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EQUIVALENT DEFINITIONS
OF TANGENT SPACE

Ivo Terek

Let M be an n-dimensional smooth manifold, and fix a point p ∈ M. In this note
we present the three standard definitions of the tangent space TpM, show that their
vector-space operations are well-defined, and prove that they all have dimension n.
Finally, we prove that the three definitions are equivalent, by exhibiting isomorphisms
between the resulting tangent spaces.

1 The algebraic approach

On the set consisting of all the pairs (U, f ) where U ⊆ M is an open neighborhood
of p and f : U → R is smooth, we define a relation ∼ by declaring that (U, f ) ∼ (V, g)
is there is an open neighborhood W ⊆ U ∩V of p such that f |W = g|W . Then, ∼ is an
equivalence relation, an equivalence class [(U, f )] is called a smooth germ at p, and the
quotient set G∞

p (M) is called the algebra of smooth germs at p.

When U is a subset of Rn, the germ [(U, f )] clearly contains information about all
partial derivatives of all orders of f at p. However, two functions having the same
Taylor series at p do not necessarily have the same germ at p. Consider in the real
line the function f given by f (x) = e−1/x2

if x > 0, and f (x) = 0 if x ≤ 0. All the
derivatives of f at p = 0 vanish, but [(R, f )] is not the zero germ since f does not
identically vanish on any interval around the origin.

Note that G∞
p (M) has a natural structure of an R-algebra1:

(i) [(U, f )] + [(V, g)] = [(U ∩V, f |U∩V + g|U∩V)],

(ii) [(U, f )] · [(V, g)] = [(U ∩V, f |U∩V g|U∩V)],

(iii) λ · [(U, f )] = [(U, λ f )],

(1.1)

for all [(U, f )], [(V, g)] ∈ G∞
p (M) and λ ∈ R. It has to be verified that these operations

are well-defined. For example, if [(U, f )] = [(U′, f ′)], there is an open neighborhood
U′′ ⊆ U ∩U′′ of p on which f |U′′ = f ′|U′′ , so that U′′ ∩V ⊆ (U ∩V) ∩ (U′ ∩V) is also

1It is a real vector space X equipped with a product X × X → X compatible with the vector space
operations. Equivalently, it is a ring R equipped with a scalar multiplication R× R → R compatible
with the ring operations.
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an open neighborhood of p, and

( f |U∩V + g|U∩V)|U′′∩V = ( f |U∩V)|U′′∩V + (g|U∩V)|U′′∩V

= f |U′′∩V + g|U′′∩V

= f ′|U′′∩V + g|U′′∩V

= ( f ′|U′∩V)|U′′∩V + (g|U′∩V)|U′′∩V

= ( f |U′∩V + g|U′∩V)|U′′∩V ,

(1.2)

showing that [(U∩V, f |U∩V + g|U∩V)] = [(U′ ∩V, f ′|U′∩V + g|U′∩V)]. This means that
the definition of [(U, f )] + [(V, g)] does not depend on the choice of representative for
[(U, f )]. One similarly shows that it does not depend on the choice of representative
for [(V, g)] either, and so addition in G∞

p (M) is well-defined. You should check now
that the product · in G∞

p (M) is also well-defined.

The evaluation mapping δp : G∞
p (M) → R, naturally given by δp[(U, f )] = f (p),

is an R-algebra homomorphism (check your understanding: why is it well-defined?).
This allows us to consider the algebra of derivations Der(G∞

p (M), δp), consisting of all
v : G∞

p (M)→ R such that

v([ f ] + [g]) = v[ f ] + v[g] and v([ f ][g]) = g(p)v[ f ] + f (p)v[g], (1.3)

for all [ f ], [g] ∈ G∞
p (M). Note here the first instance of an abuse of notation: we

denote a germ [(U, f )] simply by [ f ]. It is justified since whenever U′ ⊆ U is an open
neighborhood of p, we have the equality [(U′, f |U′)] = [(U, f )]. The germ itself [ f ] is
not a function defined on any open neighborhood of p, but it can still be evaluated at
the point p — this is what the homomorphism δp is really doing.

We call (TpM)ALG. = Der(G∞
p (M), δp) the algebraic tangent space to M at p. It is, for

general algebraic reasons having nothing to do with topology or calculus, a real vector
space. Note that any v ∈ (TpM)ALG. also acts on any C∞(U), where U ⊆ M is an open
neighborhood of p, by v( f ) = v[ f ].

It remains to show that dim(TpM)ALG. = n. We will do this by exhibiting a basis
containing n elements. Namely, consider a chart (U, ϕ) for M around p, and write its
components as ϕ = (x1, . . . , xn). That is, denoting the Euclidean coordinate functions
by ui : Rn → R, we have that xi = ui ◦ ϕ : U → R. We then define

∂

∂xi

∣∣∣∣
p
∈ (TpM)ALG. by

∂

∂xi

∣∣∣∣
p
[ f ] =

∂( f ◦ ϕ−1)

∂ui (ϕ(p)), (1.4)

where f is a representative of the germ [ f ], defined on some open neighborhood of
p contained in U. The second relation in (1.3) for ∂/∂xi|p is nothing more than the
product rule for the Euclidean partial derivatives ∂/∂ui. Note that

∂

∂xi

∣∣∣∣
p
[xj] =

∂uj

∂ui (ϕ(p)) = δ
j
i =

{
1, if i = j
0, if i 6= j.

(1.5)
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A consequence of (1.5) is that{
∂

∂x1

∣∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣∣
p

}
is linearly independent. (1.6)

If a1, . . . , an ∈ R are such that ∑n
i=1 ai∂/∂xi|p = 0, evaluating both sides as [xj] leads to

∑n
i=1 aiδ

j
i = 0, that is, aj = 0. And finally, we claim that

v =
n

∑
i=1

v[xi]
∂

∂xi

∣∣∣∣
p
. (1.7)

To establish (1.7), we must evaluate both sides at an arbitrary germ [ f ] and check that
they produce the same output. First note that v(1) = 0, by writing 11 = 1 and applying
the product rule. Hence v(c) = 0 for any c ∈ R. Now we apply Hadamard’s lemma
to write

f = f (p) +
n

∑
i=1

(xi − xi(p))gi, (1.8)

where gi are smooth functions defined on some open neighborhood of p satisfying
gi(p) = (∂( f ◦ ϕ−1)/∂ui)(ϕ(p)). Now:

v[ f ] = v

[
f (p) +

n

∑
i=1

(xi − xi(p))gi

]
= v[ f (p)] +

n

∑
i=1

v[(xi − xi(p))gi]

= 0 +
n

∑
i=1

(
(xi(p)− xi(p))gi(p) + v[(xi − xi(p)]gi(p)

)
=

n

∑
i=1

v[xi]gi(p)

=
n

∑
i=1

v[xi]
∂( f ◦ ϕ−1)

∂ui (ϕ(p)) =
n

∑
i=1

v[xi]
∂

∂xi

∣∣∣∣
p
[ f ]

=

(
n

∑
i=1

v[xi]
∂

∂xi

∣∣∣∣
p

)
[ f ],

(1.9)

as required.

2 The geometric approach

Fix a chart (U, ϕ) centered at p, that is, with ϕ(p) = 0. On the set of all smooth
curves α in M defined on some interval around 0 ∈ R and such that α(0) = p, we
define a relation ≈ by declaring that α ≈ϕ β if (ϕ ◦ α)′(0) = (ϕ ◦ β)′(0). It is clear that
≈ϕ is an equivalence relation. It is less clear that ≈ϕ in fact does not depend on the
choice of (U, ϕ): if (V, ψ) is a second chart centered at p and α ≈ϕ β, we claim that
α ≈ψ β. Indeed, we may compute that

(ψ ◦ α)′(0) = (ψ ◦ ϕ−1 ◦ ϕ ◦ α)′(0) = D(ψ ◦ ϕ−1)(ϕ(α(0)))(ϕ ◦ α)′(0) (2.1)
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and, similarly, (ψ ◦ β)′(0) = D(ψ ◦ ϕ−1)(ϕ(β(0)))(ϕ ◦ β)′(0). Since ϕ(α(0)) = ϕ(β(0))
and (ϕ ◦ α)′(0) = (ϕ ◦ β)′(0), we conclude that (ψ ◦ α)′(0) = (ψ ◦ β)′(0) as required.
Note that, at this point, the chain rule may only be applied to functions between open
subsets of Euclidean spaces, not on manifolds. Our use of the chain rule here is legal
because ψ ◦ ϕ−1 is a smooth mapping between open subsets of Rn, and its derivative
at any point takes as inputs elements of Rn, which (ϕ ◦ α)′(0) and its friends are.

We therefore denote ≈ϕ simply by ≈. The geometric tangent space to M at p is the
set (TpM)GEOM. of all the equivalence classes according to ≈. This time, the real vector
space structure of (TpM)GEOM. is less clear. But here it is:

[α] + [β] = [t 7→ ϕ−1(ϕ(α(t)) + ϕ(β(t)))] and λ · [α] = [t 7→ ϕ−1(λϕ(α(t)))], (2.2)

for all [α], [β] ∈ (TpM)GEOM. and λ ∈ R. We again must check that such operations
are well-defined. For instance, to see that [α] + [β] does not depend on the choice of
representatives for [α] and [β], assume that [α] = [γ] and [β] = [η], and note that

d
dt

∣∣∣∣
t=0

ϕ
(

ϕ−1(ϕ(α(t)) + ϕ(β(t)))
)
=

d
dt

∣∣∣∣
t=0

ϕ
(

ϕ−1(ϕ(γ(t)) + ϕ(η(t)))
)

. (2.3)

Namely, (2.3) reads as (ϕ ◦ α)′(0) + (ϕ ◦ β)′(0) = (ϕ ◦ γ)′(0) + (ϕ ◦ η)′(0), which is
obviously true under the given assumptions. A similar calculation shows that scalar
multiplication in (TpM)GEOM is well-defined. The neutral element is 0 = [cp], where
cp(t) = p for all t. The resulting vector space structure is also independent of the choice
of chart (U, ϕ) in (2.2) because≈ itself is independent of it (check your understanding:
how exactly does this follow from what we did in the beginning of the section?).

Now, we may prove that dim(TpM)GEOM. = n. For the second time, a chart (U, ϕ)
(centered at p) will induce a basis of (TpM)GEOM.. Denoting by (e1, . . . , en) the canonical
basis of Rn, we consider the curves γj(t) = ϕ−1(tej), for j = 1, . . . , n. We claim that

{[γ1], . . . , [γn]} is a basis of (TpM)GEOM. (2.4)

For linear independence, consider a1, . . . , an ∈ R, and assume that ∑n
j=1 aj[γj] = [cp].

Thus [ϕ−1(t ∑n
j=1 ajej)] = [cp], and so ∑n

j=1 ajej = 0 by definition of≈. Hence, it follows
that a1 = · · · = an = 0. Finally, for any [α] ∈ (TpM)GEOM., it holds that

[α] =
n

∑
j=1

(xi ◦ α)′(0)[γi], (2.5)

where xi are the components of ϕ, as before. Indeed,

ϕ−1(α(t)) = (x1(α(t)), . . . , xn(α(t)) and t 7→ (t(x1 ◦ α)′(0), . . . , t(xn ◦ α)′(0)) (2.6)

have the same value and derivative at t = 0. This proves (2.4).

In practice, we denote [α] by α′(0), even though α takes values in M instead of Rn.
This is how we make sense of the velocity vector of a curve valued in a manifold. More
generally, we have that α′(t) ∈ (Tα(t)M)GEOM. for all t in the domain of α.
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3 The physics approach

On the set Ap ×Rn consisting of the pairs ((U, ϕ), v), where (U, ϕ) is a chart for M
around p and v ∈ Rn, we define a relation ' by declaring that

((U, ϕ), v) ' ((V, ψ), w) if D(ψ ◦ ϕ−1)(ϕ(p))v = w. (3.1)

Transitivity of ' amounts to the chain rule for mappings between open subsets of
Rn, while symmetry follows from D(ψ ◦ ϕ−1)(ϕ(p))−1 = D(ϕ ◦ ψ−1)(ψ(p)). The
quotient set (TpM)PHYS. is called the physical tangent space to M at p. The idea is that we
look at a vector in Rn starting at the image point ϕ(p), consider its images under all
possible transition functions between charts around p, and identify all of them: this is
the abstract tangent vector. The real vector space structure in (TpM)PHYS. is defined by
λ · [((U, ϕ), v)] = [((U, ϕ), λv)] and

[((U, ϕ), v)] + [((V, ψ), w)] = [((U, ϕ), v + D(ϕ ◦ ψ−1)(ψ(p))w)], (3.2)

for all [((U, ϕ), v)], [((V, ψ), w)] ∈ (TpM)PHYS. and λ ∈ R. The way to think about this
definition of addition is that w, initially seen from the perspective of the chart (V, ψ),
must be transported to the perspective of (U, ϕ) before being added to v. And it does
not matter if v is transported to the perspective of (V, ψ) before being added to w
instead, since

[((U, ϕ), v + D(ϕ ◦ ψ−1)(ψ(p))w)] = [((V, ψ), w + D(ψ ◦ ϕ−1)(ϕ(p))v)]. (3.3)

The scalar multiplication in (TpM)PHYS. is well-defined since derivatives are linear
transformations. To see that the addition in (3.2) is well-defined, we note that it suf-
fices to show that it does not depend on the choice of representative for [((U, ϕ), v)],
due to (3.3). Indeed, if [((W, ζ), z)] = [((U, ϕ), v)], we have

D(ζ ◦ ϕ−1)(ϕ(p))
(

v + D(ϕ ◦ ψ−1)(ψ(p))w)
)
=

= D(ζ ◦ ϕ−1)(ϕ(p))v + D(ζ ◦ ϕ−1)(ϕ(p))D(ϕ ◦ ψ−1)(ψ(p))w

= z + D(ζ ◦ ϕ−1 ◦ ϕ ◦ ψ−1)(ψ(p))w

= z + D(ζ ◦ ψ−1)(ψ(p))w,

(3.4)

showing that [((U, ϕ), v+ D(ϕ ◦ψ−1)(ψ(p))w)] = [((W, ζ), z+ D(ζ ◦ψ−1)(ψ(p))w)].
The neutral element of (TpM)PHYS. is, of course, [((U, ϕ), 0)].

Lastly, we claim that dim(TpM)PHYS. = n. If (e1, . . . , en) is the canonical basis of Rn

and a chart (U, ϕ) around p is fixed, then it is easy to see that

{[((U, ϕ), e1)], . . . , [((U, ϕ), en)]} is a basis of (TpM)PHYS.. (3.5)

Indeed, if a1, . . . , an ∈ R are such that ∑n
i=1 ai[((U, ϕ), ei)] = [((U, ϕ), 0)], then by

definition of addition we have [((U, ϕ), ∑n
i=1 aiei)] = [((U, ϕ), 0)], and so ∑n

i=1 aiei = 0,
leading to a1 = · · · = an = 0. On the other hand, if [((U, ϕ), v)] ∈ (TpM)PHYS. is
given, we may write v = ∑n

i=1 aiei for suitable coefficients a1, . . . , an ∈ R, and then
[((U, ϕ), v)] = ∑n

i=1 ai[((U, ϕ), ei)], as expected.
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The way physicists actually think about this construction is that to each coordinate
system (x1, . . . , xn) we assign a list of numbers (a1, . . . , an), to be thought of the com-
ponents (relative to the given coordinates) of the abstract tangent vector being defined,
and these numbers must satisfy the transformation law

ãj =
n

∑
i=1

∂x̃j

∂xi

∣∣∣∣
p
ai, for all j = 1, . . . , n, (3.6)

whenever (ã1, . . . , ãn) are the components associated with the coordinates (x̃1, . . . , x̃n).
These partial derivatives of course constitute the entries of the matrix representing
D(ϕ ◦ ψ−1)(ψ(p)) — it was a matter of style to consider total derivatives instead of
matrix entries above. In any case, the condition (3.6) ensures that

n

∑
i=1

ai ∂

∂xi

∣∣∣∣
p
=

n

∑
i=1

ãi ∂

∂x̃i

∣∣∣∣
p
, (3.7)

so that constructions involving coordinate descriptions of tangent vectors ultimately
end up being coordinate-independent.

4 Equivalences

In this section, we will finally establish natural isomorphisms

(TpM)ALG. ∼= (TpM)GEOM. ∼= (TpM)PHYS.. (4.1)

They will be essentially independent of the choice of any chart but, in the presence of
one, they will also identify the bases{

∂

∂x1

∣∣∣∣
p
, · · · ,

∂

∂xn

∣∣∣∣
p

}
∼= {[γ1], . . . , [γn]} ∼= {[((U, ϕ), e1)], . . . , [((U, ϕ), en)]} (4.2)

appearing in (1.6), (2.4), and (3.5). Consider the triangle:

(TpM)ALG.

(TpM)GEOM. (TpM)PHYS.

ΨΦ

Θ

(4.3)

Here, we have that

(i) Φ([α])[ f ] = ( f ◦ α)′(0),

(ii) Ψ(v) =

[(
(U, ϕ),

n

∑
i=1

v[xi]ei

)]
,

(iii) Θ[((U, ϕ), v)] = [t 7→ ϕ−1(ϕ(p) + tv)].

(4.4)
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Of course, one must check that such linear transformations are well-defined. For ex-
ample, consider Θ. If [((V, ψ), w)] = [((U, ϕ), v)], then both t 7→ ϕ−1(ϕ(p) + tv) and
t 7→ ψ−1(ψ(p) + tw) are equal to p when t = 0 while, using (U, ϕ) as the reference
chart, we compute the derivatives as

d
dt

∣∣∣∣
t=0

ϕ
(

ϕ−1(ϕ(p) + tv)
)
= v and

d
dt

∣∣∣∣
t=0

ϕ
(
ψ−1(ψ(p) + tw)

)
= D(ϕ ◦ ψ−1)(ψ(p))w,

(4.5)

which agree by assumption. Check your understanding and verify that Φ and Ψ are
also well-defined.

As all tangent spaces involved have the same finite dimension, we may simulta-
neously prove that Φ, Ψ, and Θ are isomorphisms without exhibiting their inverses
(although we will soon do so, for completeness), just checking instead that Θ ◦ Ψ ◦Φ
or any positive permutation of it equals the identity — that is, that the diagram (4.3)
commutes. So, let [α] ∈ (TpM)GEOM., and consider (Θ ◦Ψ ◦Φ)([α]). We simply unwind
it as follows:

(Θ ◦Ψ ◦Φ)([α]) = Θ

[(
(U, ϕ),

n

∑
i=1

Φ([α])[xi]ei

)]

= Θ

[(
(U, ϕ),

n

∑
i=1

(xi ◦ α)′(0)ei

)]
= Θ

[(
(U, ϕ), (ϕ ◦ α)′(0)

)]
=
[
t 7→ ϕ−1(ϕ(p) + t(ϕ ◦ α)′(0))

]
= [α],

(4.6)

with the last equality due to the obvious relation

d
dt

∣∣∣∣
t=0

ϕ
(

ϕ−1(ϕ(p) + t(ϕ ◦ α)′(0))
)
= (ϕ ◦ α)′(0). (4.7)

Check your understanding and also verify that (Ψ ◦Φ ◦Θ)[((U, ϕ), v)] = [((U, ϕ), v)]
and (Φ ◦Θ ◦Ψ)(v) = v for all [((U, ϕ), v)] ∈ (TpM)PHYS. and v ∈ (TpM)ALG..

As expected, also note that when a chart (U, ϕ) is fixed, we have that

Φ([γi]) =
∂

∂xi

∣∣∣∣
p
, Ψ

(
∂

∂xi

∣∣∣∣
p

)
= [((U, ϕ), ei)], and Θ[((U, ϕ), ei)] = [γi], (4.8)

establishing (4.2).
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Finally, we register that the inverses of Φ, Ψ, and Θ, are given by

(i) Φ−1(v) =
[
t 7→ ϕ−1 (ϕ(p) + t ∑n

i=1 v[xi]ei
)]

(ii) Ψ−1[((U, ϕ), v)][ f ] =
∂( f ◦ ϕ−1)

∂v
(ϕ(p))

(iii) Θ−1([α]) = [((U, ϕ), (ϕ ◦ α)′(0))].

(4.9)

In the right side of (4.9-ii), ∂/∂v is an Euclidean directional derivative. The right side
of (4.9-i), however, seems to depend on the choice of chart (U, ϕ) used to build the
curve representative of Φ−1(v). This is not the case: if (V, ψ = (y1, . . . , yn)) is a second
chart and we use (U, ϕ) as the reference chart, we have that

d
dt

∣∣∣∣
t=0

ϕ

(
ϕ−1

(
ϕ(p) + t

n

∑
i=1

v[xi]ei

))
=

n

∑
i=1

v[xi]ei, (4.10)

while

d
dt

∣∣∣∣
t=0

ϕ

(
ψ−1

(
ψ(p) + t

n

∑
j=1

v[yj]ej

))
= D(ϕ ◦ ψ−1)(ψ(p))

n

∑
j=1

v[yj]ej

=
n

∑
i,j=1

v[yj]
∂(ϕ ◦ ψ−1)i

∂yj (ψ(p))ei.

(4.11)

But the relation

v[xi] =
n

∑
j=1

v[yj]
∂(ϕ ◦ ψ−1)i

∂yj (ψ(p)) (4.12)

must hold: we use Hadamard’s lemma to write

xi = xi(p) +
n

∑
j=1

(yj − yj(p))gi
j (4.13)

for some smooth functions gi
j defined on an open neighborhood of p and such that

gi
j(p) = (∂(ϕ ◦ ψ−1)i/∂yj)(ψ(p)) for all j, and then apply the derivation v to both

sides of (4.13); so (4.12) follows. This means that[
t 7→ ϕ−1

(
ϕ(p) + t

n

∑
i=1

v[xi]ei

)]
=

[
t 7→ ψ−1

(
ψ(p) + t

n

∑
i=1

v[yi]ei

)]
, (4.14)

as wanted.
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