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Foreword

The present text was prepared for the mini-course MAT6702 - Topics in Lorentz Ge-
ometry, to be taught at the University of São Paulo, during the week from 03/11/19
to 03/15/19. Due to time constraints, some very interesting topics (such as Lorentz
boosts, the proof of the classification of matrices in O+↑

1 (3, R), and Bonnet rotations for
timelike surfaces) unfortunately had to be left out, but a list of references is provided
in the end. As an attempt to engage the reader actively on what is happening here, a
few problems are suggested in the end of each section.

In general, the content of these notes is very introductory and meant to be a step-
ping stone for those interested in learning the subject without yet having advanced
background, avoiding the “heavier” language of differentiable manifolds and assum-
ing only some knowledge of multivariable calculus, linear algebra, and differential
geometry of curves and surfaces in R3 (on the level of [7] or [20] should be enough).

For this reason, instead of focusing on the similarities between Euclidean space R3

and Lorentz-Minkowski space L3, we will devote our little time together in trying to
grasp some of the most striking differences between those ambients.

I hope you enjoy reading this, and if you learn anything new at all here, it was
worth the effort.

Columbus, March of 2019

Ivo Terek Couto
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1 The spaces Rn
ν

1.1 Basic definitions

Definition 1.1. Let n > 0 and 0 ≤ ν ≤ n be non-negative integers. The pseudo-
Euclidean space of index ν is the pair Rn

ν
.
= (Rn, 〈·, ·〉ν), where the scalar product

〈·, ·〉ν : Rn ×Rn → R is given by

〈x, y〉ν
.
= x1y1 + · · ·+ xn−νyn−ν − xn−ν+1yn−ν+1 − · · · − xnyn.

Particular cases are the usual Euclidean space Rn
0 ≡ Rn and the Lorentz-Minkowski

space Ln ≡ Rn
1 , whose products are then denoted simply 〈·, ·〉E and 〈·, ·〉L, respectively.

Regarding vectors in Rn as column-vectors, one may write 〈x, y〉ν = x>Idn−ν,νy,
where the identity matrix of index ν is

Idn−ν,ν = (ην
ij)

n
i,j=1

.
=

 Idn−ν 0

0 −Idν

 .

Note that the product 〈·, ·〉ν is not positive-definite anymore, which is an obstacle for
defining a norm ‖ · ‖ν. We will insist on trying, and setting ‖x‖ν

.
=
√
|〈x, x〉ν| anyway.

This “fake norm” ‖ · ‖ν has poor properties – we’ll see a couple of them soon. Despite
this perhaps-not-so-small issue, the product 〈·, ·〉ν has the one property that allows us
to develop the theory to some extent: non-degenerability. That is to say, if 〈x, y〉ν = 0
for every y ∈ Rn

ν , we necessarily have x = 0. Or in other words, the induced map
Rn

ν 3 x 7→ 〈x, ·〉ν ∈ (Rn
ν)
∗ is an isomorphism. Having lost the positivity of 〈·, ·〉ν, it is

convenient to sort vectors in Rn
ν in three classes:

Definition 1.2 (Causal character). A non-zero vector x ∈ Rn
ν is called:

• spacelike if 〈x, x〉ν > 0.

• timelike if 〈x, x〉ν < 0.

• lightlike if 〈x, x〉ν = 0.

The indicator of x is 1, −1 or 0 according to the causal type of x, and it is denoted by εx.

Example 1.3. If can = (e1, . . . , en) is the standard basis of Rn
ν , then ei is spacelike for

1 ≤ i ≤ n− ν and timelike for n− ν + 1 < i ≤ n. If 1 ≤ i ≤ n− ν < j ≤ n, then ei ± ej
is lightlike. In L2 and L3, we can actually make some sketches based in the equations
x2 − y2 = c and x2 + y2 − z2 = c (for positive, negative or zero c):

Figure 1: Causal “regions” in L2.
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timelike

spacelike

lightlike

Figure 2: Causal types in L3

Figure 3: Causal “regions” in L3.

Not surprisingly, we call the collection of all lightlike vectors in the space its light
cone.

Soon we will generalize the notion of causal character for other objects than vectors,
such as subspaces, curves and surfaces. One of the fundamental concepts in geometry
is the one of orthogonality. So:

Definition 1.4. Two vectors x, y ∈ Rn
ν are ν-orthogonal if 〈x, y〉ν = 0. A basis for Rn

ν

is called ν-orthogonal if all its vectors are pairwise ν-orthogonal, and it is said to be
ν-orthonormal if all its vectors have scalar square 1 or −1. For ν = 1, one usually uses
the term “Lorentz-orthogonal” instead, and if there is no risk of confusion, we’ll do
away with the ν.

Definition 1.5. Let S ⊆ Rn
ν be any set. Let’s say that

S⊥ = {x ∈ Rn
ν | 〈x, y〉ν = 0 for all y ∈ S}
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is the subspace of Rn
ν orthogonal to S.

Remark. S⊥ is a vector subspace of Rn
ν even when S is not.

We avoid the name “orthogonal complement” because when S is a subspace of
Rn

ν we might not have S ⊕ S⊥ = Rn
ν . For example, in L2, the line S spanned by the

lightlike vector (1, 1) satisfies S = S⊥ = S + S⊥. So a natural question should be: when
do we have S⊕ S⊥ = Rn

ν? We start with the recomforting result:

Proposition 1.6. Let S ⊆ Rn
ν be a subspace. Then dim S + dim S⊥ = n and (S⊥)⊥ = S.

Proof: The map Rn
ν 3 x 7→ 〈x, ·〉

∣∣
S ∈ S∗ is linear, surjective (since 〈·, ·〉ν is non-

degenerate), and its kernel is S⊥. So the dimension formula follows from the rank-
nullity theorem. Said formula applied twice also says that dim S = dim(S⊥)⊥, so
S ⊆ (S⊥)⊥ implies S = (S⊥)⊥.

With this, we may also conclude the:

Corollary 1.7. Let S ⊆ Rn
ν be a subspace. Then S ⊕ S⊥ = Rn

ν if and only if S is non-
degenerate (i.e., 〈·, ·〉ν

∣∣
S is non-degenerate). It also follows that S is non-degenerate if and only

if S⊥ is also non-degenerate.

Proof: From dim(S + S⊥) = dim S + dim S⊥ − dim(S ∩ S⊥) = n − dim(S ∩ S⊥) it
follows that S + S⊥ = Rn

ν if and only if S ∩ S⊥ = {0}, which in turn is equivalent to
〈·, ·〉ν

∣∣
S being non-degenerate.

This means that we may define orthogonal projections only onto non-degenerate sub-
spaces. Back to the previous example, we may now see what went wrong there: the
line spanned by (1, 1) in L2 is degenerate, since 〈(1, 1), (λ, λ)〉L = 0 for all λ ∈ R. In
Ln, we may stick to the causal type terminology previously used:

Definition 1.8. Let S ⊆ Ln be a non-trivial vector subspace. We say that S is:

• spacelike if 〈·, ·〉L
∣∣
S is positive-definite;

• timelike if 〈·, ·〉L
∣∣
S is negative-definite, or indefinite and non-degenerate;

• lightlike if 〈·, ·〉L
∣∣
S is degenerate;

Remark. In Rn
ν , one might also say that S is timelike if 〈·, ·〉ν

∣∣
S is negative definite, but

if ν > 1 this does not have the same physical appeal (which we’ll get to in the next
section) as in Ln. Moreover, one can say that S is null if 〈·, ·〉ν

∣∣
S = 0, which in Ln is the

same as S being lightlike and one-dimensional.

Here’s the relation between causal characters of subspaces and orthogonality:

Theorem 1.9. Let S ⊆ Ln be a subspace. Then S is spacelike if and only if S⊥ is timelike; S is
lightlike if and only S⊥ is also lightlike.
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Proof: The second part of the result is nothing more than a restatement of Corollary
1.7, which will also be used to prove the first part. Assume that S is spacelike. So
S is non-degenerate and we write Ln = S ⊕ S⊥. Then S⊥ must necessarily contain
a timelike vector because Ln does - more precisely, take v ∈ Ln timelike and write
v = x + y with x ∈ S and y ∈ S⊥, so that 〈x, x〉L + 〈y, y〉L = 〈v, v〉L < 0 with
〈x, x〉L ≥ 0 forces y ∈ S⊥ to be timelike. Conversely, assume now that S is timelike,
and take u ∈ S timelike. Since S⊥ ⊆ u⊥, it suffices now to show that u⊥ is spacelike.
We know again from Corollary 1.7 that u⊥ is not lightlike, and if we have v ∈ u⊥

timelike, the plane spanned by u and v in Ln has dimension 2 while being negative-
definite, which is impossible.

Here’s another important result:

Theorem 1.10. Let S ⊆ Rn
ν be a non-degenerate subspace. Then S has an orthogonal basis.

Proof: By induction. By hypothesis we may take u ∈ S with 〈u, u〉ν 6= 0. Then the
orthogonal complement of u in S is non-degenerate and has dimension one lower.
Take an orthogonal basis for this complement and add u to this list. Fill any details
you may want.

We can conclude this section with some results about linear independence, in gen-
eral:

Theorem 1.11. Let u1, . . . , uν+1 ∈ Rn
ν be pairwise lightlike orthogonal vectors. Then we have

that (u1, . . . , uν+1) is linearly dependent.

Proof: The space Rn
ν has a natural decomposition as Rn

ν = Rn−ν ⊕Rν
ν, so that for the

standard basis can = (e1, . . . , en) of Rn
ν , we may decompose

uj = xj +
ν

∑
i=1

aijen−ν+i, 1 ≤ j ≤ ν + 1,

for some vectors xj ∈ Rn−ν ⊕ {0} and real coefficients aij, which actually define a
linear map A : Rν+1 → Rν. The condition 〈ui, uj〉ν = 0 readily implies the equality
〈xi, xj〉ν = ∑ν

k=1 akiakj, for all 1 ≤ i, j ≤ ν + 1. For dimensional reasons, we may also
choose a non-zero vector b = (bi)

ν+1
i=1 ∈ ker A. Putting all of this together, we see that〈

ν+1

∑
i=1

bixi,
ν+1

∑
j=1

bjxj

〉
ν

=
ν+1

∑
i,j=1

bibj

ν

∑
k=1

akiakj = (Ab)>(Ab) = 0.

However, the combination ∑ν+1
i=1 bixi lies in the spacelike subspace Rn−ν ⊕ {0}, so the

above gives ∑ν+1
i=1 bjxj = 0. So, b ∈ ker A now gives us

ν+1

∑
j=1

bjuj =
ν+1

∑
j=1

bjxj +
ν

∑
i=1

(
ν+1

∑
j=1

bjaij

)
en−ν+1 = 0 + 0 = 0,

as wanted.
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As a corollary, we obtain one of the most striking differences between Euclidean
and Lorentzian geometry:

Corollary 1.12. Two lightlike vectors in Ln are Lorentz-orthogonal if and only if they are
parallel.

The previous proof might also hint that the matrix of coefficients of 〈·, ·〉ν with
respect to a given basis (also called the Gram matrix of 〈·, ·〉ν with respect to said basis)
will play an important role in this whole theory.

Proposition 1.13. Let u1, . . . , um ∈ Rn
ν be vectors such that the Gram matrix (〈ui, uj〉ν)m

i,j=1
is invertible. Then (u1, . . . , um) is linearly independent.

Proof: Write ∑m
i=1 aiui = 0 and apply 〈·, uj〉ν on both sides to get ∑m

i=1 ai〈ui, uj〉ν = 0.
The hypothesis then implies that a1 = · · · = am = 0 as wanted.

We know that for the usual Euclidean product in Rn the converse to the above re-
sult is true. It is not true, in general, in the pseudo-Euclidean spaces Rn

ν . As an extreme
counter-example, take any (non-zero) lightlike vector: it is linearly independent by it-
self, but its 1× 1 Gram matrix is just (0). As disappointing as this might be, this means
that we’ll have to add some extra conditions for this converse to hold. This leads us to
what we may call the “non-degenerability chain conditions”. Here is an example:

Proposition 1.14. Let (u1, . . . , um) be a m-uple of linearly independent vectors in Rn
ν such

that each intermediate subspace span(u1, . . . , uk) is non-degenerate, for 1 ≤ k ≤ m. Then the
Gram matrix (〈ui, uj〉ν)m

i,j=1 is invertible.

Another example of this non-degenerability chain condition is related to the Gram-
Schmidt orthogonalization process. Namely, if we start with linearly independent vectors
(u1, . . . , um) and try to produce from these vectors another set of orthogonal vectors
(ũ1, . . . , ũm) spanning the same subspace, at least in the Euclidean case we would pro-
ceed inductively, by setting

ũk+1 = uk −
k

∑
i=1

〈uk+1, ũi〉
‖ũi‖2 ũi.

In the pseudo-Euclidean case, not only we need to take into account the causal char-
acter of each ũi, but we need to ensure that none of those vectors are lightlike. The
condition that all the intermediate subspaces span(u1, . . . , uk) are non-degenerate, for
1 ≤ k ≤ m, is again precisely what we need to safely do

ũk+1 = uk −
k

∑
i=1

εũi

〈uk+1, ũi〉ν
‖ũi‖2

ν
ũi

in Rn
ν . Usually it is a bad idea to insist on using the “fake norm” ‖ · ‖ν: we’ll try to

avoid the absolute values the most we can. So we may alternatively write

ũk+1 = uk −
k

∑
i=1

〈uk+1, ũi〉ν
〈ũi, ũi〉ν

ũi
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instead, which automatically takes into account the indicators of the ũi. For the proof
of Proposition 1.14 above and more details about the adapted Gram-Schmidt process,
see [21]. When we start discussing curve theory, we will see that we’ll have three
classes of curves: the admissible curves, the lightlike curves and the semi-lightlike
curves. The latter two require some special treatment precisely because they fail to
respect a certain non-degenerability chain condition (but you might have guessed this
by now). We move on.

1.2 Pseudo-orthogonal transformations

When studying the geometry of any scalar product, it is essential to understand
the transformations of the ambient space which preserve said product:

Definition 1.15. A linear transformation Λ : Rn
ν → Rn

ν such that 〈Λx, Λy〉ν = 〈x, y〉ν
for all x, y ∈ Rn

ν is called a pseudo-orthogonal transformation. We denote the collection of
these transformations, maybe not surprisingly, by Oν(n, R). When ν = 1, Λ is called a
Lorentz transformation and O1(n, R) is called the Lorentz group.

Let’s get the following simple characterization out of the way:

Proposition 1.16. Let Λ : Rn
ν → Rn

ν be a linear transformation. Then Λ ∈ Oν(n, R) if and
only if Λ>Idn−ν,νΛ = Idn−ν,ν. It follows that det Λ = ±1, and so Λ is an isomorphism.

Remark. Another way to state the above is saying that the rows and columns of Λ
form orthonormal bases of Rn

ν . This proposition also implies that Oν(n, R) is a group
closed under matrix transposition (proof?).

Example 1.17. Given ϕ > 0, the hyperbolic rotation Rh
ϕ : L2 → L2 given by

Rh
ϕ(x, y) = (x cosh ϕ + y sinh ϕ, x sinh ϕ + y cosh ϕ)

is a Lorentz transformation, whose inverse is naturally (Rh
ϕ)
−1 = Rh

−ϕ (you should
check this if you don’t immediately believe it, it is instructive). Up to a couple of
signs, this is actually the only Lorentz transformation in dimension 2. We’ll come back
to that in Theorem 1.21.

In general, in the same way that a rigid motion of Rn is always the composition
of an orthogonal map and a translation, the corresponding notion of “rigid motion”
in Rn

ν also has this property. Rewriting the definition of a rigid motion in Rn without
employing ‖ · ‖ leads to the:

Definition 1.18. A pseudo-Euclidean isometry in Rn
ν is a map F : Rn

ν → Rn
ν such that

〈F(x)− F(y), F(x)− F(y)〉ν = 〈x− y, x− y〉ν,

for all x, y ∈ Rn
ν . The collection of such maps is denoted by Eν(n, R). When ν = 1, F is

called a Poincaré transformation and P(n, R) = E1(n, R) is called the Poincaré group.
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To justify the name “Poincaré group”, one has to check that pseudo-Euclidean
isometries are indeed invertible, and that its inverse is also a pseudo-Euclidean isom-
etry. One possible way to do this is actually going over and beyond, and classifying
these maps. We can even say that the above definition was written precisely so that
the same strategy used in proving that every rigid motion in Rn is the composition of
a translation and an orthogonal map works. As such, we won’t provide a full proof,
but the main steps:

(i) show that if F ∈ Eν(n, R) is such that F(0) = 0, then F ∈ Oν(n, R) (using a
polarization formula for 〈·, ·〉ν and the result of Problem 4 ahead);

(ii) apply (i) for Λ = F − F(0), where F ∈ Eν(n, R) is now any pseudo-Euclidean
isometry, and conclude that F = TF(0) ◦ Λ, where TF(0) denotes translation by
F(0);

(iii) check that Ta1 ◦Λ1 = Ta2 ◦Λ2 implies a1 = a2 and Λ1 = Λ2, for all a1, a2 ∈ Rn
ν

and Λ1, Λ2 ∈ Oν(n, R), by simply evaluating both sides of the assumed equality
at 0.

See Problem 5 in the end of the chapter for another point of view about this.
The pseudo-Euclidean space has a natural decomposition as Rn

ν = Rn−ν ⊕Rν
ν, as

we have explored before in the proof of Theorem 1.11. This allows us to understand
the structure of Oν(n, R), by writing any Λ in block-form as

Λ =

(
ΛS B
C ΛT

)
,

where ΛS ∈ Mat(n− ν, R) e ΛT ∈ Mat(ν, R) are to be called the spatial and temporal
parts of Λ. Since Λ is an isomorphism and preserves causal types, we have that ΛS e
ΛT are also non-singular. The blocks ΛS and ΛT are intimately related:

Theorem 1.19. det ΛS = det ΛT det Λ.

Proof: Let can = (ei)
n
i=1 be the usual basis for Rn

ν , and also consider the orthonormal
basis of Rn

ν formed by the columns of Λ, namely, B=
(
Λe1, . . . , Λen

)
. Write Λ explic-

itly as Λ = (λij)1≤i,j≤n. Let’s “delete” the block B, defining a linear map T : Rn
ν → Rn

ν

by

T(Λej) =

{
Λej, if 1 ≤ j ≤ n− ν e
∑n

i=n−ν+1 λijei, if n− ν < j ≤ n.

We immediately have [Λ]can,B = Idn and

[T]B,can =

(
ΛS 0

C ΛT

)
.

Compute now the matrix [T]B. The expression T(Λej) = Λej, which holds for the
indices 1 ≤ j ≤ n − ν, tells us that the upper left and lower left blocks of [T]B are,
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respectively, Idn−ν and 0. To compute the determinant of [T]B by blocks, we need the
last ν components of T(Λej) in the base B, for n − ν < j ≤ n. Using the shorthand
εk

.
= εek , we have:

T(Λej) =
n

∑
i=n−ν+1

λijei =
n

∑
i=n−ν+1

λij

n

∑
k=1

εk〈ei, Λek〉νΛek

=
n

∑
i=n−ν+1

n

∑
k=1

n

∑
`=1

εkλijλ`k〈ei, e`〉νΛek

=
n

∑
k=1

(
n

∑
i=n−ν+1

n

∑
`=1

εkλijλ`kην
i`

)
Λek.

The desired last ν components correspond to n− ν < k ≤ n, and in these conditions,
we have that the entries of the lower right block of [T]B are given by

n

∑
i=n−ν+1

n

∑
`=1
−λijλ`k(−δi`) =

n

∑
i=n−ν+1

λijλik,

which we may recognize as the definition of the matrix product between Λ>T and ΛT.
We obtain:

[T]B=

 Idn−ν ∗
0 Λ>T ΛT

 .

In particular, it follows that det T = (det ΛT)
2. Moreover:

[TΛ]B = [T]B,can[Λ]can,B =

 ΛS 0

C ΛT

 .

Thus
(det ΛT)

2 det Λ = det T det Λ = det(TΛ) = det ΛT det ΛS,

and finally det ΛS = det ΛT det Λ, as wanted.

With this result in our hands, we may label the elements in Oν(n, R) by the signs of
the determinants of its spatial and temporal parts. This gives us a partition of Oν(n, R):

O+↑
ν (n, R)

.
= {Λ ∈ Oν(n, R) | det ΛS > 0 e det ΛT > 0}

O+↓
ν (n, R)

.
= {Λ ∈ Oν(n, R) | det ΛS > 0 e det ΛT < 0}

O−↑ν (n, R)
.
= {Λ ∈ Oν(n, R) | det ΛS < 0 e det ΛT > 0}

O−↓ν (n, R)
.
= {Λ ∈ Oν(n, R) | det ΛS < 0 e det ΛT < 0}

Then we may say that the elements of O+•
ν (n, R) preserve the orientation of space,

while the elements of O•↑ν (n, R) preserve the orientation of time (i.e., they are orthochro-
nous). We know that det Λ > 0 means that Λ preserves the algebraic orientation of
the vector space Rn

ν , but on the other hand, if Λ ∈ Oν(n, R) and det ΛS > 0 then Λ
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preserves the spatial orientation of the spacelike subspaces1 of Rn
ν . Using convenient

diagonal matrices with only 1’s and −1’s, we conclude the:

Corollary 1.20. O+↓
ν (n, R), O−↓ν (n, R) and O−↑ν (n, R) are cosets of O+↑

ν (n, R).

This means that we may focus our attention to the identity component O+↑
ν (n, R).

In low dimensions, we have the following classifications:

Theorem 1.21.

O+↑
1 (2, R) =

{(
cosh ϕ sinh ϕ
sinh ϕ cosh ϕ

)
∈ Mat(2, R) | ϕ ∈ R

}
.

Proof: Any Λ = (λij)
2
i,j=1 ∈ O+↑

1 (2, R) satisfies
λ2

11 − λ2
21 = 1

λ2
12 − λ2

22 = −1, and
λ11λ12 − λ21λ22 = 0

with λ11, λ22 ≥ 1. So we get unique t, s ∈ R≥0 with λ11 = cosh t and λ22 = cosh s. The
above equations imply that |λ21| = sinh t and |λ12| = sinh s. The additional condition
det Λ = 1 gives λ12λ21 = cosh t cosh s− 1 ≥ 0, so λ12 and λ21 have the same sign. No
matter which sign, the the third equation above now says that

0 = cosh t sinh s− sinh t cosh s = sinh(s− t) =⇒ s = t.

Then Λ is one of the following matrices, for t > 0:(
cosh t sinh t
sinh t cosh t

)
or

(
cosh t − sinh t
− sinh t cosh t

)
.

A somewhat similar strategy also gives us the classification in dimension 3:

Theorem 1.22. Any Λ ∈ O+↑
1 (3, R) is conjugate to one of the following matrices:1 0 0

0 cosh ϕ sinh ϕ
0 sinh ϕ cosh ϕ

 ,

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , or

1 −θ θ

θ 1− θ2/2 θ2/2

θ −θ2/2 1 + θ2/2

 ,

where ϕ, θ ∈ R. The transformation Λ is called hyperbolic, elliptic or parabolic, depending on
its conjugacy class.

Remark.

• One can prove that any Λ ∈ O+↑
1 (3, R) has at least one unit eigenvector, say v.

The causal character of v decides what is the class of Λ. Namely, Λ is hyperbolic
if v is spacelike (so Λ acts as an hyperbolic rotation in the timelike plane v⊥),
elliptic if v is timelike (so Λ acts as a Euclidean rotation in the spacelike plane
v⊥), and parabolic if v is lightlike (so Λ has that shear-like action in the null line
defined by v).

• This terminology is also useful in establishing the classification of helices in L3

(Lancret’s theorem), according to the causal type of the helix’s axis.
1Now read this sentence again. Slowly.
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1.3 Relation with Special Relativity

Here we will motivate the names “spacelike”, “timelike” and “lightlike”, and try
to give some relation between what we have done so far and the mathematics used
in Special Relativity. We focus on Lorentz-Minkowski space L4, whose points are, in
this setting, called events. Fixing the inertial frame given by the standard basis of L4,
we write the coordinates in L4 as (x, y, z, t). Assume that a particle with positive mass
moves in spacetime from event p to event q, through some time interval ∆t 6= 0, and
let

v = q− p = (∆x, ∆y, ∆z, ∆t)

be the spacetime displacement vector. The fact that the particle may not move at a
speed greater than the speed of light c may be written as(

∆x
∆t

)2

+

(
∆y
∆t

)2

+

(
∆z
∆t

)2

< c2.

So, if we let ṽ = (∆x/∆t, ∆y/∆t, ∆z/∆t) be the velocity vector of the worldline of the
particle, in R3 ∼= R3 ⊕ {0} ⊆ L4, the above means that ‖ṽ‖E < c. We henceforth set
the so called geometric units, where c = 1. With this in mind, computing

〈v, v〉L = (∆x)2 + (∆y)2 + (∆z)2 − (∆t)2

= (∆t)2

((
∆x
∆t

)2

+

(
∆y
∆t

)2

+

(
∆z
∆t

)2

− 1

)
= (∆t)2(‖ṽ‖2

E − 1)

= (∆t)2(‖ṽ‖E + 1)(‖ṽ‖E − 1)

we see that:

(1) if v is timelike, then ‖ṽ‖E < 1, and so the event p may influence event q if ∆t > 0,
and the other way around if ∆t < 0, e.g., via the propagation of a material wave.

(2) if v is lightlike and ∆t 6= 0, then ‖ṽ‖E = 1 and so the influence between the events
can only be given via the propagation of some eletromagnectic wave, or by the
emission of some light signal sent by one of the events and reaching the other.

(3) if v is spacelike with ∆t 6= 0, there is no influence relation between the events,
since ‖ṽ‖E > 1 means that the speed necessary for a particle starting at one event
to reach the spatial location of the other must be greater than the speed of light,
which is impossible: not even a photon or neutrino is fast enough to experience
both events. Both of them are not inside, or even in the boundary, of the other’s
lightcone.
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P

q

q

q

Figure 4: Physical interpretation for causal characters.

Let’s try and make more precise this notion of causal influence. For this, we need
to know what does it mean for a vector to point to the future (or past):

Definition 1.23. Let en = (0, . . . , 0, 1) ∈ Ln. A timelike or lightlike vector v ∈ Ln is
future-directed (resp. past-directed) if 〈v, en〉L < 0 (resp. 〈v, en〉L > 0).

Definition 1.24 (� and4). Given p ∈ Ln, we define the timecone and lightcone centered
at p by

CT(p) = {q ∈ Ln | q− p is timelike} and CL(p) = {q ∈ Ln | q− p is lightike}.

Naturally, using the previous definition we may divide those in future cones C+
T (p) and

C+
L (p), and past cones C−T (p) and C−L (p). We’ll say that p chronologically preceds q (resp.

causally preceds q) if q ∈ C+
T (p) (resp. q ∈ C+

T (p) ∪ C+
L (p)). These relations will be

denoted by p� q and p 4 q.

Let’s list some properties of these relations:

Proposition 1.25. Given p, u, v ∈ Ln, we have that:

(i) if u, v ∈ C+
T (p), then 〈u− p, v− p〉L < 0;

(ii) if u, v ∈ CT(p) and 〈u− p, v− p〉L < 0, then both u and v are in C+
T (p) or C−T (p);

(iii) � and 4 are transitive.

Geometrically, they’re easy to understand, but their proofs rely on technicalities
with hyperbolic trigonometric functions. You are welcome to try and prove them, but
you can check the proofs on [16] or [21], and more general results in the contexts of
spacetimes in General Relativity may be found on [4], [10] and [19].

Now, we have previously mentioned that the “fake norm” ‖ · ‖L has poor proper-
ties, which is mainly due to the fact that it is not induced by a positive-definite inner
product. In this context, here’s probably the best we can get:

Proposition 1.26 (Backwards Cauchy-Schwarz). Let u, v ∈ Ln be timelike vectors. Then
|〈u, v〉L| ≥ ‖u‖L‖v‖L. Furthermore, equality holds if and only if u and v are proportional.
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Proof: Write Ln = Ru⊕ u⊥ and write v = λu + u0, with λ ∈ R and u0 spacelike and
Lorentz-orthogonal to u. On one hand, we have 〈v, v〉L = λ2〈u, u〉L + 〈u0, u0〉L. On
the other, we compute:

〈u, v〉2L = 〈u, λu + u0〉2L
= λ2〈u, u〉2L
=
(
〈v, v〉L − 〈u0, u0〉L

)
〈u, u〉L

≥ 〈v, v〉L〈u, u〉L > 0,

using that u0 is spacelike and u is timelike. The result follow by taking roots. Note
that the equality holds if and only if u0 = 0, which is equivalent to u and v being
proportional.

With this we may define the hyperbolic angle between timelike vectors, both future-
directed or past-directed, in the same fashion one defines the angle between vectors
in a vector space with a positive-definite inner product. Since the image of cosh is
the interval [1,+∞[, there is a unique ϕ ≥ 0 such that 〈u, v〉L = −‖u‖L‖v‖L cosh ϕ.
Another consequence is the:

Corollary 1.27 (Backwards triangle inequality). Let u, v ∈ Ln timelike vectors, both
future-directed or past-directed. Then ‖u + v‖L ≥ ‖u‖L + ‖v‖L.

As a general strategy in Mathematics, once we have defined something (here, �
and 4), it is natural to turn our attention to the mappings related to what we have
defined. So we write the:

Definition 1.28. A map F : Ln → Ln is called a causal automorphism if it is bijective and
both F and F−1 preserve 4, that is:

x 4 y ⇐⇒ F(x) 4 F(y) and x 4 y ⇐⇒ F−1(x) 4 F−1(y).

Remark. It can be shown that preserving 4 is the same as preserving�.

Obvious examples of causal automorphisms are positive homotheties, translations,
and orthochronous Lorentz transformations. Amazingly, that’s all of them:

Theorem 1.29 (Alexandrov-Zeeman). Let n ≥ 3 and F : Ln → Ln be a causal automor-
phism. Then there is a positive constant c > 0, an orthochronous Lorentz transformation Λ,
and a vector a ∈ Ln such that

F(x) = cΛ(x) + a, for all x ∈ Ln.

Moreover, this decomposition is unique.

The proof of this theorem is actually difficult (except maybe for the uniqueness
part2), employing a mix of results from the linear algebra we have seen so far, Dar-
boux’s fundamental theorem of geometry (regarding certain doubly-ruled surfaces),

2Proof: assume c1Λ1(x) + a1 = c2Λ2(x) + a2 for all x ∈ Ln, according to the statement of the
theorem. Evaluate at 0 to get a1 = a2. Cancel the translation to get c1Λ1(x) = c2Λ2(x) for all x ∈ Ln.
Take the scalar square of both sides to get c2

1 = c2
2. Since c1, c2 > 0, it follows that c1 = c2. We conclude

that Λ1 = Λ2.
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and lifting properties of some maps. You can see more details in [16], for example.
The result is false for n = 2, in view of some deeper results about the conformal struc-
ture of L2 – a counter-example is discussed in [21]. Furthermore, this theorem has also
a topological flavor: the usual topology in Ln does not properly capture the causal
features of this spacetime, in contrast with the so called Zeeman topology, whose home-
omorphisms are precisely the causal automorphisms here discussed. For more about
these topologies, you may consult [15].

1.4 Cross product

With a new scalar product 〈·, ·〉ν, comes together a new notion of cross product:

Definition 1.30. The index ν cross product of v1, . . . , vn−1 ∈ Rn
ν is the unique vector

v ∈ Rn
ν such that 〈v, x〉ν = det(x, v1, . . . , vn−1), for all x ∈ Rn

ν . The existence and
uniqueness of such v is ensured by the non-degenerability of 〈·, ·〉ν. We then denote v
by v1 × · · · × vn−1, the index ν being understood.

Remark. Just like we denote the scalar products of R3 and L3 by 〈·, ·〉E and 〈·, ·〉L, we’ll
follows this convention for cross products, using ×E and ×L, respectively.

Just from the definition, we the cross product inherits some immediate properties
from det, registered in the:

Proposition 1.31. The index ν cross product in Rn
ν is (n − 1)-multilinear, totally skew-

symmetric, and orthogonal to each of its arguments. If n = 3, it additionaly satisfies the
identity 〈v1 × v2, v3〉ν = 〈v1, v2 × v3〉ν, for all v1, v2, v3 ∈ R3

ν (comma commutes with ×).

As important as these properties are, they still do not tell us how to explicitly com-
pute cross products. Just like when you first learned about cross products in R3, we’ll
keep using formal determinants with a convenient Laplace expansion along the first
row:

Proposition 1.32. Let B = (ui)
n
i=1 be a positive orthonormal basis for Rn

ν and let be given
vectors vj = ∑n

i=1 vijui ∈ Rn
ν , for 1 ≤ j ≤ n − 1. Using the shorthand εi

.
= εui for the

indicators of the elements in B, we have:

v1 × · · · × vn−1 =

∣∣∣∣∣∣∣∣∣
ε1u1 · · · εnun
v11 · · · vn1

... . . . ...
v1,n−1 · · · vn,n−1

∣∣∣∣∣∣∣∣∣ .

Proposition 1.33. Let u1, . . . , un−1, v1, . . . , vn−1 ∈ Rn
ν . Then we have

〈u1 × · · · × un−1, v1 × · · · × vn−1〉ν = (−1)ν det
(
(〈ui, vj〉ν)1≤i,j≤n−1

)
.

Proof: If (ui)
n−1
i=1 or (vj)

n−1
j=1 is linearly dependent, there’s nothing to do. Assume then

that both are linearly independent. Since both sides of the proposed equality are linear
in each of the 2n − 2 variables, and both the cross product and the determinant are
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totally skew-symmetric, we may assume without loss of generality that uk = eik and
v` = ej` , where (ei)

n
i=1 is the standard basis for Rn

ν and

1 ≤ i1 < · · · < in−1 ≤ n e 1 ≤ j1 < · · · < jn−1 ≤ n.

We will proceed with the analysis in cases, in terms of the indices i∗ and j∗ being
omitted in each of the two (n− 1)-uples of indices considered.

• If i∗ 6= j∗, both sides vanish. To wit, the left hand side equals 〈ei∗ , ej∗〉ν = 0, and
the determinant on the right hand side has the i∗-th row and the j∗-th column
only with zeros.

• If 1 ≤ i∗ = j∗ ≤ n− ν, the left hand side equals 〈ei∗ , ei∗〉ν = 1, and the right hand
side equals (−1)ν det Idn−1,ν = (−1)ν(−1)ν = 1.

• If n− ν < i∗ = j∗ ≤ n, the left hand side equals 〈ei∗ , ei∗〉ν = −1, and the right
hand side equals (−1)ν det Idn−1,ν−1 = (−1)ν(−1)ν−1 = −1.

Corollary 1.34 (Lagrange’s Identities). Let u, v ∈ R3
ν. Then:

‖u×E v‖2
E = ‖u‖2

E‖v‖2
E − 〈u, v〉2E,

〈u×L v, u×L v〉L = −〈u, u〉L〈v, v〉L + 〈u, v〉2L.

The orientation of the bases chosen for Rn
ν will be very important for defining con-

venient frames along lightlike and semi-lightlike curves in the next chapter. So we
might as well discuss this now in a bit greater generality. We follow the convention
that the standard basis for Rn

ν is, of course, positive.
If v1, . . . , vn−1 ∈ Rn

ν are linearly independent, do not span a lightlike hyperplane,
and we denote v = v1 × · · · × vn−1, then B =

(
v1, . . . , vn−1, v

)
is a basis for Rn

ν , and
it would natural to ask ourselves when such basis is positive or negative. The answer
is in the determinant of the matrix having these vectors in rows or columns. We have

det(v1, . . . , vn−1, v) = (−1)n−1 det(v, v1, . . . , vn−1) = (−1)n−1〈v, v〉ν
and, hence, positiveness of the basis B depends not only on the parity of n, but also

on the causal character of v. Explicitly: if v is spacelike, B is positive if n is odd, and
negative if n is even; if v is timelike, B is positive if n is even, and negative if n is odd.

In particular, for n = 3 we may represent all the possible cross products between
the elements in the standard basis of R3

ν by the following diagrams:

×E
e3

e1

e2

(a) In R3.

e1

e3

×L e2

−e1

−e3

×L

(b) In L3.

Figure 5: Understanding the cross products in R3
ν.
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The cross products are obtained by following the arrows. For example, we have
e2×E e3 = e1 and e1×L e2 = −e3. In R3, following the arrows in the opposite direction,
we obtain the results with the swapped sign (since ×E is skew), e.g., e1 ×E e3 = −e2.
In L3 this does not work anymore due to the presence of causal characters: note that
e3×L e2 = −e1 6= −(−e1) = e1. The cross products in L3 which cannot be obtained di-
rectly from the above diagram may be obtained by using that×L is skew, after finding
the up-to-sign correct product on the diagram.

Remark. These diagrams remain valid using any positive orthonormal basis of the
space, provided that in L3 the timelike vector (corresponding to e3) is the last one.

We’ll conclude the chapter stating two general facts from linear algebra, which will
be necessary for giving adequate definitions for the Gaussian and mean curvatures of
a surface later:

Lemma 1.35. Let B : Rn
ν ×Rn

ν → Z be a bilinear map, where Z is any vector space. If (vi)
n
i=1

and (wi)
n
i=1 are orthonormal bases for Rn

ν , then we have:

(i) ∑n
i=1 εvi B(vi, vi) = ∑n

i=1 εwi B(wi, wi);

(ii) det
(
(B(vi, vj))

n
i,j=1

)
= det

(
(B(wi, wj))

n
i,j=1

)
, provided Z = R.

These quantities (which are then invariant under change of basis) are denoted by tr〈·,·〉ν B and
det〈·,·〉ν B.
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Problems

Problem 1 (Triangles of light). Show that in Ln we cannot have lightlike vectors u1, u2
and u3 with u1 + u2 + u3 = 0 and {u1, u2, u3} linearly independent. Try to generalize.

Problem 2. Show that if S ⊆ Ln is lightlike then dim(S∩ S⊥) = 1, and conclude that if
S is a lightlike hyperplane, then S⊥ ⊆ S. Give an example of a subspace S ⊆ Rn

ν with
ν > 1 and dim(S ∩ S⊥) ≥ 2.

Problem 3 (Sylvester’s Law of Inertia). Show that every orthonormal basis for Rn
ν must

necessarily have n− ν spacelike vectors, ν timelike vectors, and no lightlike vectors.

Hint. There’s a proof in [17], which you should try to at least understand if you cannot
come up with a solution on your own.

Problem 4. Show that if a map Λ : Rn
ν → Rn

ν preserves 〈·, ·〉ν, then it is automatically
linear (and hence in Oν(n, R)).

Problem 5. Consider the semi-direct product Oν(n, R)n Rn
ν with operation ∗ given

by
(A, v) ∗ (B, w) = (AB, Aw + v).

Prove that this operation is indeed associative with identity element (Idn, 0), compute
(A, v)−1 for any (A, v) ∈ Oν(n, R)nRn

ν , and show that Φ : Oν(n, R)nRn
ν → Eν(n, R)

given by Φ(A, v) = Tv ◦ A is a group isomorphism.

Problem 6. Let Λ ∈ O1(n, R) be a Lorentz transformation.

(a) Show that a non-lightlike eigenvector must have 1 or −1 as associated eigenvalue.

(b) Show that the product of the eigenvalues associated with two linearly independent
lightlike vectors is 1.

(c) If W ⊆ Ln is an eigenspace of Λ containing a non-lightlike vector, show that every
other eigenspace of Λ is orthogonal to W.

(d) If W ⊆ Ln is a subspace, show that W is Λ-stable (i.e., Λ[W] ⊆ W) if and only if
W⊥ is Λ-stable.

Problem 7 (Margulis Invariant). Let F ∈ P(3, R) be a hyperbolic Poincaré transforma-
tion, given by F(x) = Λx + w, with Λ ∈ O+↑

1 (3, R) and w ∈ L3.

(a) Show that Λ has three positive eigenvalues 1/λ < 1 < λ. The eigenspaces associ-
ated to λ and 1/λ are automatically null lines.

(b) Let vλ and v1/λ be future-directed eigenvectors associated to λ and 1/λ, and v1 be
a unit eigenvector associated to 1 such that the base B= (vλ, v1, v1/λ) is positive.
Show that F leaves invariant a unique (affine) line parallel to v1, and acts on such
line by translation. That is, show that there are p ∈ L3 and αF ∈ R such that

F(p + tv1) = p + tv1 + αFv1,

for all t ∈ R. We say that αF is the Margulis invariant of F.
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(c) Show that αF = 〈w, v1〉L and use this to show that if F1, F2 ∈ P(3, R) are hyperbolic
and conjugate by an element of O1(3, R), then αF1 = αF2 (thus justifying the name
“invariant”).

(d) Show that for every non-zero integer n, αFn = nαF. Be careful with the case n < 0,
and pay close attention to the orientation of the eigenbasis associated to Λ−1.

Problem 8. Let x ∈ L3 be a spacelike vector. Show that T .
= x × _ : L3 → L3 is

diagonalizable, and the directions of the null lines given by the intersection of the
timelike plane x⊥ with the lightcone of L3 are eigenvectors of T.

Problem 9 (Lorentz γ factor). Let v = (∆x1, . . . , ∆xn−1, ∆t) ∈ Ln be the displacement
vector of a particle, moving between two events in spacetime. Show that the hyper-
bolic angle ϕ between v and en is characterized by

γ
.
= cosh ϕ =

1√
1− ‖ṽ‖2

E

,

where ṽ = (∆x1/∆t, . . . , ∆xn−1/∆t) ∈ Rn−1 is the velocity vector of the particle’s
trajectory in Rn−1. Show also that ‖ṽ‖E = tanh ϕ.

Problem 10 (Coordinate-free index raising). Let B : Rn
ν ×Rn

ν → R be a bilinear map.
There is a unique linear operator T : Rn

ν → Rn
ν such that B(x, y) = 〈Tx, y〉ν for all

x, y ∈ Rn
ν . Show that tr〈·,·〉ν B = tr T and det〈·,·〉ν B = (−1)ν det T.

Page 21



OSU/USP - MAT6702 Lecture Notes Ivo Terek Couto

2 Curve theory in L3

Remark. All curves and functions will be assumed of class C∞ (even though most of
the time C3 or C4 is enough), and I will always denote an open interval in R.

2.1 Admissible curves and the Frenet Trihedron

We know from classical differential geometry in Euclidean space R3 that:

• any regular curve α : I → R3 admits a reparametrization with unit speed, so we
may assume without loss of generality that ‖α′(s)‖E = 1;

• we may define, for each s ∈ I, a positive orthonormal frame (Tα(s), Nα(s), Bα(s))
for R3, pictured as attached to the point α(s) – these vectors are called the tangent,
normal and binormal vectors to α at s, and they form the so-called Frenet Trihedron
of α at s;

• there are functions κα : I → R≥0 and τα : I → R, called the curvature and torsion
of α, such thatT ′α(s)

N ′α(s)
B′α(s)

 =

 0 κα(s) 0
−κα(s) 0 τα(s)

0 −τα(s) 0

Tα(s)
Nα(s)
Bα(s)

 ,

for all s ∈ I.

With this data, one states and proves the Fundamental Theorem of Curves in R3,
which basically says that up to rigid motions of R3, α itself is determined by the func-
tions κα and τα. More precisely:

Theorem 2.1. Let κ, τ : I → R be given functions with κ > 0, p0 ∈ R3, s0 ∈ I and
(T0, N0, B0) a positive orthonormal basis for R3. Then there exists a unique unit speed regular
curve α : I → R3 such that:

• α(s0) = p0;

• (Tα(s0), Nα(s0), Bα(s0)) = (T0, N0, B0);

• κα(s) = κ(s) and τα(s) = τ(s) for all s ∈ I.

The proof consists, briefly speaking, in solving the Frenet system for α. From
this point onwards, we focus our attention on three-dimensional Lorentz-Minkowski
space L3. Recall that the definition of a (parametrized) regular curve does not really
depend on the scalar product we have equipped the ambient space with. And in the
same way that a parametrized curve α : I → L3 is regular if α′(t) 6= 0 for all t in I
(which is the same as saying that {α′(t)} is linearly independent for all t ∈ I), we may
take one step further and say that α is biregular if {α′(t), α′′(t)} is linearly independent
for all t ∈ I. You might be (correctly) guessing what a k-regular curve in Rn

ν is, by now.
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Silly as this may seem, this together with a non-degenerability chain condition
(such as the ones used to relate linear independence of a set of vectors with invertibil-
ity of the associated Gram matrix, or the one which allows us to perform the Gram-
Schmidt orthogonalization process) is precisely what we need to adapt the classical
curve theory developed in R3 for L3.

Definition 2.2. A curve α : I → L3 is called admissible if it is biregular, and for each
t ∈ I both the tangent line spanned by α′(t) and the osculating plane span(α′(t), α′′(t))
are non-degenerate.

We might as well define the notion of causal character for curves now:

Definition 2.3. Let α : I → Rn
ν be a regular curve and t0 ∈ I. We say that α is:

(i) spacelike at t0 if α′(t0) is a spacelike vector;

(ii) timelike at t0 if α′(t0) is a timelike vector;

(iii) lightlike at t0 if α′(t0) is a lightlike vector.

If the causal type of α′(t) is the same for all t ∈ I according to the above, we attribute
said causal type to α itself. If this is the case for curves in L3, we also define:

(iv) the indicator εα of α to be 1, −1 or 0 if α is spacelike, timelike or lightlike, respec-
tively.

(v) the coindicator ηα of α to be 1, −1 or 0 if the osculating planes are spacelike, time-
like or lightlike, respectively.

With this out of the way, let’s analyze the recipe described for curves in R3. First,
we need a good parametrization for the curve. It turns out that for this first step,
regularity is almost enough. Here’s a general statement:

Proposition 2.4. Let α : I → Rn
ν be a regular curve, which is not lightlike (at any point).

Then α admits a reparametrization with unit speed.

Proof: Fix t0 ∈ I and define s : I → R by

s(t) .
=
∫ t

t0

‖α′(u)‖ν du.

By the Fundamental Theorem of Calculus and the given hypotheses, we have that
s′(t) = ‖α′(t)‖ν > 0. So s is an increasing diffeomorphism from I into J .

= s[I], with
inverse h : J → I. Then α̃

.
= α ◦ h has unit speed.

Remark. For timelike curves in Ln, we call such parameter the proper time of α and
denote it by t. Physically, the condition ‖α′(t)‖L = 1 says that if α represents the
trajectory of an observer carrying a clock, then t− t0 is the time lapse measured by
such observer between the events α(t0) and α(t).

Now, the admissibility condition allows us to apply Corollary 1.7 (p. 7) for the
osculating planes to the curve and write the:
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Definition 2.5. Let α : I → L3 be a unit speed admissible curve. The tangent vector to
α at s is Tα(s)

.
= α′(s). Since the conditions on α ensure that the curvature of α at s,

κα(s)
.
= ‖α′′(s)‖L, never vanishes, we may define the normal vector to α at s to be the

unique unit vector Nα(s) such that T ′α(s) = κα(s)Tα(s). Then let the binormal vector
to α at s, Bα(s), be the unique unit vector such that (Tα(s), Nα(s), Bα(s)) is a positive
orthonormal basis for L3.

Remark.

• Note that 〈α′(s), α′(s)〉L = εα implies 2〈α′′(s), α′(s)〉L = 0, so indeed the vectors
Tα(s) and Nα(s) are orthogonal.

• It follows from our previous discussion regarding orientability of bases in Rn
ν

that Bα(s) = (−1)νεαηαTα(s)× Nα(s) (of course, we’re interested in what will
happen for ν = 1 here) – this can be also checked by applying Lagrange’s identity
(Corollary 1.34, p. 18) together with the definition of the index ν cross product as
the vector representing the linear functional induced by det and its arguments.

In the same setting as the above definition, the torsion τα of α will be the unique
function such thatT ′α(s)

N ′α(s)
B′α(s)

 =

 0 κα(s) 0
−εαηακα(s) 0 τα(s)

0 (−1)ν+1εατα(s) 0

Tα(s)
Nα(s)
Bα(s)

 ,

for all s ∈ I. Setting ν = 0 and εα = ηα = 1, we recover the usual Frenet equations in
R3. This means that the theory for admissible curves can be developed simultaneously
in both ambients R3 and L3. Here’s a more powerful version of Theorem 2.1:

Theorem 2.6. Let κ, τ : I → R be given functions with κ > 0, p0 ∈ R3
ν, s0 ∈ I and

(T0, N0, B0) a positive orthonormal basis for R3
ν. Then there exists a unique unit speed admis-

sible curve α : I → R3
ν such that:

• α(s0) = p0;

• (Tα(s0), Nα(s0), Bα(s0)) = (T0, N0, B0);

• κα(s) = κ(s) and τα(s) = τ(s) for all s ∈ I.

A detailed proof of this version of the Fundamental Theorem of Curves, and also
how to adapt what was summarized here for admissible curves not necessarily having
unit speed, see [21].

2.2 Curves with lightlike osculating plane

We will continue to work with biregular curves (without further comments). In
particular, we are excluding null lines. Let’s say that a unit speed non-lightlike and
non-admissible curve is semi-lightlike (observe that such curves are automatically space-
like). That is to say, a non-admissible curve is either lightlike or semi-lightlike, accord-
ing to whether the tangent line or the osculating plane is degenerate. Or equivalently,
a lightlike curve has (εα, ηα) = (0, 1) while a semi-lightlike curve has (εα, ηα) = (1, 0).
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It is possible to treat both lightlike and semi-lightlike curves simultaneously. How-
ever, there is an issue we must solve first: lightlike curves obviously do not admit
reparametrizations with unit speed. One can also understand the reason for this bear-
ing in mind that lightlike curves may be seen as worldlines of photons or neutrinos –
the proper time measured by it is zero, and so it cannot be used as the curve parameter.
If we cannot have ‖α′(t)‖L = 1, we’ll move on to the next best thing: ‖α′′(t)‖L = 1.
More precisely:

Lemma 2.7. Let α : I → Ln be a lightlike curve with ‖α′′(t)‖L 6= 0 for all t ∈ I. Then α
admits an arc-photon reparametrization. Namely, there is an open interval J ⊆ R and a
diffeomorphism h : J → I such that α̃ = α ◦ h satisfies ‖α̃′′(φ)‖L = 1 for all φ ∈ J.

Proof: Let’s check what such h must satisfy, and see if said conditions are actually
enough to define it. We should have α̃(φ) = α(h(φ)) for all φ ∈ J, and differentiating
everything twice we get

α̃′′(φ) = α′′(h(φ))h′(φ)2 + α′(h(φ))h′′(φ).

Since α is lightlike, α′′(h(φ)) is orthogonal to α′(h(φ)), and the given condition
‖α′′(h(φ))‖L 6= 0 says that α′′(h(φ)) is spacelike. So, taking scalar squares on both
sides yields

1 = 〈α′′(h(φ)), α′′(h(φ))〉Lh′(φ)4,

which readily implies that h′(φ) = ‖α′′(h(φ))‖−1/2
L . This is a first order differential

equation which depends continuously on h, and given φ0 ∈ J and t0 ∈ I, there is a
unique solution h with h(φ0) = t0. For this h, define α̃ = α ◦ h. This is the desired
reparametrization.

Example 2.8. Consider the helix α : R → L3 given by α(t) = (r cos t, r sin t, rt), where
r > 0 is fixed. Since α′(t) = (−r sin t, r cos t, r) is a lightlike vector for all t ∈ R, α itself
is lightlike. Moreover, α′′(t) = (−r cos t,−r sin t, 0) satisfies ‖α′′(t)‖L = r 6= 0 for all
t ∈ R. So, there is an arc-photon reparametrization. The differential equation to solve
becomes just h′(φ) = 1/

√
r. It follows that

α̃(φ) =

(
r cos

(
φ√

r

)
, r sin

(
φ√

r

)
,
√

rφ

)
, φ ∈ R,

is an arc-photon reparametrization of α.

When treating both types of curves at the same time, we will omit the distinguished
parameter s or φ, to avoid notation clutter. The next step is, like before, to define an
adapted frame for each point in the curve. But in this case, an orthonormal frame does
not carry geometric information about the curve’s acceleration vector. If we cannot
normalize the acceleration vector... we just don’t do it. We start with the:

Definition 2.9. Let α : I → L3 be a lightlike or semi-lightlike curve. We define the
tangent and normal vectors to the curve by

Tα
.
= α′ and Nα

.
= α′′,

respectively.
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We have given up on orthonormality, but not on positiveness. To complete the
frame, we need to find a third vector Bα, again to be called the binormal vector, such
that the basis (Tα, Nα, Bα) is positive at each point of the curve.

In general, we may define the orientation of a basis (v, w) for a lightlike plane in
terms of a choice of a euclidean-normal vector n to the plane. More precisely, we’ll say
that (v, w) is positive if (v, w, n) is a positive basis for L3, with n future-directed. If v is
lightlike and w is unit (and spacelike), we have that the cross product v×L w is also
lightlike, and hence proportional to v. Writing v×L w = λv for some λ ∈ R, we may
geometrically analyze the sign of λ as follows:

v

w

n

v×
E w

v×
L
w

(a) (v, w) positive (λ < 0)

n
v

w

v×
E w

v×
L
w

(b) (v, w) negative (λ > 0)

Figure 6: Orientations for a lightlike plane.

This way, if (v, w) is positive then λ < 0 and, similarly, if (v, w) is negative we
have λ > 0.

Back to defining (Tα, Nα, Bα): we may assume (by reparametrizing α if necessary)
that the bases (Tα, Nα) of the osculating planes are positive. In this case, to determine
the vector Bα, to be lightlike, we need to also prescribe the values of 〈Tα, Bα〉L and
〈Nα, Bα〉L. In view of the above, one of these values should be 0 (so that Bα is Lorentz-
orthogonal to the spacelike vector) and the other −1 (so that Bα is not proportional to
the other lightlike vector, preserving linear independence). Which of these products
will be 0 and which will be −1 should naturally depend on the causal type of α itself.
Choosing lightlike Bα such that 〈Tα, Bα〉L = −ηα and 〈Nα, Bα〉L = −εα, we can treat
all the cases simultaneously. So:

Proposition 2.10. Let α : I → L3 be a lightlike or semi-lightlike curve. The triple (Tα, Nα, Bα)
is a positive basis for L3, for each point in α.

Proof: Our goal is to show that det(Tα, Nα, Bα) > 0. Let’s do the case εα = 0 and
ηα = 1. Writing Bα(φ) as in terms of the basis

(
Tα(φ), Nα(φ), Tα(φ) ×E Nα(φ)

)
, we

see that the only relevant component of Bα(φ) for the determinant we’re going to
compute is the one in the direction of Tα(φ)×E Nα(φ) – call it µ(φ)Tα(φ)×E Nα(φ).
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Then

det(Tα(φ), Nα(φ), Bα(φ)) = µ(φ)det(Tα(φ), Nα(φ), Tα(φ)×E Nα(φ))︸ ︷︷ ︸
>0

,

so that we only have to verify that µ(φ) > 0. From Figure 6, we may write that
Tα(φ)×L Nα(φ) = λ(φ)Tα(φ) for a certain coefficient λ(φ) < 0 (since (Tα(φ), Nα(φ))
is positive). Applying Id2,1 on this equality, it follows that

Tα(φ)×E Nα(φ) = Id2,1
(
Tα(φ)×L Nα(φ)

)
= λ(φ)Id2,1Tα(φ) =⇒

=⇒ 〈Tα(φ)×E Nα(φ), Id2,1Tα(φ)〉E < 0.

Finallly, since Tα(φ) and Nα(φ) are Lorentz-orthogonal to Tα(φ), we have that

−1 = 〈Bα(φ), Tα(φ)〉L = µ(φ)〈Tα(φ)×E Nα(φ), Id2,1Tα(φ)〉E,

and so we conclude that µ(φ) > 0.

The triple
(
Tα, Nα, Bα

)
is then called the Cartan Trihedron of α.

Geometrically, when the curve is lightlike, the situation is as follows: the vector
Nα(φ) is spacelike, and so its orthogonal complement is a timelike plane which inter-
sects the lightcone of L3 in two null lines, with exactly one of them in the direction of
Tα(φ). The binormal vector is then in the direction of the other null line in Nα(φ)⊥,
being determined by the equation 〈Bα(φ), Tα(φ)〉L = −1. A similar interpretation can
be made for semi-lightlike curves.

Now, recall that the Frenet equations arise when we write the derivatives of the
vectors in the frame as a combination of the frame elements themselves. The equations
were then a quick consequence of the general formula for the orthonormal expansion
of a given vector – formula that we no longer have in this setting. Here’s what we
have instead:

Lemma 2.11. Let α : I → L3 and v ∈ L3. So:

(i) if α is lightlike, we have

v = −〈v, Bα(φ)〉LTα(φ) + 〈v, Nα(φ)〉LNα(φ)− 〈v, Tα(φ)〉LBα(φ),

for all φ ∈ I;

(ii) if α is semi-lightlike, we have

v = 〈v, Tα(s)〉LTα(s)− 〈v, Bα(s)〉LNα(s)− 〈v, Nα(s)〉LBα(s),

for all s ∈ I.

Remark. One possible mnemonic is: switch the position and sign only of the coeffi-
cients corresponding to lightlike directions.
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Proof: We will treat both cases at once, noting the relations εn
α = εα, ηn

α = ηα for all
n ≥ 1, εαηα = 0 and εα + ηα = 1, which follow from the fact that the only possibilities
of pairs are (εα, ηα) = (1, 0) and (εα, ηα) = (0, 1). Moreover, recall that we are still
assuming that (Tα, Nα) is positive. That being said, write v = aTα + bNα + cBα.
Taking all possible products with the elements of the Cartan Trihedron and organizing
the results in a matrix, we get〈v, Tα〉L

〈v, Nα〉L
〈v, Bα〉L

 =

 εα 0 −ηα

0 ηα −εα

−ηα −εα 0

a
b
c

 .

From the relations mentioned previously, the inverse of this coefficient matrix exists,
and it is just the original matrix, so that:a

b
c

 =

 εα 0 −ηα

0 ηα −εα

−ηα −εα 0

〈v, Tα〉L
〈v, Nα〉L
〈v, Bα〉L

 .

We are done.

Before this lemma comes into play, we have the:

Definition 2.12. Let α : I → L3 be a lightlike or semi-lightlike curve. The pseudo-torsion
of α is the function dddα : I → R given by dddα

.
= −〈N ′α, Bα〉L.

Remark. The function dddα is also called the Cartan curvature of α.

Theorem 2.13. Let α : I → L3 be a lightlike or semi-lightlike curve. Then we have thatT ′α
N ′α
B′α

 =

 0 1 0
ηαdddα εαdddα ηα

εα ηαdddα −εαdddα

Tα

Nα

Bα

 .

Remark. Explicitly, the coefficient matrices when α is lightlike or semi-lightlike are,
respectively,  0 1 0

dddα(φ) 0 1
0 dddα(φ) 0

 e

0 1 0
0 dddα(s) 0
1 0 −dddα(s)

 .

Proof: The first equation is the very definition of the normal vector. For the second
one, we apply Lemma 2.11 regarding N ′α as a column vector to get

N ′α =

 εα 0 −ηα

0 ηα −εα

−ηα −εα 0

〈N ′α, Tα〉L
〈N ′α, Nα〉L
〈N ′α, Bα〉L


=

 εα 0 −ηα

0 ηα −εα

−ηα −εα 0

−ηα

0
−dddα

 =

ηαdddα

εαdddα

ηα

 ,
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and so we have the second row of the sought coefficient matrix. Similarly for B′α, we
have

B′α =

 εα 0 −ηα

0 ηα −εα

−ηα −εα 0

〈B′α, Tα〉L
〈B′α, Nα〉L
〈B′α, Bα〉L


=

 εα 0 −ηα

0 ηα −εα

−ηα −εα 0

 εα

dddα

0

 =

 εα

ηαdddα

−εαdddα

 ,

and we obtain the last row.

Example 2.14. Let r > 0 and consider again the curve α : R→ L3 given by

α(φ) =

(
r cos

(
φ√

r

)
, r sin

(
φ√

r

)
,
√

rφ

)
,

which is lightlike with arc-photon parameter. We readily have

Tα(φ) = α′(φ) =

(
−
√

r sin
(

φ√
r

)
,
√

r cos
(

φ√
r

)
,
√

r
)

and

Nα(φ) = α′′(φ) =

(
− cos

(
φ√

r

)
,− sin

(
φ√

r

)
, 0
)

.

To compute Bα(φ), note that the cross product

Tα(φ)×E Nα(φ) =

(√
r sin

(
φ√

r

)
,−
√

r cos
(

φ√
r

)
,
√

r
)

,

seen in L3, is lightlike and future-directed, so that the basis (Tα(φ), Nα(φ)) of the
osculating plane is always positive (so there is no need to further reparametrize α).
Furthermore, in this case, we have one particularity: Tα(φ)×E Nα(φ) is also Lorentz-
orthogonal to Nα(φ). This implies that Bα(φ) must be a positive multiple of the
Tα(φ)×E Nα(φ). To obtain 〈Bα(φ), Tα(φ)〉L = −1, if suffices to take

Bα(φ) =

(
1

2
√

r
sin
(

φ√
r

)
,− 1

2
√

r
cos

(
φ√

r

)
,

1
2
√

r

)
.

Finally, we have:

dddα(φ) = −〈N ′α(φ), Bα(φ)〉L = − 1
2r

sin2
(

φ√
r

)
− 1

2r
cos2

(
φ√

r

)
+ 0 = − 1

2r
.
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Figure 7: Cartan Trihedron for α with r = 1/4.

From the names “pseudo-torsion” and “Cartan curvature”, you might be guessing
that dddα should be halfway between κα and τα. The next two results actually show how
far dddα actually is from τα:

Theorem 2.15. The only plane lightlike curves in L3 are null lines.

Proof: Clearly null lines are plane curves, and if α is not a null line, then it has an
arco-photon reparametrization. It then suffices to check that if α : I → L3 is a lightlike
curve with arc-photon parameter and 〈α(φ)− p, v〉L = 0 for all φ ∈ I, and certain
p, v ∈ L3, then v = 0. To wit, differentiating the given expression thrice we obtain:

〈Tα(φ), v〉L = 〈Nα(φ), v〉L = dddα(φ)〈Tα(φ), v〉L + 〈Bα(φ), v〉L = 0.

If follows from Lemma 2.11 (p. 27) that v = 0 as wanted.

Example 2.16. Let f : I → R be a smooth function with positive second derivative,
and consider α : I → L3 given by α(s) = (s, f (s), f (s)). We have that α is semi-
lightlike with Tα(s) = α′(s) = (1, f ′(s), f ′(s)) and Nα(s) = α′′(s) = (0, f ′′(s), f ′′(s)).
Also, Tα(s)×E Nα(s) = (0,− f ′′(s), f ′′(s)) is a future-directed lightlike vector, so that
(Tα(s), Nα(s)) is positive. We look for a lightlike vector Bα(s) = (a(s), b(s), c(s)),
Lorentz-orthogonal to Tα(s) and such that 〈Bα(s), Nα(s)〉L = −1. Explicitly, we have
the system: 

a(s)2 + b(s)2 − c(s)2 = 0
a(s) + f ′(s)(b(s)− c(s)) = 0
f ′′(s)(b(s)− c(s)) = −1

By substituting the third equation in the second one we obtain a(s) = f ′(s)/ f ′′(s).
With this, the first equation becomes

(b(s)− c(s))(b(s) + c(s)) = b(s)2 − c(s)2 = − f ′(s)2

f ′′(s)2 =⇒ b(s) + c(s) =
f ′(s)2

f ′′(s)
,

Page 30



OSU/USP - MAT6702 Lecture Notes Ivo Terek Couto

after using the third equation again. We then obtain

Bα(s) =
1

2 f ′′(s)

(
2 f ′(s), f ′(s)2 − 1, f ′(s)2 + 1

)
.

Finally, we compute

dddα(s) = −〈N ′α(s), Bα(s)〉L =
f ′′′(s)
f ′′(s)

.

In particular, note that α is contained in the (lightlike) plane Π : y− z = 0, but we may
choose functions f for which the pseudo-torsion does not vanish.

The above example shows that, in general, the pseudo-torsion of a semi-lightlike
curve is not a measure of how much the curve deviates from being a plane curve.
One might wonder next whether the sign of dddα says something about how the curve
crosses its own osculating planes (just like τα does in R3). Again, the answer is a
resounding no. Let α : I → L3 be lightlike and assume that 0 ∈ I and α(0) = 0. Taylor
expansion gives

α(φ) = φα′(0) +
φ2

2
α′′(0) +

φ3

6
α′′′(0) + R(φ),

where R(φ)/φ3 → 0 as φ → 0. Organizing this in terms of the Cartan Trihedron
F=

(
Tα(0), Nα(0), Bα(0)

)
, we see that the components of α(φ)− R(φ) are

α(φ)− R(φ) =

(
φ +dddα(0)

φ3

6
,

φ2

2
,

φ3

6

)
F

.

Figure 8: A “test” lightlike curve α.

Projecting, independent of the sign of dddα(0), we get:
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N
Α

H0L

B
Α

H0L

(a) Projection in the normal plane

T
Α

H0L

B
Α

H0L

(b) Projection in the rectifying plane

Figure 9: Projections in the coordinate planes of the Cartan Trihedron.

It might be worth noting here that even though the vectors of the Cartan Trihedron
are not mutually orthogonal, we may still picture them as in the above figures, bear-
ing in mind that only their linear independence and the assumed positive orientation
are relevant to concluding information about how α crosses the osculating plane. We
conclude that no matter the sign of the pseudo-torsion, any lightlike curve crosses its
osculating planes in the direction of the binormal vector.

If α is semi-lightlike instead, a similar calculation gives

α(s)− R(s) =
(

s,
s2

2
+dddα(0)

s3

6
, 0
)

F

,

which hints at a much more extreme situation:

Theorem 2.17. Every semi-lightlike curve is plane and contained in a lightlike plane.

Proof: If α : I → L3 is semi-lightlike, we seek p, v ∈ L3, with lightlike v, such that
〈α(s)− p, v〉L = 0 for all s ∈ I. If this condition is satisfied, differentiating twice
gives 〈Nα(s), v〉L = 0, and we conclude that v should be proportional to Nα(s) (two
Lorentz-orthogonal lightlike vectors are parallel by Corollary 1.12, p. 9). Motivated by
this, we seek a smooth function λ : I → R such that v = λ(s)Nα(s) is constant. This
would lead us to

0 = (λ′(s) +dddα(s)λ(s))Nα(s),

for all s ∈ I. Define v in such a way, by taking

λ(s) = exp
(
−
∫ s

s0

dddα(ξ)dξ

)
,

where s0 ∈ I is fixed. By construction, v is constant and then we just take p = α(s0).
This being understood, the justificative that such p e v satisfy everything we need is
the usual: consider f : I → R given by f (s) = 〈α(s)− α(s0), v〉L. Clearly f (s0) = 0
and f ′(s) = 〈Tα(s), v〉L = 0 for all s ∈ I.
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Back to the given Taylor expansion, we see that its only relevant projection is
γ : I → R2 given by

γ(s) =
(

s,
s2

2
+dddα(0)

s3

6

)
,

and it would be natural to seek a relation between the curvature of γ at 0 (as a plane
curve) and the pseudo-torsion dddα(0). There is a crucial detail here, however, which
will stop us from pursuing this question further: since the osculating plane is degen-
erate, the “metric” to be used in this R2 is not 〈·, ·〉E nor 〈·, ·〉L, but the ill-behaved
product 〈〈(x1, x2), (y1, y2)〉〉

.
= x1y1. In view of this, the expression

det(γ′(s), γ′′(s))
‖γ′(s)‖3 = 1 +dddα(0)s

may no longer be seen as the curvature3of γ, since 〈〈·, ·〉〉 is degenerate. Even worse,
there is no reasonable notion of curvature here, since every curve of the form (s, f (s)),
where f is a smooth function, can be mapped into the x axis via F : R2 → R2 given
by F(x, y) = (x, y − f (x)). The derivative DF(x, y) is a linear map which preserves
〈〈·, ·〉〉, and so F is a “rigid motion” of the degenerate plane. That is to say, all the
graphs of smooth functions are then congruent. Now, since every spacelike curve may
be parametrized as a graph over the x axis and the lightlike curves are vertical lines,
we conclude that it is not possible to assign a geometric invariant which distinguishes
those curves.

Despite all these technical issues, the pseudo-torsion is powerful enough by itself
to classify all lightlike and semi-lightlike curves in L3 up to Poincaré transformations.

Theorem 2.18. Let ddd : I → R be a continuous function, p0 ∈ L3, s0, φ0 ∈ I and (T0, N0, B0)
a positive basis for L3 such that B0 is a lightlike vector and (T0, N0) is a positive basis for a
lightlike plane. Then:

(i) if T0 is lightlike, N0 is unit spacelike and 〈T0, B0〉L = −1, there is a unique lightlike
curve α : I → L3 with arc-photon parameter such that

• α(φ0) = p0;

• (Tα(φ0), Nα(φ0), Bα(φ0)) = (T0, N0, B0);

• dddα(φ) = ddd(φ) for all φ ∈ I.

(ii) if T0 is unit spacelike, N0 is lightlike and 〈N0, B0〉L = −1, there is a unique unit speed
semi-lightlike curve α : I → L3 such that

• α(s0) = p0;

• (Tα(s0), Nα(s0), Bα(s0)) = (T0, N0, B0);

• dddα(s) = ddd(s) for all s ∈ I.
3Recall here that if γ : I → R2 is a regular plane curve in the Euclidean plane, not necessarily with

unit speed, then its curvature is given by κγ(t) = det(γ′(t), γ′′(t))/‖γ′(t)‖3.

Page 33



OSU/USP - MAT6702 Lecture Notes Ivo Terek Couto

Proof: We will treat case (i). In a similar way done in the proof of the classical version
of this result in R3, consider the following initial-value-problem in R9:

T ′(φ)
N ′(φ)
B′(φ)

 =

 0 1 0
ddd(φ) 0 1

0 ddd(φ) 0


T(φ)

N(φ)

B(φ)


e
(
T(φ0), N(φ0), B(φ0)

)
=
(
T0, N0, B0

)
.

Such a system of linear ordinary differential equations has a unique globally defined
solution

(
T(φ), N(φ), B(φ)

)
. We claim that this solution still satisfies, for all φ ∈ I, the

same conditions as in φ0. Namely, we will have that T(φ) and B(φ) are lightlike, N(φ)
is unit spacelike and Lorentz-orthogonal to B(φ), and 〈T(φ), B(φ)〉L = −1. To wit, we
now consider the following initial-value-problem for a : I → R6:{

a′(φ) = A(φ)a(φ),
a(φ0) =

(
0, 1, 0, 0,−1, 0

)
,

where

A(φ) =


0 0 0 2 0 0
0 0 0 2ddd(φ) 0 2
0 0 0 0 0 2ddd(φ)

ddd(φ) 1 0 0 1 0
0 0 0 ddd(φ) 0 1
0 ddd(φ) 1 0 ddd(φ) 0

 .

If the components of a(φ) are all the possible products between the frame vectors4

T(φ), N(φ) and B(φ), we conclude that the unique solution with the given initial
values is the constant vector a0 =

(
0, 1, 0, 0,−1, 0

)
, from where the claim follows. We

may then define

α(φ)
.
= p0 +

∫ φ

φ0

T(ξ)dξ.

To finish the proof, we must verify that this α is lightlike, has arc-photon parameter,
and dddα = ddd. Clearly we have α(φ0) = p0 and α′(φ) = T(φ), whence α is lightlike.
Differentiating again, we obtain α′′(φ) = N(φ), so that α has an arc-photon parameter.
This way, Tα(φ) = T(φ) and Nα(φ) = N(φ), and the positivity of these bases ensure
that Bα(φ) = B(φ) too. Now, differentiating Nα(φ) = N(φ) yields

dddα(φ)Tα(φ) + Bα(φ) = ddd(φ)T(φ) + B(φ),

and from all the equalities seen so far it follows that dddα(φ) = ddd(φ) for all φ ∈ I. The
uniqueness of such α is verified in the same way as in the proof of the classical theorem:
the Cartan Trihedron for another curve β will satisfy the same initial-value-problem,
implying that Tα = Tβ, and so α(φ0) = β(φ0) gives α = β.

Corollary 2.19. Two curves, both lightlike or semi-lightlike and with the same pseudo-torsion,
whose osculating planes are positively oriented, are congruent by a positive Poincaré transfor-
mation of L3.

4In order, a =
(
〈T , T〉L, 〈N, N〉L, 〈B, B〉L, 〈T , N〉L, 〈T , B〉L, 〈N, B〉L

)
.
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2.3 Lancret’s theorem and classification of helices

Here, as an application of the fundamental theorems seen so far, we can classify
helices in R3

ν. In R3, you should remember that a helix is a curve admiting a direction
which makes a constant angle with all the curve’s tangent lines. In L3, a priori we can
only speak of the hyperbolic angle between two timelike vectors pointing both to the
future or to the past, defined just after Proposition 1.26 (p. 15). We would like to work
with a definition of helix that works on both ambients simultaneously. Here’s one:

Definition 2.20. Let α : I → R3
ν be a regular curve. We will say that α is a helix if there

is a non-zero vector v ∈ R3
ν such that 〈Tα(t), v〉 is constant. Furthermore, in L3, we

will say that the helix is

(i) hyperbolic if v is spacelike;

(ii) elliptic if v is timelike;

(iii) parabolic if v is lightlike.

The direction defined by v is called the helical axis of α.

For admissible curves, we have the:

Theorem 2.21 (Lancret). Let α : I → R3
ν be a unit speed admissible curve. Then α is a helix

if and only if the ratio τα(s)/κα(s) is constant.

Proof: Assume that α is a helix whose helical axis is given by a vector v. If we define
c .
= 〈Tα(s), v〉, then 〈κα(s)Nα(s), v〉 = 0 readily implies 〈Nα(s), v〉 = 0, since we have

κα(s) 6= 0. Differentiating again, we get

−εαηακα(s)c + τα(s)〈Bα(s), v〉 = 0.

To see that the ratio τα(s)/κα is constant, it suffices to verify that 〈Bα(s), v〉 is a non-
zero constant. To wit:

d
ds
〈Bα(s), v〉 = (−1)ν+1εατα(s)〈Nα(s), v〉 = 0.

Now, if 〈Bα(s), v〉 = 0 for all s, then c = 0, and orthonormal expansion yields v = 0,
contradicting the definition of helix. Hence τα(s)/κα(s) is a constant.

Conversely, assume that τα(s) = cκα(s), for some c ∈ R. If c = 0 then α is a plane
curve and then Bα(s) = B defines the helical axis for α. If c 6= 0, we seek a constant
vector

v = v1(s)Tα(s) + v2(s)Nα(s) + v3(s)Bα(s)

such that 〈Tα(s), v〉 is also constant. This condition, in turn, is equivalent to v1(s) = v1
being constant. Differentiating the expression for v gives us that

0 = −εαηακα(s)v2(s)Tα(s)

+
(

v1κα(s) + v′2(s) + (−1)ν+1εαcκα(s)v3(s)
)

Nα(s)

+
(
cκα(s)v2(s) + v′3(s)

)
Bα(s).
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Now, linear independence implies that
0 = −εαηακα(s)v2(s)
0 = v1κα(s) + v′2(s) + (−1)ν+1εαcκα(s)v3(s),
0 = cκα(s)v2(s) + v′3(s).

and hence

v2(s) = 0 e v3(s) =
(−1)ν

c
εαv1.

Effectively, we have parametrized the helical axis for α, using v1 as the real parameter.
For example, setting v1 = 1 we may see that

v .
= Tα(s) +

(−1)ν

c
εαBα(s)

defines the helical axis for α.

Remark.

• In particular, this proof ensures the existence of precisely one helical axis for a
given helix.

• If α is a parabolic helix, then τα(s) = ±κα(s). The converse holds provided that
ηα = 1.

Corollary 2.22. A unit speed admissible helix α : I → R3
ν with both constant curvature and

constant torsion is congruent, for a certain choice of a, b ∈ R, to a piece of precisely one of the
following standard helices:

• β1(s) =
(
a cos(s/c), a sin(s/c), bs/c

)
;

• β2(s) =
(
a cos(s/c), a sin(s/c), bs/c

)
;

• β3(s) =
(
bs/c, a cosh(s/c), a sinh(s/c)

)
;

• β4(s) =
(
bs/c, a sinh(s/c), a cosh(s/c)

)
;

• β5(s) =
(
as2/2, a2s3/6, s + a2s3/6

)
;

• β6(s) =
(
as2/2, s− a2s3/6,−a2s3/6

)
,

where β1 is seen in R3, the remaining ones in L3, c .
=
√

a2 + b2 for β1 and β4, and
c .
=
√
|a2 − b2| for β2 and β3;

Proof: Let’s denote the curvature and torsion of α, respectively, by κ and τ. If α is seen
in R3, then it is congruent to β1. We focus then on what happens in L3. One vector
spanning the helical axis is

v = Tα(s)−
εακ

τ
Bα(s),

whence 〈v, v〉L = εα

(
1− ηακ2/τ2). In general, the causal type of all the curves given

in the statement of the result is determined by the constants a and b. Thus, a timelike
helix is:

Page 36



OSU/USP - MAT6702 Lecture Notes Ivo Terek Couto

• hyperbolic if κ > |τ|, and hence congruent to β3;

• elliptic if κ < |τ|, and hence congruent to β2, and;

• parabolic if κ = |τ|, and hence congruent to β5.

Similarly, a spacelike helic with timelike normal is necessarily hyperbolic, and so it is
congruent to β4. Lastly, a spacelike helix with timelike binormal is:

• hyperbolic if κ < |τ|, and hence congruent to β3;

• elliptic if κ > |τ|, and hence congruent to β2, and;

• parabolic if κ = |τ|, and hence congruent to β6.

Remark. In each case above, it is possible to find out what a and b should be in terms
of κ and τ. Have fun (or not).

Now, we move on to non-admissible curves. Since every semi-lightlike curve is
plane, it is automatically a helix. For lightlike curves the situation becomes interesting
again, and we have the:

Theorem 2.23 (Lancret, lightlike version). Let α : I → L3 be a lightlike curve with arc-
photon parameter. Then α is a helix if and only if its pseudo-torsion dddα is constant.

Proof: Assume that α is a helix and let v ∈ L3 define the helical axis. Namely, v
is such that 〈Tα(φ), v〉L = c ∈ R is constant. Differentiating that relation twice we
directly obtain

〈Nα(φ), v〉L = dddα(φ)c + 〈Bα(φ), v〉L = 0

for all φ ∈ I. We claim that c 6= 0 and that 〈Bα(φ), v〉L is constant, whence dddα(φ) is
also constant. To wit, if c = 0 then Lemma 2.11 (p. 27) says that v = 0, contradicting
the definition of helix. Moreover, we have

d
dφ
〈Bα(φ), v〉L = dddα(φ)〈Nα(φ), v〉L = 0.

Conversely, assume that dddα(φ) = ddd is a constant. If ddd = 0, then v = Bα(φ) defines
the helical axis for α. If ddd 6= 0, define

v .
= Tα(φ)−

1
ddd

Bα(φ).

Indeed, we have that
dv
dφ

= Nα(φ)−
1
ddd

dddNα(φ) = 0

so that v is constant. It follows that 〈Tα(φ), v〉L = 1/ddd is constant, as wanted.

Corollary 2.24. A lightlike helix α : I → L3 is congruent, for a certain choice of r > 0, to a
piece of precisely one of the following standard helices:
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• γ1(φ) =
(√

rφ, r cosh(φ/
√

r), r sinh(φ/
√

r)
)
;

• γ2(φ) =
(
r cos(φ/

√
r), r sin(φ/

√
r),
√

rφ
)
;

• γ3(φ) =

(
−φ3

4
+

φ

3
,

φ2

2
,−φ3

4
− φ

3

)
.

Proof: Let’s denote the constant pseudo-torsion of α simply by ddd. We know from the
previous proof that a vector defining the helical axis of α if ddd 6= 0 is

v = Tα(φ)−
1
ddd

Bα(φ),

whence 〈v, v〉L = 2/ddd, while we may take v = Bα(φ) if ddd = 0 (and hence 〈v, v〉L = 0).
Thus, we have that α is

• hyperbolic if ddd > 0, and hence congruent to γ1;

• elliptic if ddd < 0, and hence congruent to γ2, and;

• parabolic if ddd = 0, and hence congruent to γ3.
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Problems

Problem 11. Let α : I → Ln be a timelike future-directed curve (i.e., each α′(t) is future-
directed), and a, b ∈ I with a < b. Show that:

(a) the difference α(b)− α(a) is timelike and future-directed.

(b)
∫ b

a
‖α′(u)‖L du ≤ ‖α(b)− α(a)‖L, and equality holds if and only if the image of

the restriction α|]a,b[ is the line segment joining α(a) and α(b). What does this
mean physically?

Hint. In (a), write α = (β, xn), where β : I → Rn−1, and estimate ‖β(b)− β(a)‖E. For
(b), use the backwards Cauchy-Schwarz inequality (Proposition 1.26, p. 15).

Problem 12. Let α : I → L3 be a unit speed admissible curve. Show that α is a plane
curve if and only if τα = 0.

Problem 13. Let α : I → Ln be a lightlike curve, and suppose that α̃1 : J1 → Ln and
α̃2 : J2 → Ln are two arc-photon reparametrizations of α, so that α̃1(φ1(t)) = α̃2(φ2(t)).
Show that φ1(t) = φ2(t) + a for some a ∈ R. What is the meaning of the constant a?

Problem 14. Check the remaining case εα = 1 and ηα = 0 mentioned in the proof of
Proposition 2.10 (p. 26).

Problem 15. Find the Cartan Trihedron and the pseudo-torsion of α : R → L3 given
by

α(φ) =

(√
rφ, r cosh

(
φ√

r

)
, r sinh

(
φ√

r

))
,

where r > 0 is fixed.

Problem 16. Work through the proof of case (ii) in Theorem 2.18 (p. 33).

Problem 17. Show Corollary 2.19 (p. 34).

Problem 18. Show that every semi-lightlike curve α : I → L3 with non-zero constant
pseudo-torsion dddα(s) = ddd 6= 0, contained in the plane Π : y = z, is of the form

α(s) =
(
±s + a,

b
ddd2 eddds + cs + d,

b
ddd2 eddds + cs + d

)
,

for some constants a, b, c, d ∈ R (perhaps up to reparametrization).
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3 Surface theory

3.1 Causal characters (once more) and curvatures

The usual definition of a regular surface in R3 (embedded, with no self-intersections)
does not depend whatsoever of the product 〈·, ·〉E, and so it still makes perfect sense
in L3. This way, all the theory regarding the topology and calculus on surfaces is still
valid and applicable here. In particular, we assume known:

• that inverse images of regular values of real-valued smooth functions on R3 are
regular surfaces;

• what is the tangent plane to a surface at any given point;

• what is the differential of a smooth function defined in a surface, as well as what
are its partial derivatives computed with respect to a given coordinate chart.

For example, since 1 and −1 are both regular values of the scalar square function
F : L3 → R given by F(p) = 〈p, p〉L, we conclude that the de Sitter space S2

1 = F−1(1)
and the hyperbolic plane H2 (the upper connected component of F−1(−1)) are regular
surfaces:

(a) S2
1 (b) H2 ∪H2

−

Figure 10: The “spheres” in L3.

The product 〈·, ·〉L comes into play when we want to generalize the notion of causal
character to surfaces:

Definition 3.1. Let M ⊆ L3 be a regular surface. We’ll say that M is:

(i) spacelike if, for all p ∈ M, TpM is a spacelike plane;

(ii) timelike if, for all p ∈ M, TpM is a timelike plane;

(iii) lightlike if, for all p ∈ M, TpM is a lightlike plane.

In particular, we’ll say that M is non-degenerate if no tangent plane TpM is lightlike
(and degenerate otherwise). In this case, the indicator εM of M will be −1 or 1 according
to whether M is spacelike or timelike.
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Example 3.2.

(1) Let U ⊆ R2 be open, and f : U → R be a smooth function. The graph gr( f ) is:

• spacelike, if ‖∇F‖ < 1;

• timelike, if ‖∇F‖ > 1;

• lightlike, if ‖∇F‖ = 1.

Here’s a picture:

1

timelike

lightlike
∇ f

spacelike

Figure 11: Finding the causal character of graphs over the plane z = 0.

(2) Let F : L3 → R be a smooth function, a ∈ R a regular value for F, and M = F−1(a)
a level surface. Then it follows from Theorem 1.9 (p. 7) that M is spacelike (resp.
timelike, lightlike) if and only if the usual gradient ∇F is always timelike (resp.
spacelike, lightlike).

(3) If α : I → L3 is a smooth, regular and injective curve whose trace lies in the plane
y = 0 but does not touch the z-axis, then we obtain a regular surface M by rotating
α around the z-axis. The causal character of M is the same one as α’s. One can
understand this by noting that the parallels of revolution are always spacelike, so
the only way of obtaining a lightlike or timelike direction comes from a possible
contribution from α.

Figure 12: Spanning a surface of revolution in L3.
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We have topological restrictions on the causal character of a surface:

Proposition 3.3. There is no compact regular surface with constant causal character in L3.

Proof: Let M ⊆ L3 be a compact regular surface. By compactness, both projections

M 3 (x, y, z) 7→ x ∈ R and M 3 (x, y, z) 7→ z ∈ R

admit critical points in M, say, p and q. Then TpM is timelike, while TqM is spacelike.

Just like for regular surfaces in R3, we will say that the restriction of 〈·, ·〉L to the
tangent planes of a regular surface M ⊆ L3 is its First Fundamental Form. If there’s
a first form, there should be at least a second one too. And as we might recall, for
this we needed some orientability condition. So we’ll say that a Gauss map for a non-
degenerate regular surface M ⊆ L3 is a smooth choice of unit normal vectors along
M, that is, a smooth map N : M → L3 such that ‖N(p)‖L = 1 and N(p) ⊥ TpM,
for all p ∈ M. For surfaces in R3, the codomain of a Gauss map is automatically the
sphere S2, but in L3 this depends on the causal character of M. Namely, the codomain
of N is the de Sitter space S2

1 if M is timelike, while it is the hyperbolic plane H2 if
M is spacelike with N future-directed (or it’s reflection through the plane z = 0 if
N is past-directed). Moreover, we see that if M has a fixed causal character, then
εM = 〈N(p), N(p)〉L. This is useful for keeping track of the correct signs for some
formulas we’ll soon deduce.

To understand how a non-degenerate surface M bends in space L3 near a point
p ∈ M, we may focus on the “linear approximation” to M at p: the tangent plane TpM.
Understanding how the tangent planes change near p is the same as understanding
how their orthogonal complements N(p) change. The motto

“rate of change = derivative”

leads to the:

Definition 3.4. Let M ⊆ L3 be a non-degenerate regular surface, and N be a Gauss
map for M. The Weingarten operator for M at p is the differential−dN p : TpM→ TpM.
The Second Fundamental Form of M at p is the bilinear map IIp : TpM× TpM→ (TpM)⊥

characterized by the relation 〈IIp(v, w), N(p)〉L = 〈−dN p(v), w〉L, for all v, w ∈ TpM.
Its scalar version ĨIp is just this common quantity, that is, ĨIp(v, w) = 〈IIp(v, w), N(p)〉L.

Remark. Note that if M is spacelike, then TpM ∼= TN(p)(H
2), since both planes are

the Lorentz-orthogonal complement of N(p). Similarly, is M is timelike, for the same
reason we have TpM ∼= TN(p)(S

2
1), and this is why we may regard −dN p as a linear

operator in TpM. The negative sign, by the way, is meant to reduce signs in further
formulas, is not related to the ambient L3, and appears naturally in the context of
submanifold theory in pseudo-Riemannian geometry, in general.

One can prove, just like in R3, that dN p is a self-adjoint operator with respect
to 〈·, ·〉L, so that both IIp and ĨIp are symmetric. We will conclude this preliminary
discussion by giving precise definitions of “curvature” and formulas for expressing
them in terms of a parametrization of the surface.
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Definition 3.5. Let M ⊆ L3 be a non-degenerate regular surface. The mean curvature
vector and the Gaussian curvature of M at a point p ∈ M are defined by

H(p) .
=

1
2

tr 〈·,·〉L(IIp) =
1
2
(εv1IIp(v1, v1) + εv2IIp(v2, v2)) and

K(p) .
= −det〈·,·〉L(ĨIp) = −det

(
(IIp(vi, vj))

2
i,j=1

)
,

where (v1, v2) is any orthonormal basis for TpM.

Remark.

• The negative sign in the definition of K accounts for the loss of information we
have when considering ĨI instead of II there.

• If we write H(p) = H(p)N(p), H(p) is called the mean curvature of M at p.
Choosing the opposite Gauss map changes the sign of H, but not of H.

Still assuming this whole setup, we recall the classical notation for the coefficients
of the fundamental forms. If x : U → x[U] ⊆ M is a parametrization, then we set

E .
=

〈
∂x
∂u

,
∂x
∂u

〉
L

, F .
=

〈
∂x
∂u

,
∂x
∂v

〉
L

and G .
=

〈
∂x
∂v

,
∂x
∂v

〉
L

,

as well as

e .
=

〈
∂2x
∂u2 , N ◦ x

〉
L

, f .
=

〈
∂2x

∂u∂v
, N ◦ x

〉
L

and g .
=

〈
∂2x
∂v2 , N ◦ x

〉
L

,

so that (with a mild abuse of notation) we have

II
(

∂x
∂u

)
= εMeN, II

(
∂x
∂u

,
∂x
∂v

)
= εM f N, and II

(
∂x
∂v

)
= εMgN.

To produce orthonormal bases for the tangent planes to M, needed for computing
H and K via the definitions, the Gram-Schmidt process comes to rescue. We obtain
similar formulas for the ones in R3, which now take into account the causal character
of M itself:

Proposition 3.6. Let M ⊆ L3 be a non-degenerate regular surface, and x : U → x[U] ⊆ M
a parametrization for M. Then

H ◦ x =
εM

2
Eg + eG− 2F f

EG− F2 and K ◦ x = εM
eg− f 2

EG− F2 .

Do note that setting εM = 1 if M ⊆ R3, the above gives also correct results for the
mean and Gaussian curvatures of M. The details of these maybe-not-so-short calcula-
tions may be consulted, for example, in [21]. They also follow from the more general
theory developed in [17]. Here are some more examples:
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Example 3.7.

(1) Planes admit a constant Gauss map, so the Weingarten operator vanishes. Hence
we get H = K = 0.

(2) The position map N(p) = p is a Gauss map for both the de Sitter space S2
1 and the

hyperbolic plane H2. Taking the causal characters into account, we obtain K = 1
and H = −1 for S2

1, and K = −1 and H = 1 for H2. If you studied anything
about hyperbolic geometry before, this serves both as a quick sanity check (hyper-
bolic plane should have negative curvature) as well as another justification for the
presence of the minus sign in the definition of K.

(3) If f : U ⊆ R2 → R is a smooth function for which the graph gr( f ) ⊆ L3 is non-
degenerate, by applying the coordinate formulas given in Proposition 3.6 (p. 43),
we obtain

K =
f 2
uv − fuu fvv

(−1 + f 2
u + f 2

v )
2 and H =

fuu(−1 + f 2
v )− 2 fu fv fuv + fvv(−1 + f 2

u)

| − 1 + f 2
u + f 2

v |3/2 .

3.2 The Diagonalization Problem

We know from linear algebra the Real Spectral Theorem: that if (V, 〈·, ·〉) is a finite-
dimensional real vector space equipped with a positive-definite inner product, and
T : V → V is a linear operator which is self-adjoint with respect to 〈·, ·〉, then V admits
an orthonormal basis of eigenvectors of T. This result is no longer true if 〈·, ·〉 is not
positive-definite, and non-degeneracy alone is not strong enough to ensure any good
conclusions. There is one adaptation, though: if dim V ≥ 3 and 〈T(v), v〉 6= 0 for all
non-zero v ∈ V with 〈v, v〉 = 0, then V admits an orthonormal basis of eigenvectors
of T. A very surprising proof using integration and homotopy, due to Milnor, may be
found in [9].

We have seen that the Weingarten operator of any non-degenerate surface M ⊆ L3

is still self-adjoint with respect to the First Fundamental Form of M. So we conclude
that if M is spacelike, then −dN p is diagonalizable: the eigenvalues κ1(p) and κ2(p)
are called the principal curvatures of M at p, and the (orthogonal) eigenvectors are
called the principal directions of M at p. We cannot guarantee the existence of prin-
cipal directions for timelike surfaces in M, even with the sharpened version of the
Spectral Theorem mentioned above, since dim TpM = 2 < 3.

That being said, our goal here is to understand precisely when do we have princi-
pal directions for timelike surfaces in L3.

Proposition 3.8. Let M ⊆ L3 be a non-degenerate regular surface with diagonalizable Wein-
garten operators. Then

H(p) = εM
κ1(p) + κ2(p)

2
and K(p) = εMκ1(p)κ2(p).

Remark. Usually one defines H and K for surfaces in R3 by the above formulas (set-
ting εM = 1, of course). The reason why we went through the hassle of using metric
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traces and determinants to define them in L3 was just so we could have a unified
approach that worked in all the cases simultaneously, even when we could not use
principal curvatures. Also note that the expression for H justifies the name “mean”
curvature.

We might as well start understanding a class of surfaces which, in general, have
diagonalizable Weingarten operators.

Definition 3.9. Let M ⊆ L3 be a non-degenerate regular surface, and p ∈ M. The
point p is called umbilic if there is λ(p) ∈ R such that

ĨIp(v, w) = λ(p)〈v, w〉,
for all v, w ∈ TpM. We will also say that M is totally umbilic if all its points are umbilic.

Informally, a point is umbilic if there the two fundamental forms of M are “linearly
dependent”. In umbilical points, we have −dN p = λ(p)IdTp M. Indeed, for all vec-
tors v, w ∈ TpM we have that 〈λ(p)v, w〉L = ĨIp(v, w) = 〈−dN p(v), w〉L, and the
conclusion follows from non-degeneracy of 〈·, ·〉L restricted to TpM.

You might remember from the classical theory in R3 that there, the only totally
umbilic surfaces are spheres and planes. Since the de Sitter space S2

1 and the hyperbolic
plane H2 (together with its reflection H2

−) play the role of spheres in L3, the following
result (with the same proof as in R3) should not be a surprise:

Theorem 3.10 (Characterization of totally umbilic surfaces in L3). Let M ⊆ L3 be a
non-degenerate, regular, connected and totally umbilic surface. Then M is contained in some
plane, or there is a center c ∈ R3

ν and a radius r > 0 such that

(i) if M is spacelike, then M ⊆ H2(c, r) or M ⊆ H2
−(c, r);

(ii) if M is timelike, then M ⊆ S2
1(c, r).

Remark. Here, we mean S2
1(c, r) = {p ∈ L3 | 〈p− c, p− c〉L = r2}, etc.. Moreover,

in the timelike case, what decides between H2(c, r) or H2
−(c, r) is the direction of the

timelike vector p− c for some (hence all) p ∈ M (due to connectedness).

Figure 13: The totally umbilic surfaces in L3.
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Back to the diagonalization problem. Let’s see necessary conditions for an affirma-
tive answer to the problem.

Proposition 3.11. Let M ⊆ L3 be a non-degenerate regular surface, and p ∈ M such that
the Weingarten operator at p is diagonalizable. Then H(p)2 − εMK(p) ≥ 0, with equality
holding if and only if p is umbilic.

Proof: Directly, we have:

0 ≤
(

κ1(p)− κ2(p)
2

)2

=
κ1(p)2 − 2κ1(p)κ2(p) + κ2(p)2

4

=
κ1(p)2 + 2κ1(p)κ2(p) + κ2(p)2

4
− κ1(p)κ2(p)

=

(
κ1(p) + κ2(p)

2

)2

− κ1(p)κ2(p)

= (εMH(p))2 − εMK(p) = H(p)2 − εMK(p).

Equality holds if and only if κ1(p) = κ2(p), that is to say, if p is umbilic.

So we have a necessary, but not sufficient condition for the diagonalizability of the
Weingarten operators. What we can see, though, is that the quantity H(p)2 − εMK(p)
will play a big role in our analysis, which will be done in full detail in the proof of the
desired:

Theorem 3.12 (Diagonalization in L3). Let M ⊆ L3 be a non-degenerate regular surface,
N a Gauss map for M, and p ∈ M. Then:

(i) if H(p)2 − εMK(p) > 0, −dN p is diagonalizable;

(ii) if H(p)2 − εMK(p) < 0, −dN p is not diagonalizable;

(iii) if H(p)2 − εMK(p) = 0 and M is spacelike, then p is umbilic, and hence −dN p is
diagonalizable.

Remark. If H(p)2 − εMK(p) = 0 and M is timelike, the criterion is inconclusive and
the Weingarten operator may or may not be diagonalizable.

Proof: Consider the characteristic polynomial c(t) of −dN p, given by

c(t) = t2 − tr(−dN p) t + det(−dN p) = t2 − 2εMH(p)t + εMK(p),

whose discriminant is:

(−2εMH(p))2 − 4(εMK(p)) = 4(H(p)2 − εMK(p)).

• If H(p)2 − εMK(p) > 0, then c(t) has two distinct roots, which are the eigen-
values of−dN p, who then admits two linearly independent eigenvectors (hence
diagonalizable).
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• If H(p)2 − εMK(p) < 0, c(t) does not have any real roots. Thus −dN p has no
real eigenvalues, and hence it is not diagonalizable.

• Now assume that H(p)2 − εMK(p) = 0 and that M is spacelike, that is, that
K(p) = −H(p)2. From the expression given for the discriminant of c(t), it fol-
lows that −H(p) is an eigenvalue of −dN p. So, there is a unit (spacelike) vector
u1 ∈ TpM such that dN p(u1) = H(p)u1. Consider then an orthogonal basis
B

.
= (u1, u2) of TpM. Then:

[
dN p

]
B
=

(
H(p) a

0 b

)
, where dN p(u2) = au1 + bu2.

It suffices to check that a = 0 and b = H(p) to conclude the proof. Applying
〈·, u1〉L, we have:

a = 〈dN p(u2), u1〉L = 〈u2, dN p(u1)〉L = 〈u2, H(p)u1〉L = H(p)〈u2, u1〉L = 0.

On the other hand:

−H(p)2 = K(p) = −det(−dN p) = −det(dN p) = −H(p)b,

so that H(p)b = H(p)2. If H(p) = 0, then dN p is the zero map (hence diagonal-
izable). If H(p) 6= 0, we obtain b = H(p), as wanted. Note that in this case p is
umbilic.

Observe that in the above proof, we would not be able to control the causal type
of the eigenvector u1 in the last case discussed if M were timelike. If u1 were lightlike,
we could not consider the basis B to proceed with the argument. With this in mind,
we obtain the following extension of the theorem:

Corollary 3.13. Let M ⊆ L3 be a timelike regular surface and p ∈ M be a point with
H(p)2 − K(p) = 0. If −dN p has no lightlike eigenvectors, then it is diagonalizable and p is
umbilic, with both principal curvatures equal to −H(p).

Let’s conclude the section exploring examples of timelike surfaces for which the
equality H(p)2 = K(p) holds and anything can happen with the Weingarten opera-
tors.

Example 3.14.

(1) For the de Sitter space S2
1, we had −dN p = −IdTp(S2

1)
(hence diagonalizable), with

K = 1 and H = −1, so that H2 − K = 0.

(2) Consider a lightlike curve α : I → L3 with arc-photon parameter. Define the B-
scroll associated to α, x : I ×R→ L3 given by x(φ, t) .

= α(φ) + tBα(φ). Restricting
enough the domain of x, we may assume that its image M is a regular surface. Put,
for each φ ∈ I, D(φ)

.
= det

(
Tα(φ), Nα(φ), Bα(φ)

)
> 0. Computing the derivatives

xφ(φ, t) = Tα(φ) + tdddα(φ)Nα(φ) and xt(φ, t) = Bα(φ),
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we immediately have that

(gij(φ, t))1≤i,j≤2 =

(
t2dddα(φ)2 −1
−1 0

)
,

whence M is timelike. Here, gij is shorthand for the coefficients of the First Funda-
mental Form. Noting that |det((gij(φ, t))1≤i,j≤2)| = 1, we directly obtain that

N(x(φ, t)) = Tα(φ)×L Bα(φ) + tdddα(φ)Nα(φ)×L Bα(φ).

Computing the second order derivatives

xφφ(φ, t) = tdddα(φ)
2Tα(φ) + (1 + tddd′α(φ))Nα(φ) + tdddα(φ)Bα(φ),

xφt(φ, t) = dddα(φ)Nα(φ) and
xtt(φ, t) = 0,

we obtain the coefficients hij of the Second Fundamental Form:

(hij(φ, t))1≤i,j≤2 =

(
(−1− tddd′α(φ) + t2dddα(φ)3)D(φ) −dddα(φ)D(φ)

−dddα(φ)D(φ) 0

)
.

It follows that

K(x(φ, t)) = dddα(φ)
2D(φ)2 and H(x(φ, t)) = dddα(φ)D(φ).

We then know that, in each point x(φ, t),−dNx(φ,t) has only one eigenvalue (namely,
dddα(φ)D(φ)). It suffices to check then that there are points in M for which the as-
sociated eigenspace has dimension 1 – this shows that the Weingarten operators at
those points are not diagonalizable. To wit, we have[

−dNx(φ,t)

]
Bx

= D(φ)

(
dddα(φ) 0

1 + tdddα(φ) dddα(φ)

)
,

and the kernel of (
0 0

1 + tdddα(φ) 0

)
has always dimension 1 when 1 + tdddα(φ) 6= 0 (e.g., along α itself, setting t = 0).
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Problems

Problem 19. Work through Example 3.2 (p. 41).

Problem 20 (Horocycles). Let v ∈ L3 be a future-directed lightlike vector, and c < 0.
The set Hv,c

.
= {x ∈ H2 | 〈x, v〉L = c} is called a horocycle of H2 based on v. Let

α : I → Hv,c be a unit speed curve (assume that 0 ∈ I, reparametrizing if necessary).

(a) Show that

α(s) = − s2

2c
v + sw1 + w2,

for some unit and orthogonal vectors w1 and w2, with w1 spacelike, w2 timelike,
〈w1, v〉L = 0 and 〈w2, v〉L = c.

(b) Conclude that α is a semi-lightlike curve whose pseudo-torsion identically van-
ishes.

Problem 21. Compute the Gaussian and mean curvatures for the surface of revolution
spanned by a unit speed curve as in item (3) of Example 3.2 (p. 41).

Remark. One can also study surfaces of revolution in L3 generated by hyperbolic ro-
tations about the x-axis instead of the timelike z-axis. See [21] for more about this.

Problem 22. Let α : I → L3 and β : J → L3 be two smooth lightlike curves such that
{α′(u), β′(v)} is linearly independent for all (u, v) ∈ I × J. Then, reducing I and J if
necessary, the image M of the sum x : I × J → L3 given by x(u, v) = α(u) + β(v) is a
regular surface. Show that M is timelike with H = 0.

Remark. Actually, the “converse” holds: every timelike surface with H = 0 admits
parametrizations like this x above. See [6] for more details.

Problem 23. Prove Theorem 3.10 (p. 45).

Problem 24. Let M ⊆ L3 be a non-degenerate regular surface, and N : M → L3 a
Gauss map for M. Show that the Weingarten operator −dN p is self-adjoint with re-
spect to 〈·, ·〉L, for all p ∈ M. Namely, show that given v, w ∈ TpM, we have

〈dN p(v), w〉L = 〈v, dN p(w)〉L.

Hint. Use a parametrization of M and do it locally.

Problem 25. Make sure you understand how to obtain Corollary 3.13 (p. 47) by adapt-
ing the proof of Theorem 3.12 (p. 46).

Problem 26. Consider the anti-de Sitter space H2
1

.
= {p ∈ R3

2 | 〈p, p〉2 = −1}. Try to
understand how to translate the results discussed for the ambient L3 for the ambient
R3

2 and show that H2
1 has constant Gaussian curvature K = −1.
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Extra #1: Riemann’s classification of surfaces with con-
stant K

Up to this moment, we know some surfaces with constant Gaussian curvature.
Namely, we have met:

• The planes R2 and L2, with K = 0;

• The sphere S2 and the de Sitter space S2
1, with K = 1;

• The hyperbolic plane H2 and the anti-de Sitter H2
1, with K = −1.

Our goal here is to show that, locally, every surface with constant K is one of those
surfaces described above. More precisely, we want to prove the:

Theorem 3.15 (Riemann). Let (M, 〈·, ·〉) be a geometric surface with constant Gaussian
curvature K ∈ {−1, 0, 1}. Then:

(A) if the metric is Riemannian, every point in M has a neighborhood isometric to an open
subset of

(i) R2, if K = 0;

(ii) S2, if K = 1;

(iii) H2, if K = −1,

(B) while if the metric is Lorentzian, to an open subset of

(i) L2, if K = 0;

(ii) S2
1, if K = 1;

(iii) H2
1, if K = −1.

By geometric surface, we mean an abstract surface (2-dimensional manifold) en-
dowed with a metric tensor (called Riemannian if positive-definite, or Lorentzian if it
has index 1). The proof strategy consists in constructing parametrizations for which
the metric assumes a simple form. To actually do this, we will use geodesics, which are
know to be plentiful in any geometric surface.

Recall here that given any regular parametrization x : U ⊆ R2 → x[U] ⊆ M of our
surface, we set gij = 〈xu, xv〉, so that (gij)2

i,j=1 is the inverse matrix of (gij)
2
i,j=1, and the

Christoffel symbols of x are defined by

Γk
ij =

2

∑
r=1

gkr

2

(
∂gir

∂uj +
∂gjr

∂ui −
∂gij

∂ur

)
,

where we identify u↔ u1, v↔ u2, and i, j, k ∈ {1, 2}. Geodesics are curves γ : I → M
with the property that given any parametrization x and writing γ(t) = x(u(t), v(t)),
we have

ük +
k

∑
i,j=1

Γk
iju̇

iu̇j = 0, k = 1, 2.
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Further general facts about geodesics (which won’t be necessary here) can be con-
sulted in pretty much any book (we list here [7], [17], [20] or [21], for concreteness). To
avoid singularities, we won’t consider lightlike geodesics.

Thus, we fix once and for all a geometric surface (M, 〈·, ·〉), with metric tensor of index
ν ∈ {0, 1}, and a unit speed geodesic γ : I → M. For each v ∈ I, consider a unit speed
geodesic γv : Jv → M, which crosses γ orthogonally at the point γv(0)

.
= γ(v). Setting

U .
= {(u, v) ∈ R2 | v ∈ I e u ∈ Jv},

define x : U → x(U) ⊆ M by x(u, v) = γv(u).

γv

γ(v)

γ

Figure 14: Construction of a Fermi chart x.

Definition 3.16. The chart x above defined is called a Fermi chart for M, centered in γ.

We’ll also fix until the end of the section this Fermi chart x : U → x(U) ⊆ M so
constructed.

Remark.

• When 〈·, ·〉 is Lorentzian, we’ll have two types of Fermi charts, according to the
causal character of γ. Moreover, recalling that geodesics have automatically con-
stant causal character (hence determined by a single velocity vector), it follows
that if γ is spacelike (resp. timelike), then all the γv are timelike (resp. spacelike),
since {γ′(v), γ′v(0)} is a orthonormal basis of Tγ(v)M, for all v ∈ I.

• When necessary, if γ is timelike, we might denote the coordinates by (τ, ϑ) in-
stead of (u, v).

Proposition 3.17. The Fermi chart x is indeed regular in a neighborhood of {0} × I (so that
reducing U if necessary, we may assume that x itself is regular).

Proof: We’ll show that for all v ∈ I, the vectors xu(0, v) and xv(0, v) are orthogonal.
To wit, we have by construction that

〈xu(0, v), xv(0, v)〉 = 〈γ′v(0), γ′(v)〉 = 0.

Since none of those vectors is lightlike, orthogonality implies linear independence. By
continuity of x, the vectors xu(u, v) and xv(u, v) remain linearly independent for small
enough values of u.
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Proposition 3.18. The coordinate expression of 〈·, ·〉 with respect to the Fermi chart x is

ds2 = (−1)νεγ du2 + G(u, v)dv2.

Proof: All the γv are unit speed curves with the same indicator εγv . We have that

E(u, v) = 〈xu(u, v), xu(u, v)〉 = 〈γ′v(u), γ′v(u)〉 = εγv .

Now, εγεγv = (−1)ν for all v ∈ I, whence E(u, v) = (−1)νεγ.
Proceeding, we see that by construction F(0, v) = 0 for all v ∈ I, so that it suffices to

check that F does not depend on the variable u. Fixed v0 ∈ I, we have the expression
x(u, v0) = γv0

(u), and so the second geodesic equation for γv0
yields Γ2

11(u, v0) = 0.
From the arbitrariety of v0 it follows that Γ2

11 = 0. On the other hand, by definition of
Γ2

11 we have

Γ2
11(u, v) =

(−1)νεγ

(−1)νεγG(u, v)− F(u, v)2 Fu(u, v),

so that Fu(u, v) = 0, and we conclude that F(u, v) = 0 for all (u, v) ∈ U, as desired.

Remark. Since G(0, v) = εγ 6= 0, the continuity of G allows us to assume, by reducing
U again if necessary, that G(u, v) has the same sign as εγ for all (u, v) ∈ U.

Corollary 3.19. The Gaussian curvature of (M, 〈·, ·〉) is expressed in terms of the Fermi chart
x by

K ◦ x = (−1)ν+1εγ
(
√
|G|)uu√
|G|

.

Before starting the proof of Theorem 3.15 (p. 50), we only need to get one more
technical lemma out of the way:

Lemma 3.20 (Boundary conditions). The Fermi chart x satisfies Gu(0, v) = 0, for all v ∈ I.

Proof: As γ(v) = x(0, v), the first geodesic equation for γ boils down to Γ1
22(0, v) = 0,

for all v ∈ I. Since F(0, v) = 0, it directly follows that

Γ1
22(0, v) = −Gu(0, v)

2εγ
,

whence Gu(0, v) = 0, as desired.

Finally:

Proof: [of Theorem 3.15] In all possible cases, the coefficient G must satisfy the follow-
ing differential equation:

(
√
|G|)uu + (−1)νεγK

√
|G| = 0.

Now, we solve this equation (in each case) for
√
|G|, and use the boundary conditions

G(0, v) = εγ and Gu(0, v) = 0 to determine G explicitly.
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(A) Assume that 〈·, ·〉 is Riemannian.

(i) For K = 0, we have (
√

G)uu = 0, and so
√

G(u, v) = A(v)u + B(v). The
boundary conditions then give A(v) = 0 and B(v) = 1, so that G(u, v) = 1
for all (u, v) ∈ U, and ds2 = du2 + dv2.

(ii) When K = 1, we have (
√

G)uu +
√
|G| = 0, whose solutions are of the

form
√

G(u, v) = A(v) cos u + B(v) sen u. Now, the boundary conditions
give A(v) = 1 and B(v) = 0, and so G(u, v) = cos2 u, and it follows that
ds2 = du2 + cos2 u dv2: the metric in S2.

(iii) If K = −1, the equation to be solved is (
√

G)uu −
√
|G| = 0. We have

that
√

G(u, v) = A(v)eu + B(v)e−u, and now the boundary conditions give
A(v) = B(v) = 1/2, whence G(u, v) = cosh2 u and we obtain the local ex-
pression ds2 = du2 + cosh2 u dv2. To recognize this in an easier way as the
metric in H2, we may let x = ev tanh u and y = ev sech u, so that

ds2 =
dx2 + dy2

y2 ,

as desired.

(B) Assume now that 〈·, ·〉 is Lorentzian.

(i) For K = 0, just like above, we have ds2 = −du2 + dv2 = dτ2 − dϑ2.

(ii) If K = 1, we now have two cases to discuss. If γ is spacelike, we again
obtain (

√
G)uu −

√
G = 0, from where it follows that G(u, v) = cosh2 u and

we get the S2
1 metric (expressed in the usual revolution parametrization):

ds2 = −du2 + cosh2 u dv2.
If γ is timelike instead, we have (

√
−G)ττ +

√
−G = 0, whose solution is

G(τ, ϑ) = − cos2 τ, and so ds2 = dτ2 − cos2 τ dϑ2.

(iii) If K = −1, the situation is dual to the previous one, switching “spacelike”
and “timelike”, and also the signs of the metric expressions. Omitting re-
peated calculations, we obtain

ds2 = −du2 + cos2 u dv2 = dτ2 − cosh2 τ dϑ2,

which is the metric of H2
1 in suitable coordinates.

We will conclude the section by presenting surfaces in the ambients L3 and R3
2

whose metric’s coordinate expressions are the ones discovered in the proof above. For
K = 0 the situation is completely uninteresting. But for K 6= 0 we have the following:
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Example 3.21.

(1) K = 1:

• The metric ds2 = −du2 + cos2 u dv2 may be realized by the usual revolution
parametrization x : R2 → S2

1 ⊆ L3 given by

x(u, v) = (cosh u cos v, cosh u sin v, sinh u),

and also by y : cosh−1 (]1,
√

2[
)
×R→ R3

2 given by

y(u, v) =
(

cosh u cosh v, cosh u sinh v,
∫ u

0

√
2− cosh2 t dt

)
.

• For ds2 = dτ2 − cos2 τ dϑ2, consider x : ]0, 2π[×R→ S2
1 ⊆ L3 given by

x(τ, ϑ) = (sin τ, cos τ cosh ϑ, cos τ sinh ϑ),

and also by y : ]−π/2, π/2[×R→ R3
2, given by

y(τ, ϑ) =

(∫ τ

0

√
1 + sin2 t dt, cos τ cos ϑ, cos τ sin ϑ

)
.

Remark. The periodicity condition y(τ, ϑ) = y(τ + π, ϑ) in the last given
parametrization along with the fact that translations are isometries in R3

2 al-
low us to restrict everything to the given domains, which is maximal for non-
degenerability.

To summarize, when K = 1 we have the following visualizations:

(a) In L3 (b) In R3
2

Figure 15: Constant Gaussian curvature K = 1.

(2) K = −1:
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• The metric ds2 = −du2 + cos2 u dv2 may be realized by the parametrization
x : ]−π/2, π/2[×R→ L3, given by

x(u, v) =
(

cos u cos v, cos u sin v,
∫ u

0

√
1 + sin2 t dt

)
,

and also by y : ]0, 2π[×R→ H2
1 ⊆ R3

2:

y(u, v) = (cos u sinh v, cos u cosh v, sin u).

In this case, the same remark made for y in the case K = 1 holds for x here.

• The metric ds2 = dτ2 − cosh2 τ dϑ2 may be realized by the parametrization
x : cosh−1 (]1,

√
2[
)
×R→ L3 given by

x(τ, ϑ) =

(∫ τ

0

√
2− cosh2 t dt, cosh τ cosh ϑ, cosh τ sinh ϑ

)
and by y : R× ]0, 2π[→ H2

1 ⊆ R3
2,

y(τ, ϑ) = (sinh τ, cosh τ cos ϑ, cosh τ sin ϑ).

So in this case, we have:

(a) In R3
2 (b) In L3

Figure 16: Constant Gaussian curvature K = −1.

Lastly, we observe that the surfaces in the figures 15(a) and 16(a) are isometric when
equipped by the metrics induced by R3, but on the pseudo-Riemannian ambients con-
sidered, they have rotational symmetry along axes of distinct causal characters. The
same holds for the surfaces given in figures 15(b) and 16(b). Furthermore, note that S2

1
and H2

1 “fit better” in L3 and R3
2, respectively – switching the ambients require the use

of parametrizations depending on certain elliptic integrals.
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Problems

Problem 27. Prove Corollary 3.19 (p. 52).

Problem 28. Show that if x = ev tanh u and y = ev sech u, then

du2 + cosh2 u dv =
dx2 + dy2

y2 .

Problem 29 (Riemann’s Formula). Let (M, 〈·, ·〉) be a geometric surface equipped with
a Riemannian metric tensor, and x : U → x(U) ⊆ M be a Fermi chart for M (on
which the metric is expressed by ds2 = du2 + G(u, v)dv2). In some adequate domain,
consider the reparametrization x = u cos v and y = u sen v. Show that

ds2 = dx2 + dy2 + H(x, y)(x dy− y dx)2,

where H(x, y) = (G(u, v)− u2)/u4.

Remark. The function H measures, up to second order, how far is the metric from
being Euclidean near the origin. The reason why is that one can show that if H actually
admits a continuous extension to the origin, then the Gaussian curvature at the point
with coordinates (x, y) = (0, 0) is −3H(0, 0).

Problem 30 (Revolution surfaces with constant K). Let α : I → R3
ν be smooth, regular,

non-degenerate, injective and of the form α(u) = ( f (u), 0, g(u)), for certain functions
f and g with f (u) > 0 for all u ∈ I, and let M be the revolution surface spanned by α,
around the z-axis. Assume that α has unit speed, M has constant Gaussian curvature
K, and consider the parametrization x : I × ]0, 2π[→ I → x(U) ⊆ M given by

x(u, v) = ( f (u) cos v, f (u) sin v, g(u)).

(a) Show that, in general, f and g satisfy

f ′′(u) + εαK f (u) = 0 and g(u) =
∫ √

(−1)ν(εα − f ′(u)2)du.

(b) Verify that

f (u) =


A cos(

√
εαKu) + B sin(

√
εαKu), se εαK > 0

Au + B, se K = 0,
A cosh(

√
−εαKu) + B sinh(

√
−εαKu) se εαK < 0,

where in the case K = 0 we necessarily have |A| ≤ 1 if the ambient is R3, while
|A| ≥ 1 if the curve is spacelike in L3 (for timelike curves there are no restrictions).

(c) Identify all the revolution surfaces with constant Gaussian curvature K ∈ {−1, 0, 1}.
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Extra #2: Weierstrass’s representation of critical surfaces
in L3

An introduction to split-complex algebra

We start recalling a possible construction of the complex numbers: define in R2 the
operations

(a, b) + (c, d) .
= (a + c, b + d) and (a, b)(c, d) .

= (ac− bd, ad + bc).

Such operations turn R2 into a field, which is then denoted by C. Since we have the
identities (a, b) = (a, 0) + (b, 0)(0, 1) and (0, 1)2 = (−1, 0), we may identify R with
the set {(a, 0) ∈ R2 | a ∈ R} and put i .

= (0, 1), hence recovering the usual description

C = {a + bi | a, b ∈ R and i2 = −1}.

Given z = a + bi ∈ C, the projections Re(z) .
= a and Im(z) .

= b are called the real and
imaginary parts of z. The conjugate of z is defined as z .

= a− bi, and the absolute value of
z as |z| .

=
√

a2 + b2 = ‖(a, b)‖E. Moreover, if z1 = a1 + b1i and z2 = a2 + b2i are two
complex numbers, we have

Re(z1z2) = 〈(a1, b1), (a2, b2)〉E,

which shows that C encodes the geometry of the usual inner product in R2. One then
proceeds to develop Calculus in a complex variable.

Our goal here is to define a Lorentzian version of C based on the above review, and
briefly understand how calculus works in this new setting.

Definition 3.22 (Split-complex numbers). The set C′ of the split-complex numbers is the
space L2 equipped with the operations

(a, b) + (c, d) .
= (a + c, b + d) and (a, b)(c, d) .

= (ac + bd, ad + bc).

Remark. The split-complex numbers are also known as hyperbolic numbers. To justify
this terminology, work through Problem 31 in the end of the section.

It is easy to see that C′ is a commutative ring with 1. Since this time we have the
identities (a, b) = (a, 0) + (b, 0)(0, 1) and (0, 1)2 = (1, 0), we may again identify R

with {(a, 0) ∈ L2 | a ∈ R} and put h .
= (0, 1) to obtain a similar description to the

previous one given for C:

C′ = {a + bh | a, b ∈ R and h2 = 1}.

Definition 3.23. Let w = a + bh ∈ C′.

(i) The split-conjugate of w is defined by w .
= a− bh.

(ii) The split-complex absolute value of w is given by |w| .
=
√
|a2 − b2| = ‖(a, b)‖L.
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(iii) The real part of w is given by Re(w)
.
= a, and its imaginary part is given by

Im(w)
.
= b.

Let’s register some basic algebraic properties of C′ in the following:

Proposition 3.24. Let w, w1, w2 ∈ C′.

(i) w1 + w2 = w1 + w2, w1w2 = w1 w2, w = w, and w = w if and only if w ∈ R. In
fancier terms, conjugation in C′ is still an involution preserving R;

(ii) if 1/w exists, then 1/w = 1/w;

(iii) |w| = |w|, |ww| = |w|2;

(iv) |w1w2| = |w1||w2| and, if 1/w exists, |1/w| = 1/|w|. In particular, if 1/w exists, we
necessarily have |w| 6= 0.

To justify that C′ is indeed the Lorentzian version of C that we seek, note that if
w1 = a1 + b1h and w2 = a2 + b2h are two split-complex numbers, then

Re(w1w2) = 〈(a1, b1), (a2, b2)〉L,

which says that C′ encodes the geometry of L2 in the same way that C does it for R2.
This also gives us a geometric interpretation for C′ not being a field like C: the zero
divisors in C′ correspond precisely to the lightlike directions in L2.

We proceed with some calculus. We endow C′ with the usual topology of the plane.
That is to say, the open subsets of C′ are the same ones as of C, and the overall notion
of continuity is the same. In particular, if U ⊆ C′ is open and f : U′ → C′ is written in
the form

f (x + hy) = φ(x, y) + hψ(x, y)

for some real-valued functions φ and ψ, then f is continuous if and only if both φ and
ψ are.

To define holomorphicity in C′, we will again mimic the definition used in C, taking
care to not divide by “lightlike” directions:

Definition 3.25. Let U ⊆ C′ be an open set, w0 ∈ U and f : U → C′ a function. We’ll
say that f is C′-differentiable at w0 if the limit

f ′(w0)
.
= lim

∆w→0
∆w 6∈CL(0)

f (w0 + ∆w)− f (w0)

∆w

exists. In this case, f ′(w0) is called the derivative of f at w0. And f is called split-
holomorphic in w0 if it is C′-differentiable in every point of some neighborhood of w0.

The usual rules hold:

Proposition 3.26. Let U ⊆ C′ be an open set, w0 ∈ U and f , g : U → C′ two
C′-differentiable functions at w0. Then

(i) f + g is C′-differentiable at w0 and ( f + g)′(w0) = f ′(w0) + g′(w0).
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(ii) f g is C′-differentiable at w0 and ( f g)′(w0) = g(w0) f ′(w0) + f (w0)g′(w0).

(iii) if g does not assume any value in the lightlike directions of the plane, then f /g is
C′-differentiable at w0 and ( f /g)′(w0) = ( f ′(w0)g(w0)− f (w0)g′(w0))/g(w0)

2.

Example 3.27. Constant functions and the identity C′ → C′ are clearly split-holomor-
phic. It follows that all polynomials are split-holomorphic, and its derivatives are
given by the usual rules (e.g., the derivative of f (w) = w3 + 3w2 is f ′(w) = 3w2 + 6w).
The same goes for rational functions, as long as the denominator does not take values
in the lightlike directions of the plane.

Proposition 3.28 (Chain rule). Let U1, U2 ⊆ C′ be open sets and f : U1 → C′, g : U2 → C′

be functions such that f (U1) ⊆ U2. If f é C′-differentiable at w0 and g is C′-differentiable at
f (w0), then g ◦ f is C′-differentiable at w0 and (g ◦ f )′(w0) = g′( f (w0)) f ′(w0) holds.

In the usual complex calculus, we know that the real and imaginary parts of a
holomorphic function must satisfy the Cauchy-Riemann equations. In C′, we should
expect some sign change. Here’s what we get (with almost the same proof):

Proposition 3.29 (Revised Cauchy-Riemann). Let U ⊆ C′ be an open set and fix w0 ∈ U.
If f : U → C′ is C′-differentiable in w0, and we write f (x + hy) = φ(x, y) + hψ(x, y), then

∂φ

∂x
(w0) =

∂ψ

∂y
(w0) and

∂φ

∂y
(w0) =

∂ψ

∂x
(w0).

Remark. These revised equations may be expressed in a more concise way using split-
complex versions of the so-called Wirtinger operators:

∂

∂w
.
=

1
2

(
∂

∂x
+ h

∂

∂y

)
and

∂

∂w
.
=

1
2

(
∂

∂x
− h

∂

∂y

)
.

The revised Cauchy-Riemann equations become only ∂ f /∂w = 0, in which case the
formula f ′(w) = (∂ f /∂w)(w) holds.

Example 3.30. Motivated by Euler’s formula ex+iy = ex(cos y + i sin y) in C, we define
expC′ : C′ → C′ by expC′(w) = ex(cosh y + h sinh y), where w = x + hy. We have that
expC′ is split-holomorphic, with (expC′)

′ = expC′ . When there is no risk of confusion,
one may simply write ew.

An important consequence of the revised Cauchy-Riemann equations is the ana-
logue in C′ of the well-known fact that the real and imaginary parts of a holomorphic
function are harmonic. We have the:

Corollary 3.31. Let U ⊆ C′ be an open set and f : U → C′ a split-holomorphic function.
If f = φ + hψ, then φ and ψ are solutions of the wave equation: �φ = �ψ = 0. Here
� = ∂2/∂x2− ∂2/∂y2 is the wave operator (d’Alembertian), and we say that φ and ψ are
Lorentz-harmonic.

Remark. Note that � = 4
∂

∂w
∂

∂w
.
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Here we see another stark contrast between C and C′. While it is difficult to solve
explicitly the heat equation 4Φ = 0 (an elliptic partial differential equation), there
are explicit solutions for the wave equation �Φ = 0 (a hyperbolic partial differen-
tial equation). This can be used to completely classify all split-holomorphic functions
with a convex domain. In particular, this gives us a good source of split-holomorphic
functions. It also follows from this classification that while being holomorphic and
complex-analytic are the same thing, split-holomorphic functions are not necessarily
“split-analytic” (or even of class C∞). We will not pursue this further here, but you
can see the details in [21].

We’ll conclude the discussion about differentiation stating the next two definitions,
necessary for what will come later.

Definition 3.32. Let U ⊆ C′ be an open set, w0 ∈ U and f : U \ {w0} → C′. We’ll say
that w0 is a pole of order k ≥ 1 of f if k is the least integer for which (w− w0)

k f (w) is
split-holomorphic.

Definition 3.33. Let U ⊆ C′ be an open set and P ⊆ U be discrete. We’ll say that a
split-holomorphic function f : U \ P→ C′ is split-meromorphic in U if P is precisely the
set of poles of f .

Let’s also register the bare minimum we need about integration in C′:

Definition 3.34. Let U ⊆ C′ be an open set, f : U → C′ be a continuous function and
γ : I → U a smooth curve. The integral of f along γ is defined as∫

γ
f (w)dw .

=
∫

I
f (γ(t))γ′(t)dt.

Remark. This split-complex line integral can (obviously?) be expressed in terms of real
line integrals. Moreover, this definition is naturally extended for piecewise smooth
curves in C′, and if γ is closed we’ll just write

∮
γ f (w)dw as usual.

Probably the most important aspect of this integral is that we still have the:

Theorem 3.35 (Fundamental Theorem of Calculus). Let U ⊆ C′ be an open set,
f : U → C′ a continuous function, and γ : [a, b] → U a piecewise smooth curve (actually
C1 is enough). If F : U → C′ is a primitive of f (i.e., F is split-holomorphic with F′ = f ),
then ∫

γ
f (w)dw = F(γ(b))− F(γ(a)).

In the next section, we will need some split-complex integrals to depend only on
the endpoints of the curve we’re integrating upon. In C, we had the Cauchy-Goursat
Theorem. In C′ we still have the same theorem, with the same proof (e.g., using
Green’s Theorem):

Theorem 3.36 (Revised Cauchy-Goursat). Let U ⊆ C′ be a simply-connected open set,
f : U → C′ be a split-holomorphic function with continuous derivative, and γ : [a, b] → U a
closed and piecewise smooth curve (again, C1 suffices), injective in ]a, b[. Then∮

γ
f (w)dw = 0.
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Remark. Note (again) that the assumption of f ′ being continuous, which is automati-
cally satisfied in C, has to be explicitly stated here.

The two main corollaries are:

Corollary 3.37. The integral of a split-holomorphic function (in the setting of the previous
theorem) along a given curve depends only on the endpoints of the curve. In this case, we
denote ∫

γ
f (ω)dω =

∫ w

w0

f (ω)dω,

where γ joins w0 and w.

And also:

Corollary 3.38. Let U ⊆ C′ be a simply-connected open set, w0 ∈ U and f : U → C′ be
continuous. Then F : U → C′ given by

F(w) =
∫ w

w0

f (ω)dω

is split-holomorphic and satisfies F′ = f .

We just need to get one more result out of our way:

Definition 3.39. Let U ⊆ C′ be an open set. Two functions φ, ψ : U ⊆ R2 → R are
called Lorentz-conjugate if φu = ψv and φv = ψu. Such condition implies that both φ
and ψ are Lorentz-harmonic.

Theorem 3.40. Let U ⊆ R2 ≡ C′ be a simply-connected set, and φ : U → R be a Lorentz-
harmonic function. Then there exists a split-holomorphic function f : U → C′ which has φ as
its real part. In particular, there is a Lorentz-conjugate function to φ.

Proof: Define g .
= φu + hφv. The condition�φ = 0 ensures that g is split-holomorphic

and, in particular, continuous, so that U being simply-connected gives us the existence
of a primitive G = ψ + hζ for g. With this, G′ = g together with the revised Cauchy-
Riemann equations for G yield

φu + hφv = ψu + hζu = ψu + hψv.

Equating real and imaginary parts, we obtain ψ = φ + c for some c ∈ R. So f .
= G− c

is the desired function.

The next step would be to look for a Cauchy-like formula in C′. Unfortunately,
there is not such a formula in this new setting. We are ready to move on and apply
what we have seen here for surfaces in L3 with H = 0. For more about split-complex
numbers, see for example, [3], [5] and [21].

Page 61



OSU/USP - MAT6702 Lecture Notes Ivo Terek Couto

Weierstrass-Enneper representation formulas

Given a spacelike surface M ⊆ R3
ν and a parametrization x : U → x[U] ⊆ M, we

may identify R2 with C in the usual way and use z = u + iv as a parameter. We may
then write

x(z, z) = (x1(z, z), x2(z, z), x3(z, z)),

noting the explicit dependence on the conjugate variable z is due to the fact that we
don’t know whether the components of x are holomorphic functions. For timelike
surfaces in L3, the parametrization domains will be identified with open subsets of C′

instead. Recall from calculus in a complex variable that if

∂

∂z
=

1
2

(
∂

∂u
− i

∂

∂v

)
and

∂

∂z
=

1
2

(
∂

∂u
+ i

∂

∂v

)
,

then the Laplacian operator can be expressed as

4 =
∂2

∂u2 +
∂

∂v2 =

(
∂

∂u
+ i

∂

∂v

)(
∂

∂u
− i

∂

∂v

)
= 4

∂

∂z
∂

∂z
.

It is sometimes convenient to study such parametrizations as the real part of curves
in C3. We then consider an extension of the product in R3 to C3, also to be denoted by
〈·, ·〉E, defined by

〈(z1, z2, z3), (w1, w2, w3)〉E = z1w1 + z2w2 + z3w3.

For timelike surfaces, we’ll go instead to the complex Lorentzian space C3
1, with the

extended product 〈·, ·〉L defined by

〈(z1, z2, z3), (w1, w2, w3)〉L = z1w1 + z2w2 − z3w3.

We’ll maintain the usual causal character terminology used so far.

Definition 3.41. Let U be a open subset of C or C′, and x : U → R3
ν be a regular and

non-degenerate parametrized surface.

(i) The complex derivative of x is

φ ≡ ∂x
∂z
≡ xz

.
=

1
2
(xu − i xv).

(ii) The split-complex derivative of x is

ψ ≡ ∂x
∂w
≡ xw

.
=

1
2
(xu + h xv).

Remark. Note that 〈φ, φ〉E = 0 does not imply that φ = 0, since φ(z, z) ∈ C3 for all z,
and not necessarily in R3. Same holds a fortiori for ψ.

Proposition 3.42. If M ⊆ R3
ν is a non-degenerate regular surface and x : U → x(U) ⊆ M

be a parametrization of M, then x is isothermal (i.e., |E| = |G| = λ2 for some smooth λ and
F = 0) if and only if:
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(i) 〈φ, φ〉E = 0, when M ⊆ R3;

(ii) 〈φ, φ〉L = 0, when M ⊆ L3 is spacelike;

(iii) 〈ψ, ψ〉L = 0, when M ⊆ L3 is timelike.

Proof: Let’s work through the proof when M is spacelike. We have

(xj
z)

2 =

(
1
2
(xj

u − i xj
v)

)2

=
1
4
((xj

u)
2 − (xj

v)
2 − 2ixj

uxj
v),

and summing over j = 1, 2, 3 gives

〈φ, φ〉 = 1
4
(E− G− 2iF),

so that the conclusion follows from the fact that a complex number vanishes if and
only if its real and imaginary part vanish. For timelike M, one obtains

〈ψ, ψ〉L =
1
4
(E + G + 2hF)

instead.

Lemma 3.43. Let M ⊆ R3
ν be a non-degenerate regular surface and x : U → x[U] ⊆ M be

an isothermal parametrization of M. Then:

(i) 〈φ, φ〉E = λ2/2 6= 0, when M ⊆ R3;

(ii) 〈φ, φ〉L = λ2/2 6= 0, when M ⊆ L3 is spacelike;

(iii) 〈ψ, ψ〉L = εuλ2/2 6= 0, when M ⊆ L3 is timelike.

Proof: Let’s work through the proof again assuming that M is spacelike:

xj
zxj

z =
1
4
(xj

u − i xj
v)(xj

u + i xj
v) =

1
4
((xj

u)
2 + (xj

v)
2 − 2ixj

uxj
v),

and summing over j = 1, 2, 3 yields

〈φ, φ〉 = 1
4
(λ2 + λ2 − 2i · 0) = λ2

2
.

Proposition 3.44. Let M ⊆ R3
ν be a non-degenerate regular surface and x : U → x[U] ⊆ M

be an isothermal parametrization of M. Then x is critical (i.e., H = 0) if and only if φ
is holomorphic or ψ is split-holomorphic, according to whether M is spacelike or timelike,
respectively.

Proof: It is a straightforward consequence of the formulas

∂φ

∂z
=

∂2x
∂z∂z

=
1
4
4x and

∂ψ

∂w
=

∂2x
∂w∂w

=
1
4
�x.

Page 63



OSU/USP - MAT6702 Lecture Notes Ivo Terek Couto

In view of this last result, we may conclude that at least locally any non-degenerate
critical surface may be represented by a triple:

• φ = (φ1, φ2, φ3) of holomorphic functions satisfying

(φ1)2 + (φ2)2 + (φ3)2 = 0,

if M ⊆ R3;

• φ = (φ1, φ2, φ3) of holomorphic functions satisfying

(φ1)2 + (φ2)2 − (φ3)2 = 0,

if M ⊆ L3 is spacelike;

• ψ = (ψ1, ψ2, ψ3) of split-holomorphic functions satisfying

(ψ1)2 + (ψ2)2 − (ψ3)2 = 0,

if M ⊆ L3 is timelike.

A natural question at this point is: given such a triple, how to recover the starting
surface? The key to answering this lies in the next:

Proposition 3.45. Let M ⊆ R3
ν be a non-degenerate, regular and critical surface, U be a

simply-connected open set, and x : U → x[U] ⊆ M be an isothermal parametrization of M.
Then the components of x satisfy:

(i) xj(z, z) = cj + 2 Re
∫ z

z0

φj(ξ)dξ, for some z0 ∈ U, if M is spacelike, and

(ii) xj(w, w) = cj + 2 Re
∫ w

w0

ψj(ω)dω, for some w0 ∈ U, if M is timelike,

where cj ∈ R are convenient constants.

Proof: Just for a change, let’s work this time the proof when M is timelike. First note
that since U is simply connected, x is isothermal and M is critical, then ψ is split-
holomorphic and the integrals in the statement of the proposition are path-independent.
With differentials, we have:

ψj dw =
1
2
(xj

u + h xj
v)(du + h dv) =

1
2
(xj

u du + xj
v dv + h(xj

v du + xj
u dv))

ψj dw =
1
2
(xj

u − h xj
v)(du− h dv) =

1
2
(xj

u du + xj
v dv− h(xj

v du + xj
u dv))

Adding both expressions, we obtain

dxj = xj
u du + xj

v dv = ψj dw + ψj dw = 2 Re ψj dw,

whence
xj(w, w) = cj + 2 Re

∫ w

w0

ψj(ω)dω,

for some cj ∈ R and w0 ∈ U.
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Theorem 3.46 (Enneper-Weierstrass I). Let U ⊆ C be a simply-connected open set, z0 ∈ U,
and f , g : U → C functions with f holomorphic, g meromorphic, and f g2 holomorphic. Then
the map x : U → R3

ν defined by x(z, z) = (x1(z, z), x2(z, z), x3(z, z)), where

(i) x1(z, z) = Re
∫ z

z0

f (ξ)(1− g(ξ)2)dξ,

x2(z, z) = Re
∫ z

z0

i f (ξ)(1 + g(ξ)2)dξ and,

x3(z, z) = 2 Re
∫ z

z0

f (ξ)g(ξ)dξ, for x in R3 or;

(ii) x1(z, z) = Re
∫ z

z0

f (ξ)(1 + g(ξ)2)dξ,

x2(z, z) = Re
∫ z

z0

i f (ξ)(1− g(ξ)2)dξ and,

x3(z, z) = 2 Re
∫ z

z0

− f (ξ)g(ξ)dξ, for x in L3

is a parametrized surface, regular in the points where the zeros of f have exactly twice the
order than the order of the poles of g, and |g| 6= 1 (this last condition necessary only in L3).
Furthermore, its image is a spacelike critical surface.

Proof: The conditions over U, f and g ensure that all integrals are path-indepdendent.
Moreover, in R3, the complex derivative of x is precisely

φ =

(
1
2

f (1− g2),
i
2

f (1 + g2), f g
)

,

which satisfies

〈φ, φ〉E =

(
1
2

f (1− g2)

)2

+

(
i
2

f (1 + g2)

)2

+ ( f g)2 = 0,

so that the expression given in Proposition 3.42 (p. 62) for 〈φ, φ〉E gives us that E = G
and F = 0. A similar computations gives us the same conclusion in L3. This way, x
is regular precisely when E = G 6= 0, which is equivalent to the condition given on
zeros of f and poles of f . The necessity of |g| 6= 1 in L3 follows from the fact that

φ =

(
1
2

f (1 + g2),
i
2

f (1− g2),− f g
)

,

then

λ2

2
= 〈φ, φ〉L =

∣∣∣∣12 f (1 + g2)

∣∣∣∣2 + ∣∣∣∣ i
2

f (1− g2)

∣∣∣∣2 − |− f g|2 =
| f |2

2
(1− |g|2)2.

This being the case, x is isothermal and spacelike. Furthermore, φ is holomorphic and
hence the image of x is critical.

The pair ( f , g) is called the Weierstrass data for the surface. The geometry of the
surface can be described by this data. For more details in R3, see for example [18].

When g is holomorphic and invertible, we may use it as a parameter itself and
obtain an alternative representation:
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Theorem 3.47 (Enneper-Weierstrass II). Let U ⊆ C be a simply-connected open set,
z0 ∈ U, and F : U → C a holomorphic function. Then the map x : U → R3

ν defined by
x(z, z) = (x1(z, z), x2(z, z), x3(z, z)), where

(i) x1(z, z) = Re
∫ z

z0

(1− ξ2)F(ξ)dξ,

x2(z, z) = Re
∫ z

z0

i(1 + ξ2)F(ξ)dξ and,

x3(z, z) = 2 Re
∫ z

z0

ξF(ξ)dξ, for x in R3, or;

(ii) x1(z, z) = Re
∫ z

z0

(1 + ξ2)F(ξ)dξ,

x2(z, z) = Re
∫ z

z0

i(1− ξ2)F(ξ)dξ, and

x3(z, z) = −2Re
∫ z

z0

ξF(ξ)dξ, for x and L3,

is a parametrized surface, regular in the points where F(z) 6= 0 (in R3) or F(z) 6= 0 and
|z| 6= 1 (in L3). Furthermore, its image is a spacelike critical surface.

Example 3.48 (Critical spacelike surfaces in R3
ν).

(1) Enneper surface in R3: consider the Weierstrass data f (z) = 1 and g(z) = z. We
obtain the parametrization x : R2 → R3 given by

x(u, v) =
(

u− u3

3
+ uv2,−v +

v3

3
− u2v, u2 − v2

)
.

Figure 17: Enneper surface in R3.

The same surface could be obtained by the single type II data F(z) = 1.

(2) Spacelike Enneper surface in L3: consider the same data as before, now in the
Lorentzian setting. We obtain the parametrization x : R2 → R3 given by

x(u, v) =
(

u +
u3

3
− uv2,−v− v3

3
+ u2v, v2 − u2

)
.
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Figure 18: Spacelike Enneper surface in L3.

(3) Catalan surface in R3: choose the type II data F(z) = i
(

1
z −

1
z3

)
, which yields

x(u, v) =
(

u− sin u cosh v, 1− cos u cosh v,−4 sin
(u

2

)
sinh

(v
2

))

Figure 19: Catalan surface in R3.

(4) Spacelike catenoid in L3: choose the type II data F(z) = 1/z2, which gives the
parametrization

x(u, v) =
(

u− u
u2 + v2 , v− v

u2 + v2 ,−2 log(u2 + v2)

)
.
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Figure 20: Spacelike Lorentzian catenoid.

(5) Henneberg surface in R3: the type II data is F(z) = 1− 1
z4 , producing the parametriza-

tion

x(u, v) = (2 sinh u cos v− (2/3) sinh(3u) cos(3v),
2 sinh(u) sin(v) + (2/3) sinh(3u) sin(3v), 2 cosh(2u) cos(2v)) .

Figure 21: Henneberg surface in R3.

Now, let’s repeat this for timelike surfaces in L3:

Theorem 3.49 (Enneper-Weierstrass I – timelike version). Let U ⊆ C′ be a simply-
connected open set, w0 ∈ U, and f , g : U → C functions with f split-holomorphic, g split-
meromorphic, and f g2 split-holomorphic. Then the map x : U −−−→ L3 defined by
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x(w, w) = (x1(w, w), x2(w, w), x3(w, w)), where

x1(w, w) = Re
∫ w

w0

f (ω)(1− g(ω)2)dω

x2(w, w) = 2 Re
∫ w

w0

f (ω)g(ω)dω

x3(w, w) = Re
∫ w

w0

f (ω)(1 + g(ω)2)dω,

is a parametrized surface, regular in the points where the zeros of f have exactly twice the order
than the order of the poles of g, f (w) is not a zero-divisor and g(w) is not real. Furthermore,
its image is a timelike critical surface.

Proof: The conditions over U, f and g again ensure that all the above integrals are
path-independent. In this case, the split-complex derivative of x is

ψ =

(
1
2

f (1− g2), f g,
1
2

f (1 + g2)

)
.

We also have that

〈ψ, ψ〉L =

(
1
2

f (1− g2)

)2

+ ( f g)2 −
(

1
2

f (1 + g2)

)2

= 0 and

〈ψ, ψ〉L =
f f
4

(
(1− g2)(1− g2) + 4gg− (1 + g2)(1 + g2)

)
= − f f

2
(g− g)2,

from where the conclusion follows.

Theorem 3.50 (Enneper-Weierstrass II). Let U ⊆ C′ be a simply-connected open set which
does not touch the real axis, w0 ∈ U, and F : U → C′ a split-holomorphic function. Then the
map x : U → L3 defined by x(w, w) = (x1(w, w), x2(w, w), x3(w, w)), where

x1(w, w) = Re
∫ w

w0

(1−ω2)F(ω)dω

x2(w, w) = 2 Re
∫ w

w0

ωF(ω)dω

x3(w, w) = Re
∫ w

w0

(1 + ω2)F(ω)dω,

is a parametrized surface, regular in the points where F(w) is not a zero divisor. Furthermore,
its image is a timelike critical surface.

Example 3.51 (Timelike critical surfaces in L3).

(1) Timelike Enneper surface: for F(w) = 1 we obtain

x(u, v) =
(

v− u2v− v3

3
, 2uv, v + u2v +

v3

3

)
.
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Figure 22: Timelike Enneper surface.

(2) Timelike catenoid: for F(w) = 1/w2 we obtain

x(u, v) =
(
− u

u2 − v2 − u, log
(
(u2 − v2)2

)
,− u

u2 − v2 + u
)

,

which is defined in all the plane L2, except for the two null lines, and regular
everywhere minus on the real axis (v = 0).

Figure 23: Timelike catenoid.
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Problems

Problem 31 (Generalized complex numbers). Given structure constants α, β ∈ R and a
symbol u, define

Cα,β
.
= {a + ub | a, b ∈ R, u2 = α + βu},

where the operations are defined in the obvious way.

(a) Show that a + ub ∈ Cα,β is invertible if and only if D .
= a2 + βab− αb2 6= 0.

(b) If b 6= 0, then D/b2 = 0 may be regarded as a second degree equation in the
variable a/b, whose discriminant is ∆ = β2 + 4α (check). The position of the point
(α, β) in the plane relative to the parabola ∆ = 0 determines the possibility of
realizing divisions in Cα,β. Show that:

• If ∆ < 0, Cα,β is a field.

• If ∆ ≥ 0, the zero divisors in Cα,β are precisely the elements a + ub such that
a + (β +

√
∆)b/2 = 0 or a + (β−

√
∆)b/2 = 0, while all the other elements

are invertible.

(c) One says that Cα,β is an elliptic, parabolic or hyperbolic system of numbers if ∆ < 0,
∆ = 0 or ∆ > 0, respectively. Justify this terminology by studying in terms of ∆
the conic x2 + βxy− αy2 = 0 in the plane.

Remark. If one defines a + ub .
= a + βb− ub, D is precisely the “squared norm” of the

element a + ub. The map D : Cα,β → R thus defined has its behavior controlled by ∆.
Namely, D is positive-definite if ∆ < 0, degenerate for ∆ = 0 and indefinite for ∆ > 0.
Polarizing D, we have that Cα,β is an algebraic model for the geometry of the bilinear
form

〈(a, b), (c, d)〉α,β
.
= ac +

β

2
ad +

β

2
bc− αbd

in R2.

Problem 32. Let U ⊆ C′ be a connected open set, and f : U → C′ be a split-holomorphic
function. Denote ` = (1 + h)/2. Show that given s, t ∈ R, for all w ∈ U such that
w + t`, w + s` ∈ U we have f (w) = ` f (w + t`) + (w + s`).

Problem 33. Show that f : C′ → C′ given by

f (x + hy) =
1 + h

1 + e−xe−y

is bounded and split-holomorphic (hence a counter-example for Liouville’s Theorem
in C′).

Problem 34. Let x, y : U → R3
ν be two regular and conjugate (or Lorentz-conjugate)

parametrized surfaces. Show that if x is isothermal, then so is y.
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Problem 35. Let θ ∈ R. Show that the parametrized surface x : ]0, 2π[ × R → R3

given by

x(u, v) = (u cos θ ± sin u cosh v, v± cos θ cos u sinh v,± sin θ cos u cosh v)

is isothermal and minimal.

Problem 36. Prove Lemma 3.43 (p. 63) for timelike surfaces.

Problem 37. Let M ⊆ R3
ν be a critical spacelike surface and x : U → M ⊆ R3

ν be a
type II Weierstrass parametrization defined by a holomorphic function F. Show that
the Gaussian curvature is given by

K(x(u, v)) = (−1)ν+1 4
|F(u + iv)|2((−1)ν + u2 + v2)4 .

Problem 38. Let M ⊆ R3
ν be a non-degenerate, regular and connected surface. Assume

that N is a Gauss map for M, which is a locally conformal map. Show that M is critical
or is contained in a piece of a sphere, de Sitter space or hyperbolic plane.
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ν-orthogonality, 6

Admissible curve, 23
Anti-de Sitter space, 49
Arc-photon reparametrization, 25

Biregular curve, 22
B-scroll (associated to a lightlike

curve), 47

Cartan
curvature, see also pseudo-torsion
Trihedron, 27

Catalan surface in R3, 67
Causal

automorphism, 16
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Chain rule, 59
Christoffel symbols, 50
Chronological and causal precedences,
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Coindicator of a curve, 23
Complex

derivative, 62
Lorentzian space, 62

Critical/minimal surface, 63
Cross product, 17

d’Alembertian, 59
de Sitter space, 40

Enneper surface in R3, 66
Enneper-Weierstrass representation

formulas, 65, 69

Fermi chart, 51
First Fundamental Form, 42
Frenet Trihedron, 22
Fundamental Theorem

for lightlike and semi-lightlike
curves, 33

of Calculus for split-complex
integrals, 60

Gauss map, 42
Gaussian curvature, 43
Geodesic, 50

Geometric surface, 50
Geometric units, 14
Gram matrix, 9
Gram-Schmidt process, 9

Helix, 35
Henneberg surface in R3, 68
Horocycle, 49
Hyperbolic

numbers, see also split-complex
numbers

plane, 40
rotation, 10

Identity matrix of index ν, 5
Indicator

of a curve, 23
of a surface, 40
of a vector, 5

Integral along a curve, 60
Isothermal parametrization, 62

Lagrange’s Identities, 18
Lancret’s theorem, 13
Lorentz-harmonic functions, 59
Lorentz-Minkowski space, 5

Margulis invariant, 20
Mean curvature, 43

vector, 43

Orthochronous map, 12
Orthogonal

projection, 7
space, 7

Osculating plane, 23

Pole, 60
Principal

curvatures, 44
directions, 44

Pseudo-Euclidean
isometry, 10
space of index ν, 5

Pseudo-orthogonal transformation, 10
Pseudo-torsion, 28

Real Spectral Theorem, 44
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Revised
Cauchy-Goursat Theorem, 60
Cauchy-Riemann equations, 59

Riemann’s
classification theorem, 50
Formula, 56

Second Fundamental Form, 42
Spacelike

catenoid in L3, 67
Enneper surface in L3, 66

Spatial and temporal parts of a
pseudo-orthogonal map, 11

Split-complex
derivative, 62
numbers, 57

Split-holomorphic function, 58
Split-meromorphic function, 60
Structure constants (for generalized

complex numbers), 71

Timelike
catenoid, 70
Enneper surface, 69

Totally umbilic surface, 45

Umbilic point, 45

Weingarten operator, 42
Wirtinger operators, 59

Zeeman topology, 17
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