A MAGNETIC VERSION OF E. HOPF'S THEOREM (JOINT WORK WITH VALERIO ASSENZA AND JAMES MARSHALL REBER)

Ivo Terek

Williams College

January 8th, 2025 1:00 p.m. – 1:20 p.m. PST

AMS Special Session on Metric Geometry and Topology, II 2025 Joint Mathematics Meeting January 8th to January 11th, 2025, Seattle, WA

These slides can also be found at

https://www.web.williams.edu/it3/texts/JMM_slides_january2025.pdf

Ivo Terek (Williams College)

A magnetic version of E. Hopp's theorem

 V. Assenza, J. Marshall Reber, I. Terek; Magnetic flatness and E. Hopf's Theorem for magnetic systems, arXiv 2404.17726. To appear in Communications in Mathematical Physics.

Review: Geodesic flow

Let (M, g) be a **compact and connected** Riemannian manifold. The geodesic equation

$$\frac{\mathsf{D}\dot{\gamma}}{\mathsf{d}t}(t) = \mathbf{0}$$

induces a flow $\Phi^{\mathsf{g}} \colon \mathbb{R} \times TM \to TM$ on the tangent bundle

$$TM = \{(x, v) : x \in M \text{ and } v \in T_xM\}.$$

It is given by $\Phi^{g}(t, (x, v)) = (\gamma_{(x,v)}(t), \dot{\gamma}_{(x,v)}(t))$, where $\gamma_{(x,v)} \colon \mathbb{R} \to M$ is the unique solution of the IVP

$$\begin{cases} \frac{\mathrm{D}\dot{\gamma}}{\mathrm{d}t}(t) = 0\\ \gamma(0) = x, \quad \dot{\gamma}(0) = v. \end{cases}$$

Review: Geodesic flow

Each sphere bundle

$$\Sigma_s = \{ (x, v) \in TM : \|v\| = s \}, \quad s > 0,$$

is Φ^{g} -invariant, and so Φ^{g} restricts to a flow $\Phi^{g}_{s} \colon \mathbb{R} \times \Sigma_{s} \to \Sigma_{s}$.

The dynamics of Φ_s^g is closely related to the geometry of (M, g), and has interesting properties when (M, g) is negatively curved (Anosov, Sinai, Arnold, Avez — 1967):

- Closed geodesics have vanishing Morse index.
- Iso(M, g) is finite.
- (M, g) has no conjugate points.
- Φ_s^g is of Anosov type (there is a $d\Phi_s^g$ -invariant center-stable-unstable splitting $T\Sigma_s = \mathbb{R}\mathbf{X}^g \oplus E^s \oplus E^u$).
- $\Phi^{\rm g}_{s}$ is ergodic (for the so-called Liouville measure on $\Sigma_{s})$
- $\Phi^{\rm g}_{s}$ has dense periodic orbits.

Hopf's theorem

Theorem (E. Hopf, 1948)

If (M, g) is a closed Riemannian surface without conjugate points, then

$$\int_M K^{\mathsf{g}} \, \mathrm{d}\nu_{\mathsf{g}} \le \mathsf{0},$$

and equality holds if and only if (M, g) is a flat torus.

Above, K^{g} and ν_{g} are the Gaussian curvature and area form of (M, g). The Gauss-Bonnet theorem then trivially implies that

every Riemannian metric without conjugate points on \mathbb{T}^2 is flat.

What about higher dimensions?

Green's Theorem

Theorem (Green, 1958)

If (M, g) is a closed Riemannian manifold without conjugate points, then

$$\int_{M} \operatorname{scal}^{\mathsf{g}} \mathrm{d}\nu_{\mathsf{g}} \leq \mathsf{0},$$

and equality holds if and only if (M, g) is flat.

Above, scal^g and ν_{g} are the scalar curvature and volume form of (*M*, g).

What about the topological conclusion in the equality case?

The best we know is:

Theorem (Burago-Ivanov, 1994)

Every Riemannian metric without conjugate points on \mathbb{T}^n is flat.

We want to model, using differential geometry, trajectories of particles on Riemannian manifolds subject to the action of a magnetic field.

Definition (Anosov & Sinai, 1967?)

A magnetic system on a smooth manifold M is a pair (g, σ) , where g is a Riemannian metric and σ is a closed 2-form on M. The Lorentz force operator of (g, σ) is the endomorphism $\mathbf{Y} \colon TM \to TM$ characterized by

$$\sigma_{x}(\mathbf{v},\mathbf{w}) = g_{x}(\mathbf{Y}_{x}(\mathbf{v}),\mathbf{w}),$$

for all $x \in M$ and $v, w \in T_x M$. The 2-form σ is called the magnetic form and, in this context, it is called uniform if $\nabla \sigma = 0$.

Variational characterizations

The geodesic equation gets replaced with the Landau-Hall equation:

$$\frac{\mathsf{D}\dot{\gamma}}{\mathsf{d}t}(t) = \mathbf{Y}_{\gamma(t)}(\dot{\gamma}(t)).$$

When dim M = 3 and M is orientable, every skew-adjoint operator is given as a cross product, and we have the Lorentz force law:

$$rac{\mathrm{D}\dot{\gamma}}{\mathrm{d}t}(t) = q \, \mathbf{B}_{\gamma(t)} imes \dot{\gamma}(t).$$

For any magnetic system (g, σ) on M, magnetic geodesics have constant speed and, when the magnetic form $\sigma = dA$ is exact, they can be characterized as critical points of the Landau-Hall functional:

$$\mathcal{LH}(\gamma) = \int_{a}^{b} \left(\frac{1}{2} \| \dot{\gamma}(t) \|^{2} + A_{\gamma(t)}(\dot{\gamma}(t)) \right) \mathrm{d}t.$$

The magnetic flow

The Landau-Hall equation

$$rac{{
m D}\dot{\gamma}}{{
m d}t}(t) = {f Y}_{\gamma(t)}(\dot{\gamma}(t))$$

induces a flow $\Phi^{g,\sigma} \colon \mathbb{R} \times TM \to TM$ on the tangent bundle

$$TM = \{(x, v) : x \in M \text{ and } v \in T_xM\}.$$

It is given by $\Phi^{g,\sigma}(t, (x, v)) = (\gamma_{(x,v)}(t), \dot{\gamma}_{(x,v)}(t))$, where $\gamma_{(x,v)} \colon \mathbb{R} \to M$ is the unique solution of the IVP

$$\begin{cases} \frac{\mathrm{D}\dot{\gamma}}{\mathrm{d}t}(t) = \mathbf{Y}_{\gamma(t)}(\dot{\gamma}(t))\\ \gamma(0) = x, \quad \dot{\gamma}(0) = v. \end{cases}$$

The sphere bundles

$$\Sigma_s = \{(x, v) \in TM : \|v\| = s\}, \qquad s > 0,$$

are invariant under the magnetic flow, which can then be restricted to a flow $\Phi_s^{g,\sigma} \colon \mathbb{R} \times \Sigma_s \to \Sigma_s$.

But this time, since the Landau-Hall equation is not homogeneous, the dynamical properties of $\Phi_s^{g,\sigma}$ depend heavily on the value of s > 0.

The value marking the change in dynamical behavior is called the Mañé critical value of (g, σ) — it is generally difficult to compute.

Magnetic curvature in dimension 2

There is also a natural notion of conjugate points for magnetic systems, and this time it depends on the energy level s > 0.

But what about curvature?

When dim M = 2 we may write $\sigma = b \nu_g$ for some $b \in C^{\infty}(M)$. The magnetic form is uniform if $b \in \mathbb{R}$ is constant.

Definition (M. & P. Paternain, 1996)

The magnetic Gaussian curvature $K_s^{g,b} \colon SM \to \mathbb{R}$ is defined by

$$K_s^{g,b}(x,v) = s^2 K^g(x) - s \, \mathrm{d} b_x(\mathrm{i} v) + b(x)^2,$$

for all $(x, v) \in SM$.

When $K_s^{g,b} < 0$, the flow $\Phi_s^{g,b}$ has no conjugate points.

Ivo Terek (Williams College)

Theorem (Gouda, 1996)

For a closed surface M equipped with a uniform magnetic system (g, b) without conjugate points for energy s = 1,

$$\int_{\mathcal{M}} (K^{\mathsf{g}} + b^2) \, \mathrm{d}\nu_{\mathsf{g}} \le \mathsf{0},$$

with equality if and only if (M, g) is a flat torus and b = 0.

Even with the restrictive assumption that the magnetic system is uniform, this already generalizes Hopf's 1948 theorem!

Gouda was not aware of the definition of $K_s^{g,b}$ at the time, but we can rewrite his result as

$$\int_{\mathcal{SM}} \mathcal{K}^{\mathsf{g},b}_1 \,\mathrm{d}\mu_{\mathsf{g}} \leq \mathsf{0},$$

where $d\mu_g$ is the Liouville measure in *SM*.

Going towards a magnetic Green

What about higher dimensions?

Theorem (Gouda, 1996)

For a closed n-manifold M equipped with a uniform magnetic system (g, σ) without conjugate points for energy s = 1,

$$rac{1}{\mathrm{vol}(M,\mathrm{g})}\int_{M}\mathrm{scal}^{\mathrm{g}}\,\mathrm{d}
u_{\mathrm{g}}\leq-rac{n}{4}\mathrm{tr}(\mathbf{Y}^{\dagger}\mathbf{Y}),$$

with equality if and only if (M, g) is flat and $\sigma = 0$.

Again, this generalizes Green's 1958 theorem — but now it is not obvious how to rewrite this as the integral of a magnetic curvature.

And what even is the magnetic curvature for higher dimensional systems?

Higher-dimensional magnetic curvature

We consider the vector bundle $E \to SM$ whose fibers are given by the orthogonal complements $E_{(x,v)} = v^{\perp} \subseteq T_x M$, and $E_{(x,v)}^1 = E_{(x,v)} \cap S_x M$.

Definition (Assenza, 2023)

Let (g, σ) be a magnetic system on a smooth *n*-manifold M, and s > 0. The magnetic curvature operator is $M_s^{g,\sigma} \colon E \to E$ given by $M_s^{g,\sigma} = R_s^{g,\sigma} + A^{g,\sigma}$, where

$$(R_s^{\mathsf{g},\sigma})_{(x,v)}(w) = s^2 R_x(w,v)v + \cdots$$
 and $A_{(x,v)}^{\mathsf{g},\sigma}(w) = \cdots$

Then $\sec^{g,\sigma}: E^1 \to \mathbb{R}$, $\operatorname{Ric}^{g,\sigma}_s: SM \to \mathbb{R}$, and $\operatorname{scal}^{g,\sigma}_s: M \to \mathbb{R}$, are defined as

$$(\operatorname{sec}_{s}^{g,\sigma})_{x}(v,w) = \langle (M_{s}^{g,\sigma})_{(x,v)}(w), w \rangle, \qquad \operatorname{Ric}_{s}^{g,\sigma}(x,v) = \operatorname{tr}(M_{s}^{g,\sigma})_{(x,v)},$$

and
$$\operatorname{scal}_{s}^{g,\sigma}(x) = \frac{n}{\operatorname{vol}(\mathbb{S}^{n-1})} \int_{\mathcal{S}_{x}M} \operatorname{Ric}_{s}^{g,\sigma}(x,v) \, \mathrm{d}\mu_{x}(v).$$

We have finally generalized the previous results to possibly non-uniform magnetic systems of arbitrary signature:

Theorem (Assenza, Marshall-Reber, T., 2024)

Let (g, σ) be any magnetic system on a closed n-manifold M, without conjugate points for energy s. Then

$$\int_{M} \operatorname{scal}_{s}^{\mathsf{g},\sigma} \mathrm{d}\nu_{\mathsf{g}} \leq \mathsf{0},$$

with equality if and only if $M_s^{g,\sigma} = 0$.

It remains to understand the true meaning of magnetic flatness.

Magnetic flatness

Theorem (Assenza, Marshall-Reber, T., 2024)

Let (g, σ) be any nontrivial magnetic system (i.e., with $\sigma \neq 0$) on a smooth manifold M, and assume that there is $c \in \mathbb{R}$ such that $\operatorname{sec}_{s}^{g,\sigma} \equiv c$.

Then $\nabla \sigma = 0$ and σ is nowhere-vanishing, and one of the following options must hold:

- (M, g) is an oriented surface with constant Gaussian curvature $K^{g} = (c \|\mathbf{Y}\|^{2})/s^{2}$, and $\sigma = \|\mathbf{Y}\|^{-1}\nu_{g}$.
- Q dim M ≥ 4, c = 0, and J = ||Y||⁻¹Y is a complex structure turning (M,g) into a Kähler manifold with constant negative holomorphic sectional curvature ||Y||²/s².

If c = 0 in the first case, then s equals the Mañé critical value of (g, σ) in both cases.

Proof idea if there's still time left

- Introduce a "magnetic connector" $\mathcal{K}^{g,\sigma}$: $TTM \to TM$ and use it to get a horizontal-vertical decomposition $T\Sigma_s = \widehat{H}^{g,\sigma} \oplus V$.
- Obtain a symplectic vector bundle $Q = T\Sigma_s / \mathbf{X}^{g,\sigma} \rightarrow \Sigma_s$ via Marsden-Weinstein reduction.
- Move the projected vertical distribution V with the quotient Hamiltonian flow induced by the derivative of $\Phi_s^{\mathbf{g},\sigma}$ to obtain a curve E(t) of Lagrangian subbundles of Q.
- Express the limit $\lim_{t\to+\infty} E(t)$ as the graph of a self-adjoint bundle morphism and use it to build a solution of the Riccati equation

$$\operatorname{tr} \dot{U}_{\nu}(t) + \operatorname{tr}(U_{\nu}(t)^{2}) + \operatorname{Ric}_{s}^{\mathbf{g},\sigma}(\Phi_{s}^{\mathbf{g},\sigma}(t,\nu)/s) = 0.$$

Integrate.

Thank you for your attention!

(scan here for more on my research)