dual to ζ is, locally, a
symplectic form on each leaf of D. The Darboux theorem with parameters [1,
Lemma 3.10] allows us, locally, to write σ = dxs+1∧ dxs+2 + . . . + dxn−1∧ dxn
for some functions xs+1, . . . , xn with dxs+1∧ . . . ∧ dxn 6= 0, where s is the co-
dimension of D. Any (local) functions x1, . . . , xs such that dx1 ∧ . . . ∧ dxs 6= 0
and the leaves of D are the level sets of (x1, . . . , xs) give rise to local coordinates
x1, . . . , xn. The last n − s of the corresponding coordinate vector fields ∂i in M
serve in the same capacity on leaves of D, as x1, . . . , xs are constant along them,
and so β = −∂s+1 ∧ ∂s+2 − . . .− ∂n−1 ∧ ∂n for the bivector β in Lemma 7.2. On
the other hand, dx1, . . . , dxs may serve as ξ1, . . . , ξs in (7.4), and Lemma 7.2(b)
applied to (ξ1, . . . , ξn) = (dx1, . . . , dxn) gives µ = ωβ for the volume n-form
ω = dx1∧ . . . ∧ dxn. Thus, the components of µ in the coordinates x1, . . . , xn are
constant, as required.

12. Isotropy Lie algebras and connections

In a real vector space V of dimension n, any linear endomorphism A ∈ gl(V )
acts on [V ∗]∧p, for 1 ≤ p ≤ n, as the derivation µ 7→ Aµ, with [Aµ](v1, . . . , vp)

equal to the sum over i = 1, . . . , p of the terms µ(ṽ1, . . . , ṽp), where ṽi = Avi and

ṽj = vj if j 6= i. Clearly, for the obvious action of GL(V ) on [V ∗]∧p,

(12.1) h = {A ∈ gl(V ) : Aµ = 0} is the isotropy Lie algebra of µ.

Of particular interest to us is the case where

(12.2)
In (12.1), all A ∈ h are skew adjoint relative
to some pseudo Euclidean inner product in V.

Given a manifold M, consider the infinite-dimensional affine space C(M) of
all torsion-free connections on M and, for any fixed differential p-form µ on M,

(12.3) the affine mapping C(M) 3 ∇ 7→ ∇µ,
valued in (0, p+ 1) tensor fields, skew-symmetric in the last p arguments.

Lemma 12.1. Let an algebraically constant differential 3-form µ on an n-
dimensional manifold M have an algebraic type that satisfies (12.2). Then the
mapping (12.3) is injective and, even locally, there exists at most one torsion-free
connection ∇ on M with ∇µ = 0.

Proof. Suppose that a (1, 2) tensor field B is the difference between two tor-
sion-free connections on M assigining to µ the same covariant derivative. Thus,
in local coordinates, Bs

ijµskq + Bs
ikµjsq + Bs

iqµjks = 0, that is, if a vector v is

tangent to M at a point x, the (1, 1) tensor Bx(v, · ) equals, by (12.1), the value
at x of some element A of the isotropy Lie algebra h ⊆ gl(TxM) of µx. For a
pseudo-Euclidean inner product g in TxM chosen as in (12.2), gksB

s
ij(x) is thus
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symmetric in i, j and skew-symmetric in j, k, so that it must vanish, proving the
injectivity claim. The remaining assertion is now obvious, with the ‘even locally’
part immediate as M may be replaced by any open submanifold. �

Following Joyce [12, Sect. 2.2–2.3], for a Euclidean vector space V of dimension
n and a basis ξ1, . . . , ξn of V ∗ dual to an orthonormal basis of V , we write ξ ij...k

for ξ i∧ ξj∧ . . . ∧ ξk, and consider, when n = 7, the exterior 3-form

(12.4) µ = ξ123+ ξ145+ ξ167+ ξ246− ξ257− ξ347− ξ356,

while, if n = 8, we use the same symbol for the exterior 4-form

(12.5)
µ = ξ1234+ ξ1256+ ξ1278+ ξ1357− ξ1368− ξ1458− ξ1467
− ξ2358− ξ2367− ξ2457+ ξ2468+ ξ3456+ ξ3478+ ξ5678.

In both cases, the isotropy group of µ in GL(V ), isomorphic to G2 or, respectively,
Spin(7), preserves the inner product [12, Sect. 2.2–2.3]. Thus,

(12.6) both (12.4) and (12.5) have the property (12.2).

13. The Cartan 3-forms of simple Lie algebras

Our convention about the sign of the curvature tensor R of a connection ∇
on a manifold M is such that, for vector fields u, v, w,

(13.1) R(v, w)u = ∇w∇vu − ∇v∇wu + ∇[v,w]u

When ∇ is the Levi-Civita connection of a pseudo-Riemannian metric g on M,
we may treat R as a vector-bundle morphism

(13.2) a) R : [T ∗M ]⊗2→ [T ∗M ]⊗2, b) leaving [T ∗M ]�2 and [T ∗M ]∧2 invariant,

so that it acts on arbitrary (0, 2) tensor fields b by

(13.3) [Rb]ij = Ripjqb
pq,

with index raising and lowering via g, and summation over repeated indices. See
[2, Sect. 1.114, 1.131]. This action not only preserves (skew)symmetry of b, but also
– due to the first Bianchi identity – amounts to the usual formula

(13.4) 2[Rζ]ij = Rijpqζ
pq

if b = ζ happens to be skew-symmetric (a 2-form).
Given a connected Lie group G, with the Lie algebra g of left-invariant vector

fields, we treat the Killing form g, the Cartan 3-form γ, characterized by g(u, v) =
tr [(Adu)Adv] and γ(u, v, w) = g([u, v], w) whenever u, v, w ∈ g, and the Lie
bracket C : g × g → g, as left-invariant tensor fields of types (0, 2), (0, 3) and
(1, 2) on G, which then makes them – see below – also bi-invariant. Setting

(13.5) ∇vw = [v, w]/2 for v, w ∈ g,

we define the standard bi-invariant torsion-free connection ∇ on G. By (13.1), ∇
has the ∇-parallel curvature tensor R with

(13.6) 4R(v, w)u = [[v, w], u] for u, v, w ∈ g.

Bi-invariance of C and ∇ trivially follows from the diffeomorphic invariance of the
Lie bracket, while that of g (and, consequently, γ), as well as the fact that g, γ, C
and R are all ∇-parallel, is due to the Jacobi identity.
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In any local coordinates x1, . . . , xn for G, unrelated to the Lie-group structure,
our tensor fields have the component functions gij , γijk and Ck

ij , with

(13.7) a) gij = Cs
irC

r
js , b) γijk = Cr

ijgrk , c) 4Rijk
q = Cr

ijC
q
rk.

In the case where g is semisimple, which allows us to use g-index raising, g is
clearly a locally symmetric pseudo-Riemannian Einstein metric with the Levi-Ci-
vita connection ∇, while (13.7-a) and (13.7-c) can be rewritten as

(13.8) γipqγ
pqj = −δji , 4Rijkq = Cr

ijγrkq = grsγijrγkqs .

The dimension restriction in the next lemma amount to requiring that g not be
isomorphic to sl(2, IR), sl(2,C), or su(2) = so(3).

Lemma 13.1. For any simple Lie algebra g of real dimension n ≥ 8, the iso-
tropy Lie algebra h ⊆ gl(g), with (12.1), of the Cartan 3-form γ ∈ [g∗]∧3 equals
the image {Adv : v ∈ g} of the Ad representation.

Consequently, (12.2) holds for V = g and µ = γ, and on any connected simple
Lie group G of dimension n ≥ 8 the standard bi-invariant torsion-free connection
∇ given by (13.5) is, even locally, the only torsion-free connection on G that makes
the Cartan 3-form γ parallel.

Proof. Let us fix A ∈ h and identify g with the Lie algebra of left-invariant
vector fields on a connected Lie group G. Then, in local coordinates x1, . . . , xn as
above, A treated as a left-invariant tensor field of type (1, 1) on G satisfies the
relation As

iγsjk + As
jγisk + As

kγijs = 0 which, contracted against γjkp, gives, due

to (13.8), Ai
j = 8Aq

pR
ip
jq. In other words, a∗ = 8Ra for the (0, 2) tensors a, a∗ at

any point x ∈ G defined by aij = As
i gsj and a∗ij = aji. The operator (13.2-a) for

R in (13.6) and M = G commutes, by (13.2-b), with a 7→ a∗, and so

(13.9) 8Ra± = ±a± for a± = (a± a∗)/2.
The spectrum of (13.2-a) for R in (13.6) is completely understood for all simple
Lie groups, via an easy argument in [7] for the restriction R : [g∗]∧2→ [g∗]∧2, valid
in the general semisimple case, and, for the other restriction, R : [g∗]�2→ [g∗]�2,
due to a result of Meyberg [14], also presented in [7, the Appendix].

Namely, the operator T in [7, formula (2.6)] is, by (13.3) and (13.8), equal to
−8R, for our R in (13.2-a) and (13.6), and so, according to [7, Lemma 2.1(c)–(d)],
R : [g∗]∧2→ [g∗]∧2 is diagonalizable with the eigenvalues 0 and −1/8, while its
eigenspace for the eigenvalue −1/8 is {γ(v, · , · ) : v ∈ g}.

On the other hand, under our assumption about the dimension of g, [7, Remark
4.5] implies that 1/8 is not an eigenvalue of R : [g∗]�2 → [g∗]�2. Note that,
according to [7, Lemma 2.1(b)], Ω in [7, Remark 4.5] equals T, and hence our
−8R. Thus, by (13.9), a = a− lies, at each point, in {γ(v, · , · ) : v ∈ g}, which
is the eigenspace just mentioned, that is, A ∈ {Adv : v ∈ g}. As the opposite
inclusion {Adv : v ∈ g} ⊆ h amounts to the aforementioned bi-invariance of γ,
the first part of the lemma follows, while the final clause is then obvious from
Lemma 12.1, since ∇γ = 0 the according to the lines following (13.6). �

14. Parallelism without local constancy

As mentioned in the Introduction, the converse of the first implication in (1.2)
for p-forms in dimension n fails in general, unless p ∈ {0, 1, 2, n − 2, n − 1, n}.
Here are some explicit examples.
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Theorem 14.1. If an exterior p-form in dimension n has the algebraic type

(a) of (12.4) with (n, p) = (7, 3), or (12.5) for (n, p) = (8, 4), or

(b) the Cartan 3-form of any simple Lie algebra g with dimIRg = n ≥ 8,

then it can be realized as a differential p-form µ on an n-dimensional manifold,
so as to be parallel, but not locally constant on any open submanifold.

Specifically, for (a) we may choose µ to be a specific parallel p-form on a
compact simply connected Riemannian manifold of dimension n ∈ {7, 8} with the
holonomy group G2 or Spin(7) while, for (b), we let µ be the Cartan 3-form on
a connected Lie group having g as the Lie algebra of left-invariant vector fields.

Proof. Our choice for (a) is possible according to Joyce [12, Sect. 2.2–2.3],
with the resulting Levi-Civita connection ∇ that must be Ricci-flat, and hence
real-analytic [9]. By (12.6) and Lemma 12.1, ∇ is, even locally, the only torsion-
free connection with ∇µ = 0. Having the holonomy group G2 or Spin(7), it is not
flat either on M, or – due to analyticity – on any open submanifold.

For (b), our assertion is in turn obvious from the uniqueness assertion in the
final clause of Lemma 13.1 combined with (1.1), since ∇ in Lemma 13.1 is – ac-
cording to the lines preceding (13.8) – the Levi-Civita connection of the pseudo-
Riemannian Einstein metric g (the Killing form), which is not flat on any open
submanifold, as it has, by (13.8), the nonzero parallel Ricci tensor −g/4. �

Remark 14.2. Any real simple Lie algebra g is either a real form of a complex
simple Lie algebra h, or the result of treating some such h as real. See, e.g.,
[10, Lemma 4 on p. 173]. According to [7, Theorem 4.1], the curvature operator
R : [g∗]�2→ [g∗]�2 in Sect. 13 has the same nonzero eigenvalues as its analog for h.
It also behaves additively under the direct-sum operation applied to Lie algebras.
This generalizes the final clause of Lemma 13.1 and Theorem 14.1(b) to the case of
arbitrary semisimple Lie algebras without ideals of dimensions 3 or 6.

15. Logical independence in Theorems 9.2 and 9.3

Closedness of an algebraically constant differential p-form µ in dimension n
is known not to imply integrability of its divisibility distribution D except when
p ∈ {0, 1, 2, n− 1, n}: counterexamples in [8, Sect. 12] realize all dimensions n ≥ 5
and all p with 2 < p < n− 1.

It is thus natural to ask if other parts of items (iii) in Theorem 9.2 and (i), (ii)
in Theorem 9.3 are similarly free of redundancy. Theorem 9.2 gives rise to three
questions of this kind – whether closedness of µ implies any of (a), (b), (c) – and
Theorem 9.3 to one more: does (ii) follow from (i)?

This section answers the first three questions in the negative with the aid of
the following examples. They use e1, . . . , e6, dual to ξ1, . . . , ξ6 as in (8.1), chosen
to form a basis of the Lie algebra of left-invariant vector fields on a Lie group, the
only nonzero Lie brackets being those algebraically related to

(15.1)
[e1, e2] = e5 , [e1, e3] = e6 for (a),
[e2, e4] = e1 , [e6, e2] = e3 for (b),
[e1, e2] = e6 , [e5, e4] = e3 for (c).

The Jacobi identity is obvious, since all brackets lie in the center. The only nonzero
components of µ thus are, cf. (6.1), up to obvious consequences of skew-symme-
try, µ123 = µ345 = µ561 = µ246 = 1 for (a), µ123 = µ345 = µ561 = 1 for (b),
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µ123 = µ456 = 1 for (c). By (2.2), with the same convention, the only possibly-
nonzero components of ζ = dµ are ζijkl such that [ei, ej ] 6= 0, Explicitly, in case

(a): ζ12kl = 0 and ζ13ij = 0 for kl, or ij, ranging over 34, 35, 36, 45, 46, 56 or,

respectively, 45, 46, 56. Similarly, for (b): ζ24kl = 0 with kl = 13, 15, 16, 35, 36, 56,
and ζ26ij = 0 for ij = 13, 15, 35. Finally, in case (c), ζ12kl = 0 and ζ45ij = 0 with
kl, or ij, ranging over 34, 35, 36, 45, 46, 56 or, respectively, 13, 16, 23, 26, 36. Thus,
dµ = 0 in all cases, while (15.1) and (8.3) show that neither H, for (b), nor either of
H±, for (c), is integrable. Finally, the Nijenhuis tensor N of J sends vector fields
v, w to N(v, w) = J [Jv,w] + J [v, Jw] − [Jv, Jw] + [v, w], so that N(e1, e2) = e5
by (15.1) and (6.4), proving non-integrability of J in case (a).

For the remaining (fourth) redundancy question raised in the initial paragraph
of this section, a negative answer is provided by Remark 16.3 below.

16. Duality and closedness

Given a nondegenerate 2-form σ on an n-dimensional manifold M, with n =
2m ≥ 2 even, we use (5.7) to define its dual (n− 2)-form µ. Note that

(16.1)
if σ is closed, or locally constant, or par
allel, then so is, respectively, its dual µ,

the locally-constant and parallel cases obvious as µ and σ arise from each other
via explicit constructions (Lemma 5.2). For the same reason, conversely,

(16.2) parallelism or local constancy of the dual of σ implies the same for σ.

Now (16.1) follows: closedness of σ is equivalent to its local constancy due to the
Darboux theorem, which gives σ = dx1∧ dx2 + . . .+ dxn−1∧ dxn in suitable local
coordinates x1, . . . , xn. Thus, by (5.8), the dual µ of σ has constant component
functions in these coordinates, and is consequently closed.

The symbol ̂ means ‘delete’ in the following theorem, which shows that, in
contrast with (16.2), the converse of the “closed” case of (16.1) is generally false
in all (necessarily even) dimensions n ≥ 6. Note that for n = 2 and n = 4 the
converse is true, since then µ = −1 and µ = −σ by (5.9).

The index ranges below are i, j = 1, . . . ,m and k = 1, . . . , 2m.

Theorem 16.1. Given an integer m ≥ 2 and positive functions φi of the 2m
real variables xk, let χi = dx2i−1∧ dx2i and σi = φ1−mi φχi, where φ = φ1 . . . φm.
The 2-form σ and (2m − 2)-form ζ defined by σ = σ1 + . . . + σm and ζ =
ζ1+ . . .+ ζm, with ζi = −σ1∧ . . .∧ σ̂i∧ . . .∧σm, then have the following properties.

(a) ζ is algebraically constant and indivisible.
(b) σ and ζ are dual to each other.
(c) ζ is closed if and only if, with no summation, ∂2i−1φi = ∂2iφi = 0.

(d) σ is closed if and only if ∂k[φ1−mi φ] = 0 whenever k /∈ {2i−1, 2i}, which
is in turn equivalent to having φi = ρ1. . . ρ̂i . . . ρm for all i, where each
ρj is a function of x2j−1 and x2j.

Proof. Algebraic constancy of ζ follows as σi = ξ2i−1 ∧ ξ2i with ξk =
[φ1−mi φ]1/2dxk for k ∈ {2i− 1, 2i}. Now (5.8) implies (b), and hence (a).

Next, for θk = dx1∧ . . . ∧ dxk−1∧ dxk+1∧ . . . ∧ dx2m, the obvious relation

ζi = −φm−1i χ1∧. . .∧χ̂i∧. . .∧χm implies that dζi equals the combination of θ2i and

θ2i−1 with the coefficients −∂2i−1[φm−1i ] and −∂2i[φ
m−1
i ]. As ζ = ζ1 + . . .+ ζm,
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linear independence of the (2m − 1)-forms θ1, . . . , θ2m yields (c). Similarly, dσi is
the combination of dxk∧ dx2i−1∧ dx2i, over k /∈ {2i − 1, 2i}, with the coefficients
∂k[φ1−mi φ]. Linear independence of all such dxk∧dx2i−1∧dx2i now proves the first
claim in (d). Since, for purely algebraic reasons, φi = ρ1. . . ρ̂i . . . ρm for all i if
and only if φ1−mi φ = ρm−1i , the second part of (d) follows. �

Remark 16.2. Starting from m = 3, Theorem 16.1 yields examples in which
ζ is closed, but its dual σ is not: we may clearly choose φi as in (c) that do not
have separated variables in the sense of (d).

Remark 16.3. For a nonzero differential (n − 2)-form on an n-dimensional
manifold M, satisfying (7.1-b) and having the divisibility distribution D of fibre
dimension q, so that q is even and 2 ≤ q ≤ n due to (7.3), closedness of µ and
integrability of D do not imply closedness, along the leaves of D, of the 2-form
σ dual to the indivisible factor ζ of µ. Examples realizing all n, q with even q
and n ≥ q ≥ 6 arise from Remark 7.3 applied to a manifold Σ of any dimension
s ≥ 0 and an open submanifold Π of IR2m, m ≥ 3, with the (2m − 2)-form ζ
of Theorem 16.1 chosen so as to be closed without closedness of its dual 2-form σ
(see Remark 16.2). Here n = 2m+ s and q = 2m.
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t́ıstica, Universidade de São Paulo, Rua do Matão 1010, CEP 05508-900, São Paulo, SP,

Brazil
E-mail address: paolo.piccione@usp.br

(Ivo Terek) Department of Mathematics and Statistics, Williams College, Williams-
town, MA 01267, USA

E-mail address: it3@williams.edu


