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1 Symplectic Linear Algebra

1.1 Symplectic spaces and their subspaces

There is nothing more natural than starting a text on Symplecic Geometry1 with the
definition of a symplectic vector space. All the vector spaces considered will be real
and finite-dimensional unless otherwise specified.

Definition 1

A symplectic vector space is a pair (V, Ω), where:

• V is a vector space, and;

• Ω : V ×V → R is a non-degeneratea skew-symmetric bilinear form.

We say that Ω is a linear symplectic form.
aThat is, if Ω(v, w) = 0 for all w ∈ V, then v = 0.

Before anything else, a quick observation: every symplectic vector space (V, Ω)
is even-dimensional. To wit, let m = dim V and pick any basis (v1, . . . , vm) for V.
Identify Ω with the matrix (Ω(vi, vj))

m
i,j=1. Non-degeneracy of Ω says that det Ω 6= 0,

while skew-symmetry leads to det Ω = (−1)m det Ω, and thus (−1)m = 1. Thus m is
even. Our first example will be manifestly even-dimensional:

Example 1

The mother of all examples (for precise reasons we’ll see later in the chapter) is
(R2n, Ω2n), where Ω2n : R2n ×R2n → R is given by

Ω2n((x, y), (x′, y′)) .
= 〈x, y′〉 − 〈x′, y〉.

Here, we write R2n = Rn ⊕Rn and 〈·, ·〉 stands for the standard Euclidean inner
product in Rn. Here’s a concrete instance (up to perhaps relabeling some coordi-
nates): in R4, the symplectic form Ω4 is given by

Ω4((x, y, z, w), (x′, y′, z′, w′)) = xy′ − x′y + zw′ − z′w.

The matrix representing Ω2n relative to the standard basis of R2n, in block form,
is simply

−J2n
.
=

 0 Idn

−Idn 0

 .

We call (R2n, Ω2n) the canonical symplectic prototype.

1By the way, the name “symplectic” is due to Hermann Weyl, changing the Latin com/plex to the
Greek sym/plectic.
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Here’s another example, more abstract in spirit.

Example 2

Let L be a vector space, and consider V .
= L⊕ L∗, where L∗ is the dual space of L.

We define ΩL : V ×V → R by

ΩL((x, f ), (y, g)) .
= g(x)− f (y).

This ΩL is called the canonical symplectic structure of L⊕ L∗.

Exercise 1

(a) Check that the symplectic forms given in the previous two examples are in-
deed non-degenerate.

(b) In the previous example, let (e1, . . . , en) be a basis for L, take the dual ba-
sis (e1, . . . , en) in L∗, and compute the matrix of Ω relative to the joint basis
((e1, 0), . . . , (en, 0), (0, e1), . . . , (0, en)) of L⊕ L∗. Does the result surprise you?

When dealing with spaces equipped with inner products, we have orthogonal com-
plements. There’s a natural analogue here:

Definition 2

Let (V, Ω) be a symplectic vector space and S ⊆ V be a subspace. The symplectic
complement of S is defined to be SΩ .

= {x ∈ V | Ω(x, y) = 0 for all y ∈ S}.

However, the behavior of symplectic complements is not exactly the same as the
one for orthogonal complements. The most striking difference is that the sum of S and
SΩ does not need to be direct, nor equal to V, in general. But there’s a saving grace:

Proposition 1

Let (V, Ω) be a symplectic vector space, and S ⊆ V a subspace. Then:

(i) dim S + dim SΩ = dim V.

(ii) (SΩ)Ω = S.

(iii) S⊕ SΩ = V⇐⇒ S ∩ SΩ = {0}⇐⇒ (S, Ω|S×S) is a symplectic vector space.

Proof:

(i) The map V 3 x 7→ Ω(x, ·)|S ∈ S∗ is surjective with kernel SΩ, so the formula
follows from the rank-nullity theorem, noting that dim S = dim S∗.

(ii) Clearly S ⊆ (SΩ)Ω, so equality follows since dim S = dim(SΩ)Ω by the previous
item applied twice.
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(iii) Since dim(S + SΩ) = dim S + dim SΩ − dim(S ∩ SΩ), item (i) now says that
dim(S + SΩ) = dim V if and only if dim(S ∩ SΩ) = 0.

In particular, this proposition shows that it is not true that restricting Ω to sub-
spaces of V gives symplectic spaces. This is a very special condition. There are other
types of subspaces worthy of attention.

Definition 3

Let (V, Ω) be a symplectic vector space and S ⊆ V be a subspace. We say that S
is:

(i) symplectic if S ∩ SΩ = {0}.

(ii) isotropic if S ⊆ SΩ.

(iii) coisotropic if SΩ ⊆ S.

(iv) Lagrangian if S = SΩ.

As immediate examples, all lines passing through the origin are isotropic, and all
hyperplanes passing through the origin are coisotropic. And Lagrangian subspaces
are the isotropic subspaces which are maximal (relative to inclusion) — it is not hard
to see that Lagrangian subspaces are always mid-dimensional. Here are more concrete
examples:

Example 3

(1) Let S ⊆ Rn be any subspace. Then S×{0} and {0}× S are isotropic subspaces
of (R2n, Ω2n), and they’re Lagrangian if and only if S = Rn. Moreover, S× S⊥

is always Lagrangian.

(2) Let L be a vector space, and consider the canonical symplectic structure ΩL
on V = L ⊕ L∗. If S ⊆ L and X ⊆ L∗ are vector subspaces, then S ⊕ {0}
and {0} ⊕ X are both isotropic, and Lagrangian if and only if S = L and
X = L∗, respectively. If Ann(S) ⊆ L∗ is the annihilator of S, then S⊕Ann(S)
is Lagrangian.

(3) If (V1, Ω1) and (V2, Ω2) are symplectic vector spaces, so is their (external) di-
rect sum (V1 ⊕V2, Ω1 ⊕Ω2), where

(Ω1 ⊕Ω2)((v1, v2), (v′1, v′2))
.
= Ω1(v1, v′1) + Ω2(v2, v′2).

If S1 ⊆ V1 and S2 ⊆ V2 are subspaces, then (S1 × S2)
Ω1⊕Ω2 = SΩ1

1 ⊕ SΩ2
2 ,

so that if S1 and S2 are both of the same “type” (i.e., symplectic, isotropic,
coisotropic, Lagrangian), then S1 × S2 will also have the same type.
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Exercise 2

Explore the above example further: if S1, S2 ⊆ Rn are two subspaces, consider
(R2n, Ω2n) and show that (S1 × S2)

Ω2n = S⊥2 × S⊥1 . Conclude that S1 × S2 is
isotropic if and only if S1 ⊆ S⊥2 , coisotropic if and only if S1 ⊇ S⊥2 , and Lagrangian
if and only if S1 = S⊥2 . State and prove a similar result replacing (R2n, Ω2n) with
(L ⊕ L∗, ΩL) and orthogonal complements with annihilators. Check the claims
made in item (3).

Here’s a less obvious example of a symplectic vector space, coming from a differ-
ential equation:

Example 4

Let (L, 〈·, ·〉) be a pseudo-Euclidean space (i.e., 〈·, ·〉 is a non-degenerate symmet-
ric bilinear form on L), I ⊆ R be an open interval, and Φ : I → End(L) be a smooth
curve of self-adjoint operators. Let V be the space of smooth solutions v : I → L
of the ordinary differential equation v̈(t) = Φ(t)v(t) (note that dim V = 2 dim L
is even). Then, define Ω : V × V → R by Ω(v, w) = 〈v̇, w〉 − 〈v, ẇ〉 (observe that
the right side is indeed constant). Clearly Ω is skew-symmetric, but we claim that
it is non-degenerate as well: if v ∈ V \ {0}, there is t0 ∈ I such that v(t0) 6= 0,
so non-degeneracy of 〈·, ·〉 provides a vector w0 ∈ L with 〈v(t0), w0〉 6= 0. Then
the unique w ∈ V with w(t0) = 0 and ẇ(t0) = w0 satisfies Ω(v, w) 6= 0. For each
t ∈ I, we have the operators δt, δ̇t : V → L given by δt(v) = v(t) and δ̇t(v) = v̇(t),
and both ker δt and ker δ̇t are Lagrangian.
In particular, the same idea shows that the space J(γ) of Jacobi fields along a
geodesic γ on a pseudo-Riemannian manifold (M, g) has a natural symplectic
form, since J ∈ J(γ) if and only if

D2 J
dt

(t) = R(γ̇(t), Jt)γ̇(t),

where D/dt is the covariant derivative along γ induced by the Levi-Civita con-
nection of (M, g), and each Φ(t) = R(γ̇(t), ·)γ̇(t) is self-adjoint due to symmetries
of the curvature tensor.

The following exercise is also useful to practice using the definitions:

Exercise 3

Let (V, Ω) be a symplectic vector space, and S1, S2 ⊆ V be two subspaces. Show
that:

(a) (S1 + S2)
Ω = SΩ

1 ∩ SΩ
2 ;

(b) (S1 ∩ S2)
Ω = SΩ

1 + SΩ
2 .
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Conclude that if S is any subspace of V, then S∩ SΩ is always isotropic and S+ SΩ

is always coisotropic. Hint: how does (b) follow from (a)?

Let’s make sure you’re comfortable with everything seen so far.

Exercise 4 (Challenge #1)

Let V and W be two vector spaces. A map B : V ×W → R is called a perfect
pairing if both maps V → W∗ and W → V∗ induced by B are isomorphisms.
Define ΩB : (V×W)× (V×W)→ R by ΩB((v, w), (v′, w′)) = B(v, w′)− B(v′, w).

(a) Show that (V ×W, ΩB) is a symplectic vector space and explain how the two
main examples we have been dealing with so far fit here. Namely, what are
the perfect pairings?

(b) Let T : V → W be a linear map. Show that the graph gr(T) is a Lagrangian
subspace of V ×W if and only if the diagram

V W

W∗ V∗

T

∼= ∼=

T∗

commutes.

(c) Conclude that if L is a vector space and T : L → L∗ is linear, then gr(T) is a
Lagrangian subspace of (L⊕ L∗, ΩL) if and only if the bilinear map induced
by T, (x, y) 7→ T(x)(y), is symmetric.

We move on. Spaces with inner products have orthonormal bases, but we have
seen that orthogonal complements and symplectic complements are not quite the same.
Are there symplectic analogues of orthonormal bases? You shouldn’t be surprised that
the answer is “yes”.

Theorem 1

Let (V, Ω) be a symplectic vector space, with dimension dim V = 2n. There is
a basis B = (e1, . . . , en, f1, . . . , fn) for V such that for all i, j = 1, . . . , n, we have
Ω(ei, ej) = 0, Ω( fi, f j) = 0 and Ω(ei, f j) = δij. Or, in other words, the matrix of Ω
relative to B is −J2n. Such a basis B is called a Darboux basis for (V, Ω).

Proof: The proof goes by (strong) induction on n. If dim V = 2, then pick any e1 ∈ V,
non-zero. Since Ω is non-degenerate, there is f1 ∈ V such that Ω(e1, f1) 6= 0. Rescaling
f1, we may assume that Ω(e1, f1) = 1, which establishes the base of the induction. For
the inductive step, assume that dim V = 2n, take e1, f1 ∈ V just as above, and let
S = span(e1, f1). Clearly S is symplectic, so SΩ is also symplectic and S⊕ SΩ = V. By
the induction assumption, we may take a Darboux basis (e2, . . . , en, f2, . . . , fn) for SΩ.
Throw in e1 and f1 to get a Darboux basis for V.
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Example 5

Let (V, Ω) be a symplectic vector space and B = (e1, . . . , en, f1, . . . , fn) be a Dar-
boux basis for V. Let I ⊆ [n], where [n] = {1, . . . , n}. Then SB,e,I = span(ei : i ∈ I)
and SB, f ,I = span( fi : i ∈ I) are isotropic subspaces, Lagrangian if and only
if I = [n]. And the subspace SB,e, f ,I = span(ei, fi : i ∈ I) is symplectic, with
complement SΩ

B,e, f ,I = SB,e, f ,[n]\I .

Let’s conclude this section with a lemma that will be useful later.

Lemma 1

Let (V, Ω) be a symplectic vector space, and L ⊆ V a Lagrangian subspace. Then
L has a Lagrangian complement, that is, there is a second Lagrangian subspace
L′ ⊆ V such that V = L⊕ L′.

Proof: Start taking any complementary subspace W ⊆ V for L, i.e., a subspace such
that V = L⊕W. There’s no reason this W should already be Lagrangian, so we correct
it as follows: for any w ∈ W, we look at the linear functional fw : V → R given by
fw(x) = Ω(w, prW(x))/2, where prW : V → W is the projection defined by the direct
sum. Note that fw annihilates L, so we may write fw = Ω(w′, ·) for some w′ ∈ LΩ = L
which is uniquely determined by w. Now we let L′ = {w− w′ | w ∈ W}, and claim
that L′ is Lagrangian and V = L⊕ L′. If w1, w2 ∈W, compute

Ω(w1 − w′1, w2 − w′2) = Ω(w1, w2)−Ω(w1, w′2)−Ω(w′1, w2)−Ω(w′1, w′2)
= Ω(w1, w2) + fw2(w1)− fw1(w2)− 0

= Ω(w1, w2) +
1
2

Ω(w2, w1)−
1
2

Ω(w1, w2)

= 0.

So L′ is isotropic and V = L + L′, hence L′ is Lagrangian and V = L⊕ L′ by a dimen-
sion count. The equality V = L + L′ is justified as follows: if v ∈ V, then v = x + w
with x ∈ L and w ∈W, so we have v = (x + w′) + (w− w′).

1.2 Symplectomorphisms

In the previous section, we have seen symplectic analogues of orthogonal comple-
ments and of orthonormal bases. Naturally, there are analogues of isometries.

Definition 4

Let (V1, Ω1) and (V2, Ω2) be two symplectic vector spaces, and ϕ : V1 → V2 be
linear. The map ϕ is called symplectic if Ω1(x, y) = Ω2(ϕ(x), ϕ(y)) for all vectors
x, y ∈ V. A symplectic isomorphism is then called a symplectomorphism.
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Symplectic maps should behave well relative to symplectic complements, just like
isometries behave well relative to orthogonal complements. There are some minor
things one should pay attention to, though. The next exercise will clarify them.

Exercise 5

Let (V1, Ω1) and (V2, Ω2) be two symplectic vector spaces, and ϕ : V1 → V2 be a
symplectic map.

(a) Show that ϕ is necessarily injective. Give an example showing that ϕ does not
need to be surjective.

(b) Show that if S ⊆ V1 is a subspace, then ϕ[SΩ1 ] ⊆ ϕ[S]Ω2 . Give an example
showing that the reverse inclusion need not hold.

(c) With the same notation as in (b), show that ϕ[SΩ1 ] = ϕ[S]Ω2 ∩ Ran(ϕ).

With this in place, let’s see some examples.

Example 6

Let L be a vector space and consider the canonical symplectic space (L⊕ L∗, ΩL).
If T ∈ GL(L), then ϕ

.
= T ⊕ (T∗)−1 : L⊕ L∗ → L⊕ L∗ is a symplectomorphism,

since

ΩL(ϕ(x, f ), ϕ(y, g)) = (T∗)−1(g)(Tx)− (T∗)−1( f )(Ty)

= T∗ ◦ (T∗)−1(g)(x)− T∗ ◦ (T∗)−1( f )(y)
= g(x)− f (y)
= ΩL((x, f ), (y, g)).

As a particular example, we may take the dilations T(x) = eax, where a ∈ R is
fixed. This construction gives ϕa(x, f ) = (eax, e−a f ).

Exercise 6

Show that the above example is optimal, in the following sense: if T : L → L and
T̂ : L∗ → L∗ are any linear maps, then T ⊕ T̂ is a symplectomorphism of L⊕ L∗ if
and only if T̂ = (T∗)−1.

Example 7

Let (V, Ω) be a symplectic vector space and B = (e1, . . . , en, f1, . . . , fn) be a Dar-
boux basis for V.

• The linear map J : V → V defined by setting J(ei) = fi and J( fi) = −ei, for
all i = 1, . . . , n, is a symplectomorphism. Note that J2 = −IdV (that is, J is a
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linear complex structure on V).

• If σ ∈ Sn is a permutation, then ϕσ : V → V given by ϕσ(ei) = eσ(i) and
ϕσ( fi) = fσ(i), for all i = 1, . . . , n, is a symplectomorphism.

• Let’s generalize the above item. Let A ∈ GLn(R), and define ϕA : V → V by

ϕ(ej) =
n

∑
i=1

(A>)i
jei and ϕ( f j) =

n

∑
i=1

(A−1)i
j fi.

Then ϕA is a symplectomorphism. It’s clear that Ω(ϕA(ei), ϕA(ej)) = 0 and
Ω(ϕA( fi), ϕA( f j)) = 0 for all choices of i and j, so let’s only check the last
Darboux relation:

Ω(ϕA(ei), ϕA(ej)) = Ω

(
n

∑
k=1

(A>)k
iek,

n

∑
`=1

(A−1)`j f`

)

=
n

∑
k,`=1

(A>)k
i(A−1)`jΩ(ek, f`)

=
n

∑
k,`=1

(A>)k
i(A−1)`jδk`

=
n

∑
k=1

(A>)k
i(A−1)k

j

= δij.

Exercise 7

Show that the last bullet of the previous example is optimal, in the following sense
(with same notations as above and before): if ϕ : V → V is a symplectomorphism
which leaves SB,e,[n] and SB, f ,[n] invariant, there are two matrices B, C ∈ GLn(R),
B = (bi

j)
n
i,j=1 and C = (ci

j)
n
i,j=1, such that

ϕ(ej) =
n

∑
i=1

bi
jei and ϕ( f j) =

n

∑
i=1

ci
j fi.

Then there is A ∈ GLn(R) such that B = A> and C = A−1.

Example 8

As in Example 4 (p. 4), let (L, 〈·, ·〉) be a pseudo-Euclidean space and (V, Ω) be the
vector space of smooth solutions of v̈(t) = Φ(t)v(t) on some interval I ⊆ R, for
a curve of self-adjoint endomorphisms of L. For every t ∈ I, the evaluation map
V 3 v 7→ (v(t), v̇(t)) ∈ L⊕ L is a symplectomorphism, where L⊕ L is considered
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with the symplectic form from Example 1 (p. 1, with L playing the role of Rn) or,
alternatively, Exercise 4 (p. 5) with the perfect pairing B = 〈·, ·〉.

Now we are ready to discuss the symplectic analogue of O(V, g), where (V, g) is
an inner product space.

Definition 5

Let (V, Ω) be a symplectic vector space. The symplectomorphism group of (V, Ω),
denoted by Sp(V, Ω), is the collection of all symplectomorphisms from V to itself.

Clearly Sp(V, Ω) is a group when equipped with composition of functions. In
particular, we write Sp2n(R)

.
= Sp(R2n, Ω2n) when discussing things on the matrix

level. Namely, we have that

Sp2n(R) = {R ∈ GL2n(R) | R> J2nR = J2n},

and from there we see that Sp2n(R) is closed under matrix transposition (this is not
true for every matrix group). Writing matrices in block-form, we can explictly write
what it means for R to be in Sp2n(R).

Exercise 8 (The Luneburg Relations)

Write R ∈ GL2n(R) as

R =

(
A B

C D

)

Show that R ∈ Sp2n(R) if and only if we have that A>C and B>D are symmetric
and A>D− C>B = Idn. In this case, also show that

R−1 =

 D> −B>

−C> A>

 .

We will not be able to go into much detail about Sp(V, Ω), so we will avoid techni-
cal proofs (references will be given) and settle for a few comments regarding:

• a distinguished set of generators 〈τv,λ | (v, λ) ∈ (V \ {0})×R〉.

• the spectrum σ(ϕ) of a symplectomorphism ϕ ∈ Sp(V, Ω);

• the fundamental group π1Sp(V, Ω).

We will start on the group-theoretic side of things.
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Definition 6

Let (V, Ω) be a symplectic vector space, and fix v ∈ V, v 6= 0, and λ ∈ R. The
symplectic transvection in the direction of v with intensity λ is the linear map
τv,λ : V → V given by τv,λ(x) .

= x + λΩ(x, v)v.

A symplectic transvection τv,λ is essentially a “shear-like reflection” about the hy-
perplane (Rv)Ω. It is instructive to establish some of their basic properties:

Exercise 9

Let (V, Ω) be a symplectic vector space, and v ∈ V a non-zero vector. Then:

(a) τv,λ ∈ Sp(V, Ω), for all λ ∈ R;

(b) τv,λ1 ◦ τv,λ2 = τv,λ1+λ2 , for all λ1, λ2 ∈ R;

(c) τv,λ = IdV if and only if λ = 0;

(d) if ϕ ∈ Sp(V, Ω), then ϕ ◦ τv,λ ◦ ϕ−1 = τϕ(v),λ, for all λ ∈ R;

(e) τav,λ = τv,a2λ, for all a, λ ∈ R, a 6= 0.

The takeaway here is that if v 6= 0, the curve R 3 λ 7→ τv,λ ∈ Sp(V, Ω) is an injec-
tive group homomorphism, and the images of any two such curves are conjugate
in Sp(V, Ω).

The properties given above are the key for proving the big theorem on the group
structure of Sp(V, Ω):

Theorem 2 (Symplectic “Cartan-Dieudonné”)

For any symplectic vector space (V, Ω), the group Sp(V, Ω) is generated by sym-
plectic transvections.

See [24] for a proof. From the definition of Sp2n(R) and using Darboux bases, we
can see that the determinant of any symplectomorphism equals 1 or −1. This theorem
allows us to obtain the optimal conclusion:

Corollary 1

If (V, Ω) is a symplectic vector space and ϕ ∈ Sp(V, Ω), then det ϕ = 1.

Proof: By the symplectic version of Cartan-Dieudonné, it suffices to check that given
a non-zero vector v ∈ V and λ ∈ R, then det τv,λ = 1. But it is easy to see that
det τv.λ = 1 + λΩ(v, v) = 1.

Now, we change gears. It turns out that knowing that every symplectomorphism
is unimodular is exactly what we need to understand its spectrum.
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Theorem 3 (The Symplectic Eigenvalue Theorem)

Let (V, Ω) be a symplectic vector space and ϕ ∈ Sp(V, Ω). If λ ∈ C is an eigen-
value of ϕ, so will be λ−1, λ and λ

−1
. Moreover, the algebraic multiplicities of λ

and λ−1 are the same, and the multiplicities of 1 and −1 (if they occur at all) are
even.

For a proof, see [1]. The key idea, though, is to show that if p(λ) is the characteristic
polynomial of ϕ, the relation p(λ) = λ2n p(λ−1) holds — and here enters the condition
det ϕ = 1 (try to prove it). And to conclude this section, we observe that Sp(V, Ω)
is (perhaps not surprisingly) a Lie group (with dimension dim Sp(V, Ω) = n(2n + 1),
if 2n = dim V, by Luneburg’s relations), and its Lie algebra sp(V, Ω) consists of all
linear operators with are Ω-skew (those are called Hamiltonian operators). There
is a version of the above theorem for sp(V, Ω), as well as “infinitesimal Luneburg
relations”. Now, every Lie group has, first and foremost, a topology. And what can
we say about the topology of Sp(V, Ω)? The simplest (functorial) topological invariant
is the fundamental group. It turns out that π1Sp(V, Ω) ∼= Z, but the surprising fact
is that there is a very specific isomorphism, called the Maslov index — defined from
loops in the Grassmannian of Lagrangian subspaces of (V, Ω) and the usual notion of
degree between self-maps of the circle S1. See [28] or [35] for more details.

1.3 Local linear forms

The reason we’re starting these lecture notes discussing linear algebra is not only
for pedagogical reasons, but really because symplectic vector spaces are the linear pro-
totypes of symplectic manifolds we’ll study in the next chapters. More precisely, the
tangent spaces to symplectic manifolds are symplectic vector spaces, so (essentially)
all linear algebra tools can be smoothly applied pointwise on a manifold. And fre-
quent questions are “what does a symplectic manifold look like locally” and “how
does a given submanifold fit into a symplectic manifold?”. Answering these questions
in the linear setting is an easy task, and we’ll do this now.

Theorem 4 (Linear Darboux)

Let (V, Ω) be a symplectic vector space with 2n = dim V. Then (V, Ω) is sym-
plectomorphic to the canonical symplectic prototype (R2n, Ω2n).

Proof: Take a Darboux basis B= (e1, . . . , en, f1, . . . , fn) for V and define ϕ : R2n → V
by

ϕ(x, y) =
n

∑
i=1

(xiei + yi fi).

Clearly ϕ is a symplectomorphism.
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This is underwhelming, and we could have established this theorem in the last sec-
tion (perhaps the reader even guessed the statement by then). One drawback should
be pointed: the symplectomorphism is not natural (in a categorical sense), and de-
pends on a choice of Darboux basis for V — which may be completely arbitrary. De-
spite this, it has somewhat deep consequences (e.g., the only invariant of a symplectic
vector space is its dimension), which will become more evident when we encounter
its non-linear version in the next chapter. We will see that every symplectic manifold
locally looks like (R2n, Ω2n), not only at a given point, but at a neighborhood of each
point. For example, the symplectomorphism (V, Ω) ∼= (R2n, Ω2n) should be thought
of as a global Darboux coordinate system for V. More on this later. From the several
“types” of subspaces (V, Ω) may have, Lagrangian subspaces seem to be the most
important ones, and thus one could ask whether there is a local form for Lagrangian
submanifolds of a symplectic manifold. We’ll start to answer this question now, in
the linear setting — the proof, as opposed to the previous one, will be slightly more
interesting. The naturality problem pointed out for the linear Darboux theorem will
not be an issue now due to this simple fact from linear algebra: if V is a vector space,
L ⊆ V is a subspace, and L′, L′′ ⊆ V are two subspaces complementary to L, then the
diagram

V/L

L′ L′′

p̃rL′ p̃rL′′

prL′′ |L′

commutes where all the pr stand for the corresponding projections given by direct
sum decompositions, and the p̃r stand for maps induced on V/L.

Theorem 5 (Linear Weinstein)

Let (V, Ω) be a symplectic vector space, and L ⊆ V a Lagrangian subspace. Then
there is a natural symplectomorphism between (V, Ω) and (L⊕ L∗, ΩL) such that
the diagram

V

L

L⊕ L∗

∼=

commutes.

Proof: Choose a complementary Lagrangian subspace L′ for L, and write V = L⊕ L′.
We have the following chain of equalities and isomorphisms:

V = L⊕ L′ L⊕ V
L

L⊕ V
LΩ L⊕ L∗

IdL⊕p̃rL′
−1

∼=
IdL⊕Ω
∼=
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Above, p̃rL′ : V/L → L′ is the map induced by the projection prL′ : V → L′ given by
the direct sum decomposition — which also yields prL : V → L. The given diagram
obviously commutes, so we only have to check that the full composition ϕ is symplec-
tic. Write ϕ(x) = (prL(x), fx), where fx = Ω(·, x)|L (be careful here: doing Ω(x, ·)|L as
usual will create a negative sign later). First, note that for all y ∈ V, we have that

fx(prL(y)) = Ω(prL(y), x) = Ω(y− prL′(y), x)

= Ω(y, x)−Ω(prL′(y), x)
(1)
= Ω(y, x)−Ω(prL′(y), prL(x))

(2)
= Ω(y, x)−Ω(y, prL(x)) = Ω(prL(x)− x, y),

where in (1) we use that L′ is Lagrangian, and in (2) that L is Lagrangian. Hence
Ω(prL(x)− x, ·) = fx ◦ prL. With this in place, for all x, y ∈ V, we may compute

ΩL(ϕ(x), ϕ(y)) = ΩL((prL(x), fx), (prL(y), fy))

= fy(prL(x))− fx(prL(y))
= Ω(prL(y)− y, x)−Ω(prL(x)− x, y)
= Ω(prL(y), x)−Ω(y, x)−Ω(prL(x), y) + Ω(x, y)
= 2Ω(x, y)−Ω(x, prL(y))−Ω(prL(x), y)
= Ω(x, y),

as wanted, since Ω(x, y) = Ω(prL(x), prL′(y)) + Ω(prL′(x), prL(y)), as both L and L′

are Lagrangian.
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2 Symplectic Manifolds

2.1 Definitions and examples

The most important definition in this text requires some motivation. Let’s think
of the canonical symplectic prototype not as a vector space, but as a manifold. Each
tangent space to R2n is naturally isomorphic to R2n itself, so let ω2n ∈ Ω2(R2n) assign
to each point in R2n, the linear symplectic form Ω2n. If we write the coordinates in R2n

as (x1, . . . , xn, y1, . . . , yn), then we have that

ω2n =
n

∑
k=1

dxk ∧ dyk = −d

(
k

∑
k=1

yk dxk

)
.

Thus ω2n is an exact form (the reason for writing it like this, with the negative sign,
will become clear soon), and it is non-degenerate at each point. This would suggest
defining a symplectic manifold as a smooth manifold equipped with a non-degenerate
exact 2-form. It turns out that this is not a good definition. Here’s the reason:

Proposition 2

Let M be a smooth manifold and ω ∈ Ω2(M) be exact and non-degenerate. Then
M is not compact.

Proof: Assume by contradiction that M is compact. Since ω is non-degenerate, the
dimension of M must be even, say dim M = 2n. And non-degeneracy also gives that
ω∧n is a volume form on M. But if ω is exact, write ω = dη for some η ∈ Ω1(M).
Now Stokes’s theorem gives that

0 6=
∫

M
ω∧n =

∫
M

dη ∧ω∧(n−1) =
∫

M
d(η ∧ω∧(n−1)) = 0,

as ∂M = ∅.

This means that our first guess of what a symplectic manifold should be would
exclude all compact manifolds from the theory. Thus, we must move on to the next
best thing. If we cannot require ω to be exact, let’s settle for locally exact. By Poincaré’s
lemma, this is equivalent to being closed.

Definition 7

A symplectic manifold is a pair (M, ω), where M is a smooth manifold and ω is
a closed and non-degenerate 2-form on M. We’ll say that (M, ω) is exact if ω is
exact, and we’ll call ω a symplectic form.

Remark. Non-degeneracy is an algebraic condition, while closedness is an analytic
condition. It turns out that closedness is crucial for the development of the theory, and
we will have several chances to appreciate this as we proceed.
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Rephrasing Proposition 2 above, we already have our very first result2 about sym-
plectic manifolds:

Proposition 3

If (M, ω) is a compact symplectic manifold, then H2
dR(M) 6= 0.

This means that unlike what happens with Riemannian metrics, for example, it is
not true that every manifold has a symplectic form, even if one assumes from the start
that it already has even dimension. With a minor modification of what we just did
above, we obtain a slightly stronger topological restriction.

Exercise 10

(a) Let (M2n, ω) be a compact symplectic manifold. Show that H2k
dR(M) 6= 0 for

all 1 ≤ k ≤ n. Hint: Show that [ω∧k] 6= 0 in H2k
dR(M) using Stokes’ theorem.

(b) Show that H2k
dR(S

2 × S4) = R for k = 0, 1, 2, 3, but yet S2 × S4 does not admit
any symplectic form. Hint: To compute cohomologies, use the Künneth for-
mula. Then assume by contradiction that S2× S4 has a symplectic form ω, and
write [ω] = c[π∗α], where c 6= 0, [α] generates H2

dR(S
2), and π : S2 × S4 → S2

is the projection. What happens next?

Time for some examples.

Example 9

As mentioned in the beginning of this section, if (V, Ω) is a symplectic vector
space, we may use that TxV ∼= V to let ωx = Ω, for all x ∈ V, so that (V, ω)
becomes a symplectic manifold.

Example 10

Let M ⊆ R3 be an orientable surface, with unit normal field N : M → S2. Define
ω ∈ Ω2(M) by ωx(v, w) = 〈N(x), v×w〉, where 〈·, ·〉 is the standard Euclidean
product and × is the associated cross product. Clearly ω is skew-symmetric, and
it is closed by dimension reasons. Here’s a proof for non-degeneracy: fix x ∈ M,
v ∈ Tx M, and assume that ωx(v, ·) = 0. So 〈v, w× N(x)〉 = 0 for all w ∈ Tx M,
but the values N(x)×w fill up Tx M, which says that v ∈ (Tx M)⊥ — hence v = 0.
Note that this ω is the standard area form of M.

The next example is more of an useful construction.

2Second result, if you consider that: ω being non-degenerate gives that ω∧n is a volume form, so
that M must be orientable. Explicitly: every symplectic manifold is orientable.
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Example 11

If (M1, ω1) and (M2, ω2) are symplectic manifolds, so is (M1 × M2, ω1 ⊕ ω2).
Here, ω1 ⊕ ω2 is, of course, a shorthand for π∗1 ω1 + π∗2 ω2, where for i = 1, 2,
πi : M1 × M2 → Mi is the projection. Since d commutes with pull-backs, we di-
rectly have d(ω1 ⊕ ω2) = dω1 ⊕ dω2 = 0, and non-degeneracy follows from
det(ω1 ⊕ω2) = det ω1 det ω2 6= 0, where this equality is to be understood locally
and identifying each ωi with its matrix relative to a coordinate system for Mi.

Exercise 11 (Hinting at future ideas)

Consider the prototype (R2n, ω2n). There are (at least?) two possible realizations
of the torus T2n. The first, as T2n = (S1×S1)n — this inherits a product symplectic
structure — and the second one as the quotient by a lattice T2n = R2n/Z2n — this
also has a symplectic structure, as ω2n is translation-invariant, and thus survives
in the quotient. What is the relation between the two structures?

The rest of this section is dedicated to one of the fundamental examples of a sym-
plectic manifold — perhaps even more fundamental than (R2n, ω2n). Let Q be a
smooth manifold (we’re using Q instead of M because Q itself will not be the symplec-
tic manifold we’re after). Recall that its cotangent bundle T∗Q is the disjoint union of
all the cotangent spaces T∗x Q, as x ranges over Q, and we denote an element of T∗Q
by a pair (x, p), where p ∈ T∗x Q. Local coordinates (q1, . . . , qn) induce cotangent coor-
dinates (q1, . . . , qn, p1, . . . , pn) for T∗Q, via

(x, p) 7→
(

q1(x), . . . , qn(x), p
(

∂

∂q1

∣∣∣∣
x

)
, . . . , p

(
∂

∂qn

∣∣∣∣
x

))
.

In classical mechanics, Q is taken to be the configuration space of a mechanical system,
while T∗Q is seen as the phase space of positions and momenta. The tangent bundle
TQ, in turn, would be seen as the phase space of positions and velocities. In some
sense (which can be made precise), momenta and velocities are the same thing up to
isomorphism (once a Riemannian metric or a hyperregular Lagrangian function has
been introduced on Q). But T∗Q has some natural structure that TQ does not, and
we’ll exploit that.

Definition 8

Let Q be a smooth manifold. The tautological form (also called the Liouville form
of T∗Q is the 1-form λ ∈ Ω1(T∗Q) defined by λ(x,p)(X)

.
= p(dπ(x,p)(X)), for all

X ∈ T(x,p)(T∗Q), where π : T∗Q → Q is the natural projection. The canonical
symplectic structure of T∗Q is ωcan

.
= −dλ.

Remark. Note that if π : T∗Q→ Q, then dπ(x,p) : T(x,p)(T∗Q)→ TxQ, for all elements
(x, p) ∈ T∗Q. Some texts define ωcan to be dλ without the negative sign. You should
always pay attention to sign conventions throughout the literature.
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Example 12

If Q is a smooth manifold, then (T∗Q, ωcan) is a symplectic manifold. The only
non-trivial thing to be checked is that ωcan is indeed non-degenerate. This can be
done locally, noting that in terms of cotangent coordinates (q1, . . . , qn, p1, . . . , pn),
we have that

λ =
n

∑
k=1

pk dqk and ωcan =
n

∑
k=1

dqk ∧ dpk.

To wit, we have that

λ =
n

∑
k=1

λ

(
∂

∂qk

)
dqk +

n

∑
k=1

λ

(
∂

∂pk

)
dpk,

but

λ(x,p)

(
∂

∂qk

∣∣∣∣
(x,p)

)
= p

(
dπ(x,p)

(
∂

∂qk

∣∣∣∣
(x,p)

))
= p

(
∂

∂qk

∣∣∣∣
x

)
= pk(x, p)

and

λ(x,p)

(
∂

∂pk

∣∣∣∣
(x,p)

)
= p

(
dπ(x,p)

(
∂

∂pk

∣∣∣∣
(x,p)

))
= p(0) = 0.

Exercise 12

Let Q be a smooth manifold. Here’s another justificative for the name “tautologi-
cal”, given to λ ∈ Ω1(T∗Q), in two steps:

(a) Show that for every σ ∈ Ω1(Q), we have that σ∗λ = σ.

(b) Conversely, show that if α ∈ Ω1(T∗Q) has the property that σ∗α = σ for all
σ ∈ Ω1(Q), then α = λ.

Hint: Here, you should think of σ ∈ Ω1(Q) as a map σ : Q → T∗Q (which just
happens to be a section of π : T∗Q→ Q), so pull-backs make sense.

Here’s one last example for this section:

Example 13 (Magnetic symplectic forms)

Let Q be a smooth manifold, and let B ∈ Ω2(Q) be a closed. Define ωB ∈ Ω2(T∗Q)
by ωB = ωcan + π∗B, where π : T∗Q → Q is the natural projection. Note that
d(ωB) = π∗(dB) = 0 since d commutes with pull-backs and, conversely, that ωB
is not closed if B is not (because since π is a surjective submersion, π∗ is injective).
Moreover, taking cotangent coordinates and identifying B, ω, and ωB with their
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matrices relative to those coordinates, we have that

ωB =

 B Idn

−Idn 0

 ,

which has full-rank (no matter what B is), so ωB is non-degenerate. We call ωB
the magnetic symplectic form associated to B. The reason for this name is that
the equations which dictate the motion of a particle on Q subject to the action of
a magnetic field B are the equations describing the flow of a certain vector field
associated to a Hamiltonian function (i.e., the “total energy” classical observable)
via ωB.

Some general advice: you should keep all of those examples in mind as we proceed,
as they’re so useful to gain intuition for new definitions and theorems.

2.2 Symplectomorphisms (redux)

What is the correct notion of equivalence for symplectic manifolds? Equivalently,
what are the symplectic analogues of isometries? Or yet, what are the isomorphisms
in the category of symplectic manifolds?

Definition 9

Let (M1, ω1) and (M2, ω2) be two symplectic manifolds. A symplectomorphism
is a diffeomorphism ϕ : M1 → M2 such that ϕ∗ω2 = ω1 or, more explictly, such
that

(ω1)x(v, w) = (ω2)ϕ(x)(dϕx(v), dϕx(w)),

for all x ∈ M1, v, w ∈ Tx M1. The symplectomorphism group of a symplec-
tic manifold (M, ω), denoted by Sp(M, ω), is the collection of all symplectomor-
phisms from M to itself.

As before, Sp(M, ω) is a group when equipped with the composition of functions.
Of course that symplectomorphisms between symplectic vector spaces are symplec-
tomorphisms in the above sense (the total derivative of a linear map is itself). But in
general, symplectomorphisms may be highly non-linear.

Exercise 13

Consider in R4, with coordinates (x, y, u, v), the standard symplectic form

ω = dx ∧ du + dy ∧ dv.

Show that ϕ : R4 → R4 given by

ϕ(x, y, u, v) = (x, y, u + ex(cos y + sin y), v + ex(cos y− sin y))
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is a a symplectomorphism. Note that identifying R4 with C2, we have that this
map is just ϕ(z, w) = (z, w + (1− i)eiz). The complex Jacobian has determinant 1,
so maybe it shouldn’t surprise you that ϕ is a symplectomorphism.

Here’s a friendlier example:

Example 14

Consider (S2, ω), where ω ∈ Ω2(S2) is the standard area form, given (as before)
by ωx(v, w) = 〈x, v × w〉. Restrict a linear isometry A ∈ SO(3) to the sphere,
A : S2 → S2. Then A ∈ Sp(S2, ω). Indeed, we have that

〈Ax, Av× Aw〉 = 〈Ax, A(v×w)〉 = 〈x, v×w〉,

since det A = 1 and A preserves 〈·, ·〉. This shows that SO(3) ⊆ Sp(S2, ω). We
will see later (after Theorem 8, p. 29) that the inclusion is strict.

However, the symplectic manifold really rich in “symmetries” are cotangent bun-
dles.

Example 15 (Fiberwise translations)

Let Q be a smooth manifold, and consider (T∗Q, ωcan). Given σ ∈ Ω1(Q), define
τσ : T∗Q → T∗Q by τσ(x, p) = (x, p + σx). When is τσ a symplectomorphism? A
general rule of thumb is that when dealing with cotangent bundles, always look at
what happens with the tautological form λ ∈ Ω1(T∗Q) first — if λ is preserved, so
will be ωcan. Note that if π : T∗Q→ Q is the standard projection, then π ◦ τσ = π.
Now take (x, p) ∈ T∗Q and compute

(τ∗σ λ)(x,p) = λ(x,p+σx) ◦ d(τσ)(x,p)

= (p + σx) ◦ dπ(x,p+σx) ◦ d(τσ)(x,p)

= (p + σx) ◦ d(π ◦ τσ)(x,p)

= (p + σx) ◦ dπ(x,p)

= p ◦ dπ(x,p) + σx ◦ dπ(x,p)

= λ(x,p) + (π∗σ)(x,p).

So τ∗σ λ = λ + π∗σ leads to τ∗σ ωcan = ωcan − π∗(dσ), and we conclude that τσ

is a symplectomorphism for (T∗Q, ωcan) if and only if σ is closed. Note that τσ

is indeed a diffeomorphism because (τσ)−1 = τ−σ. If we choose a closed form
B ∈ Ω2(Q) to form the associated magnetic symplectic form ωB, the same com-
putation shows that τσ with σ closed is a symplectomorphism for (T∗Q, ωB) as
well.

You can explore this situation a bit further in the next exercise.
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Exercise 14

Let Q be a smooth manifold and take two closed forms B, B′ ∈ Ω2(Q). Show that
if [B] = [B′] in H2

dR(Q), then (T∗Q, ωB) and (T∗Q, ωB′) are symplectomorphic
under a fiberwise translation. In other words, a magnectic symplectic structure
depends only on the cohomology class of the chosen magnetic form.

It turns out that cotangent bundles have another natural family of (this time non-
linear) symplectomorphisms. It relies on the following concept:

Definition 10

Let Q1 and Q2 be two smooth manifold, and f : Q1 → Q2 be a diffeomorphism.
The cotangent lift of f is the map f̂ : T∗Q1 → T∗Q2 defined by

f̂ (x, p) .
= ( f (x), p ◦ (d fx)

−1).

At a first sight, the definition of a cotangent lift might seem a bit awkward, due
to the presence of the inverse of the derivative of f . The reason for that is not only to
make the compositions work. The next exercise should give you some more context.

Exercise 15 (The cotangent T∗ functor)

Let Core(Man) be the category whose objects are smooth manifolds, and mor-
phisms are diffeomorphismsa. Define T∗ : Core(Man)→ Core(Man) as follows:

• on objects: Q 7→ T∗Q;

• on morphisms: (h : Q1 → Q2) 7→ (T∗h : T∗Q2 → T∗Q1), where T∗h is de-
fined by (T∗h)(y, p) .

= (h−1(y), (dhh−1(y))
∗(p)).

Show that T∗ is a contravariant (faithful) functor. With the notation of the previous
definition, we have that f̂ = T∗( f−1), to make ̂ a covariant functor.

aThe core of a category C is the category (in fact, groupoid) Core(C) whose objects are the
same as the objects in C, but the morphisms in Core(C) are only the morphisms in C which are
isomorphisms. One could (should?) expect Core : Cat → Grpd to be a functor too, where Cat and
Grpd are exactly what you think. Is it, though? If yes, how? If not, why?

Proposition 4

Let Q1 and Q2 be two smooth manifolds, with tautological forms λ1 and λ2 on
their cotangent bundles. If f : Q1 → Q2 is a diffeomorphism, then ( f̂ )∗λ2 = λ1,
and thus f̂ : T∗Q1 → T∗Q2 is a symplectomorphism.
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Proof: Cotangent lifts are natural, in the sense that the diagram

T∗Q1 T∗Q2

Q1 Q2

π

f̂

π

f

commutes. Now, take (x, p) ∈ T∗Q1 and repeatedly use the chain rule to compute:

(( f̂ )∗λ2)(x,p) = (λ2) f̂ (x,p) ◦ d f̂(x,p)

= (p ◦ (d fx)
−1) ◦ dπ f̂ (x,p) ◦ d f̂(x,p)

= p ◦ (d fx)
−1 ◦ d(π ◦ f̂ )(x,p)

= p ◦ (d fx)
−1 ◦ d( f ◦ π)(x,p)

= p ◦ (d fx)
−1 ◦ d fx ◦ dπ(x,p)

= p ◦ dπ(x,p)

= (λ1)(x,p).

Corollary 2

Let Q1 and Q2 be smooth manifolds equipped with closed 2-forms B1 ∈ Ω2(Q1)
and B2 ∈ Ω2(Q2), and consider the magnetic cotangent bundles (T∗Q1, ωB1) and
(T∗Q2, ωB2). If f : Q1 → Q2 is a diffeomorphism, then f̂ : T∗Q1 → T∗Q2 is a
symplectomorphism if and only if f ∗B2 = B1.

Now, cotangent lifts are a very special type of symplectomorphism, because not
only they preserve the canonical symplectic form, they also preserve the tautological
form, which is a much stronger condition to require. It turns out that this condition is
characteristic of cotangent lifts, in the sense of the following:

Theorem 6

Let Q1 and Q2 be smooth manifolds, with tautological forms λ1 and λ2 on their
cotangent bundles. If ϕ : T∗Q1 → T∗Q2 is a diffeomorphism such that ϕ∗λ2 = λ1,
then there is a diffeomorphism f : Q1 → Q2 such that ϕ = f̂ .

The proof essentially consists on showing that the condition ϕ∗λ2 = λ1 implies
that ϕ takes fibers to fibers, that is, if x ∈ Q1, then the image ϕ[T∗x Q1] actually equals
T∗y Q2 for some (unique) y ∈ Q2 — one then sets f (x) .

= y and checks directly that
f̂ = ϕ, as desired. See [14], [15], or even [43] for more details.
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2.3 Hamiltonian fields

On Riemannian manifolds, smooth functions have gradients. Namely, gradients
are vector fields equivalent to derivatives under the metric. The key fact here is not
that Riemannian metrics are positive-definite, but instead that they are non-degenerate.
Well, symplectic forms are non-degenerate. So it should not be surprising that we will
also have symplectic analogues of gradient fields.

Definition 11

Let (M, ω) be a symplectic manifold, and H : M → R be a smooth function. The
Hamiltonian field (or symplectic gradient) of H is the vector field X H ∈ X(M)
characterized by the relation ω(X H, ·) = dH.

Remark. Again there’s an ambiguity regarding sign conventions here: some texts re-
place dH with −dH, or ω(X H, ·) with ω(·, X H) in the above definition. Our conven-
tion should agree with most of the Physics literature.

As usual, let’s start with examples.

Example 16

Let M ⊆ R3 be an orientable surface with unit normal field N : M → S2 and area
form ω ∈ Ω2(M). Let H : M → R be smooth. The standard Euclidean inner
product of R3 restricts to a Riemannian metric on M, and so we may consider the
gradient field grad H ∈ X(M). What is the relation between grad H and X H? Us-
ing the definitions and invariance under cyclic permutations of the triple product,
we see that for each x ∈ M and v ∈ Tx M, we have

〈(grad H)x, v〉 = dHx(v) = ωx(X H|x, v) = 〈N(x), X H
∣∣
x×v〉 = 〈v, N(x)×X H

∣∣
x〉,

so that grad H = N × X H. With this in place, we use double cross product formu-
las to obtain

N × grad H = N × (N × X H) = 〈N, X H〉N − 〈N, N〉X H = −X H,

and so X H = grad H × N.

Example 17

Let (V, ω) be a symplectic vector space, and let H ∈ V∗. Here are two ways to see
X H, since dHx = H for all x ∈ V:

• Identify V ∼= V∗ using ω. So X H = H, simply because H = ω(X H, ·).

• Identify V ∼= V∗ using a Darboux basis B = (e1, . . . , en, f1, . . . , fn) (that
is, send B to its dual basis and extend linearly). Also consider the linear
complex structure J determined by B, that is, defined by J(ei) = fi and
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J( fi) = −ei. Writing H and X H as linear combinations of elements in B

and evaluating both sides of H = ω(X H, ·) at ej and f j, it will follow that
X H = −JH.

The next example has such a fundamental importance in mechanics, that we’ll
phrase it as a theorem.

Theorem 7 (Hamilton’s equations)

Let Q be a smooth manifold, consider its cotangent bundle (T∗Q, ωcan), and let
H : T∗Q → R be a smooth function. In T∗Q, take local cotangent coordinates
(q1, . . . , qn, p1, . . . , pn). Then:

(i) the Hamiltonian field X H of H is given by

X H =
n

∑
k=1

(
∂H
∂pk

∂

∂qk −
∂H
∂qk

∂

∂pk

)

(ii) if γ : I → T∗Q is an integral curve of the field X H, described in coordinates
by γ(t) = (q1(t), . . . , qn(t), p1(t), . . . , pn(t)), it satisfies Hamilton’s equa-
tions: 

dqk

dt
(t) =

∂H
∂pk

(γ(t))

dpk
dt

(t) = −∂H
∂qk (γ(t)).

Proof: Item (b) follows trivially from (a). So let’s check (a). Write

X H =
n

∑
k=1

(
ak ∂

∂qk + bk
∂

∂pk

)
,

where the ak and bk are to be determined. We have that
∂H
∂qk = dH

(
∂

∂qk

)
= ωcan

(
X H,

∂

∂qk

)
= −bk

and
∂H
∂pk

= dH
(

∂

∂pk

)
= ωcan

(
X H,

∂

∂pk

)
= ak,

since for all choices of i and j we have that

ωcan

(
∂

∂qi ,
∂

∂qj

)
= 0, ωcan

(
∂

∂pi
,

∂

∂pj

)
= 0 and ωcan

(
∂

∂qi ,
∂

∂pj

)
= δ

j
i .

Remark. We’ll see in the next section that every symplectic manifold admits coor-
dinates for which the symplectic form looks like the canonical symplectic prototype.
This means that any local computations we make, for instance, in a cotangent bundle,
will be locally true for any symplectic manifold.
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Exercise 16

Let Q be a smooth manifold, B ∈ Ω2(Q) a closed form, and consider the magnetic
cotangent bundle (T∗Q, ωB). Let H : T∗Q → R be a smooth function and denote
by XB

H its Hamiltonian field computed with ωB. Show that relative to cotangent
coordinates (q1, . . . , qn, p1, . . . , pn), we have that:

(a) the expression for XB
H is

XB
H =

n

∑
k=1

(
∂H
∂pk

∂

∂qk +

(
−∂H

∂qk +
n

∑
j=1

Bjk
∂H
∂pj

)
∂

∂pk

)
,

where the functions Bjk are the components of B relative to the coordinate
system (q1, . . . , qn) on Q.

(b) if γ : I → T∗Q is an integral curve of the field XB
H, described in coordinates

by γ(t) = (q1(t), . . . , qn(t), p1(t), . . . , pn(t)), it satisfies the magnetic version
of Hamilton’s equations:

dqk

dt
(t) =

∂H
∂pk

(γ(t))

dpk
dt

(t) = −∂H
∂qk (γ(t)) +

n

∑
j=1

Bjk(γ(t))
∂H
∂pj

(γ(t)).

(c) if R× T∗Q is the extended phase space equipped with the (non-symplectic, for
dimensional reasons) 2-form η = ωcan + dH ∧ dt (we identify ωcan and dH
with their pull-backs under R× T∗Q→ T∗Q), then XB

H is the unique field on
T∗Q such that η(XB

H + ∂t, ·) = 0.

Hint: Item (c) is independent from (a) and (b) and, again, (b) follows trivially from
(a) (why?).

Exercise 17 (Variational characterizations of Hamilton’s equations)

Let Q be a smooth manifold and H : T∗Q → R be a smooth function. Define
the action integral of H by sending every curve γ = (x, p) : [a, b] → T∗Q to the
number

AH[γ] =
∫ b

a
p(t)(ẋ(t))− H(x(t), p(t))dt.

Show that critical points of AH appear, in cotangent coordinates, as solutions to
Hamilton’s equations. Hint: see [38] if needed.

Hamilton’s equations have far-reaching consequences in Physics and Geometry.
We’ll illustrate one situation from each area in what follows. Having some more vo-
cabulary before proceeding will be helpful.
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Definition 12

An autonomous Hamiltonian system is a triple (M, ω, H), where (M, ω) is a sym-
plectic manifold, and H : M→ R is smooth.

• The function H is called the Hamiltonian of the system;

• The flow of the vector field X H is called the Hamiltonian flow of the system;

• For each e ∈ R, the inverse image Σe
.
= H−1(e) is called an energy level (or

energy surface) of the system.

• A smooth function f : M→ R is called a constant of motion if it is constant
along the integral curves of X H.

Example 18 (The Harmonic Oscillator)

Consider a unidimensional simple harmonic oscillator:

R

0

mk

Figure 1: Simple Harmonic Oscillator.

Suppose that the mass of the particle attached to the string is m > 0, that
the elasticity constant of the string is k > 0, and that the particle moves without
friction. The configuration space here is Q = R, and the phase space of positions
and momenta is T∗R — so we’ll use the position x and the momentum p of the
particle as coordinates (in particular, the symplectic form to be used will be simply
dx ∧ dp). By Hooke’s Law, the force needed to extend or compress the spring by
some distance x is F(x) = −kx. Moreover, since the total energy is the sum of the
kinetic and potential energies, and velocity and momentum are linked through
p = mv, the Hamiltonian function controlling the time evolution of this system is
H : T∗R ∼= R2 → R given by

H(x, p) =
p2

2m
+

kx2

2
.

Thus we have a Hamiltonian system (T∗R, dx ∧ dp, H). In matrix form, Hamil-
ton’s equations become justẋ(t)

ṗ(t)

 =

 0 1/m

−k 0

x(t)

p(t)
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Let’s denote by A the constant matrix of coefficients above. A straightforward
computation (for instance, using that A2 = (−k/m)Id2 and a series expansion)
gives that

exp(tA) = cos

(
t

√
k
m

)
Id2 + sin

(
t

√
k
m

)√
m
k

A.

This motivates us to define the angular frequency of the system by ω
.
=
√

k/m.
Thus, it follows that the solution (x, p) to Hamilton’s equations with initial condi-
tion (x0, p0) is given by

x(t) = x0 cos(ωt) +
p0√
km

sin(ωt) and p(t) = −x0
√

km sin(ωt) + p0 cos(ωt).

Observe that if we set H0
.
= H(x0, y0), then H(x(t), y(t)) = H0 for all t ∈ R. One

can see that H(x, p) = H0 is the equation of an ellipse centered at the origin, in the
xp-plane, which is then parametrized by t 7→ (x(t), p(t)). Hence, we may draw
the phase portrait for the harmonic oscillator:

x

p

1

√
km

(a) Orbit of (1, 0).

x

p

1

1√
km

(b) Orbit of (0, 1).

Figure 2: Periodic orbits with time interval 0 ≤ t ≤ 2π/ω.

This phenomenon of conservation of energy is something very general: for ev-
ery Hamiltonian system, the Hamiltonian itself is a constant of motion — simply
because skew-symmetry of the symplectic form implies that ω(X H, X H) = 0.

Exercise 18 (“Chain” conservation of energy)

Let’s expand on the last comment made on the above example. Let (M, ω, H) be
a Hamiltonian system. Show that any function of the Hamiltonian itself is also
a constant of motion. Namely, if ϕ : R → R is any smooth function, show that
X ϕ◦H = (ϕ′ ◦ H)X H and conclude that ϕ ◦ H is a constant of motion.
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Example 19 (Cogeodesic flow)

Let (Q, g) be a Riemannian manifold. The isomorphism TQ ∼= T∗Q induced by g

allows us to define a fiber metric on T∗Q, which we’ll also denote by g (note that
this is not the same as saying that we have a Riemannian metric on the manifold
T∗Q). Consider the Hamiltonian H : T∗Q→ R given by

H(x, p) .
=

1
2
gx(p, p).

Using the canonical symplectic form ωcan on T∗Q, we may consider the associated
Hamiltonian field X H ∈ X(T∗Q). The corresponding Hamiltonian flow is called
the cogeodesic flow on T∗Q, because its integral curves project to geodesics on
(Q, g). Let’s understand how this happens, checking that Hamilton’s equations
are equivalent to the geodesic equations. So, consider tangent and cotangent co-
ordinates for TQ and T∗Q, related under g. Namely, we have

(q1, . . . , qn, v1, . . . , vn, p1, . . . , pn),

where

pj =
n

∑
i=1

gijvi and vj =
n

∑
i=1

gij pi.

Here, (gij)
n
i,j=1 is the matrix of g relative to the chosen coordinate system for Q,

and (gij)n
i,j=1 is its inverse matrix — such inverse matrix, incidentally, represents

the fiber metric induced on T∗Q, so that

H =
1
2

n

∑
i,j=1

gij pi pj.

The first of Hamilton’s equations becomes just q̇k = vk, as expected. The sec-
ond equation, in the presence of the first one, will become the geodesic equation.
Here’s how this happens. First, we compute the derivative

∂H
∂qk =

1
2

n

∑
i,j=1

∂gij

∂qk pi pj = −
1
2

n

∑
i,j,r,s=1

gir ∂grs

∂qk gsj pi pj = −
1
2

n

∑
r,s=1

∂grs

∂qk vrvs,

and rename back r, s→ i, j. Now,(
n

∑
i=1

gikvi

).

=
1
2

n

∑
i,j=1

∂gij

∂qk vivj

becomes
n

∑
i=1

gikv̇i +
n

∑
i,j=1

∂gik

∂qj viq̇j =
1
2

n

∑
i,j=1

∂gij

∂qk vivj.
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Splitting the middle term as a sum (since it’s symmetric in i and j) and writing
everything in terms of derivatives of the qi’s yields

n

∑
i=1

gikq̈i +
1
2

n

∑
i,j=1

(
∂gik

∂qj +
∂gjk

∂qi −
∂gij

∂qk

)
q̇iq̇j = 0.

Multiply everything by gkr, sum over r, and rename r → k to get

q̈k +
n

∑
i,j=1

Γk
ijq̇

iq̇j = 0,

where the

Γk
ij

.
=

1
2

n

∑
r=1

gkr
(

∂gir

∂qj +
∂gjr

∂qi −
∂gij

∂qr

)
are the Christoffel symbols describing the Levi-Civita connection of (Q, g) in
coordinates. Thus we have obtained the coordinate description of the geodesic
equation

Dγ̇

dt
(t) = 0,

as claimed.

Remark. Using the isomorphism TQ ∼= T∗Q given by g to convert X H into a vector
field on TQ, one obtains the standard geodesic field G ∈ X(TQ), characterized by

G(x,v) =
d
dt

∣∣∣∣
t=0

(γx,v(t), ˙γx,v(t)),

where γx,v is the unique maximal geodesic on (Q, g) with γx,v(0) = x and ˙γx,v(0) = v.

Exercise 19 (Challenge #2)

Let (Q, g) be a Riemannian manifold and B ∈ Ω2(Q) be closed. Consider the
(skew-adjoint) bundle morphism F : TQ → TQ, called the Lorentz force associ-
ated with B, characterized by the relation gx(Fx(v), w) = Bx(v, w), for all x ∈ Q
and v, w ∈ TxQ. Mimic what was done in the previous example and show that
integral curves of the Hamiltonian field XB

H ∈ X(T∗Q) (computed with ωB) of
H : T∗Q→ R given by

H(x, p) =
1
2
gx(p, p)

project onto solutions of the magnetic geodesic equation

Dγ̇

dt
(t) = Fγ(t)(γ̇(t))

on Q. Hint: You already did some of the hard work on Exercise 16 (p. 24).
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Remark. Recall that the geodesics of (Q, g) are also charaterized as critical points of
the energy functional E, defined as

E[γ] =
1
2

∫ b

a
gγ(t)(γ̇(t), γ̇(t))dt,

where γ : [a, b] → M is smooth (actually, one can get away with assuming that γ is
just absolutely continuous — smoothness of minimizing geodesics then follows). If
we introduce a magnetic form B ∈ Ω2(Q), and B is exact, that is, B = dA for some
A ∈ Ω1(Q) (called magnetic potential), then it turns out that magnetic geodesics
appear as critical points of the magnetic energy functional EA, defined as

EA[γ] =
1
2

∫ b

a
gγ(t)(γ̇(t), γ̇(t))dt +

∫ b

a
Aγ(t)(γ̇(t))dt.

Note that the choice of magnetic potential A is not unique, as one could replace A
with A + d f , for any smooth f : Q → R. Despite this gauge freedom, there is still
some physical interpretation for A, justifying its name. Related to this, there’s the so-
called Aharonov-Bohm experiment. You can read more about it, from a mathematical
perspective, in [41]. For a crash review on variational calculus on manifolds, in case
you want to try and prove the claims made here, see [38].

We continue to explore the importance of flows.

Theorem 8

Let (M, ω) be a compact symplectic manifold and H : M → R be a smooth func-
tion. Then each stage Φt,X H : M→ M of the Hamiltonian flow is a symplectomor-
phism of (M, ω).

Proof: Since M is compact, the field X H is complete. Noting that the relation charac-
terizing X H can be rewritten as ιX H ω = dH, where ι stands for the interior derivative
(or contraction), we may use Cartan’s homotopy formula3:

LX H ω = ιX H(dω) + d(ιX H ω) = ιX H(0) + d(dH) = 0 + 0 = 0.

Remark.

• This theorem is, in some sense, the true reason why we require symplectic forms
to be closed. Namely, for any H : M → R, we have that LX H ω = ιX H(dω), so
requiring that the flows of all X H preserve ω directly leads to dω = 0.

3If M is any smooth manifold, X ∈ X(M), and α ∈ Ωk(M), then LX α = ιXdα + d(ιX α). This
formula says that the operator LX is nullhomotopic, in the following sense: the contraction ιX defines a
(co)chain homotopy between LX and the zero map, seen as (co)chain self-maps of the de Rham complex
(Ω•(M), d) of M. Thus LX induces the zero map in cohomology.
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• We can also show now that the inclusion SO(3) ⊆ Sp(S2, ω) seen in Example 14
(p. 19) is strict: let ϕ be the time 1 of the Hamiltonian flow of some H : S2 → R

which vanishes on some proper open subset of S2. Then ϕ will act there as the
identity, but will do something else on the complement (hence ϕ is non-linear).

This raises a pertinent question: if (M, ω) is a symplectic manifold, and X ∈ X(M)
is any vector field, when does the flow of X consist of symplectomorphisms of (M, ω)?
Again, by Cartan’s homotopy formula we have that LXω = d(ιXω), as dω = 0. So if
ιXω ∈ Ω1(M) is closed (which in particular happens if it is exact), ok.

Definition 13

Let (M, ω) be a symplectic manifold and X ∈ X(M). We say that X is:

• Hamiltonian, if there is a smooth function H : M → R such that X = X H
(such H is then called an energy function for X);

• symplectic (or, locally Hamiltonian) if ιXω is closed.

We’ll write S(M, ω) and H(M, ω) for the algebras of symplectic and Hamiltonian
fields on (M, ω).

Clearly every Hamiltonian field is symplectic, but for the converse there is the ob-
vious unique obstruction: H1

dR(M). Thus, finding symplectic fields which are not
Hamiltonian is, in spirit, the same as knowing how to find closed 1-forms which are
not exact. The next exercise illustrates this.

Exercise 20

Consider the cylinder S1 ×R ⊆ R3 equipped with its standard symplectic form
ω = x dy ∧ dz + y dz ∧ dx. Consider the field ∂/∂z ∈ X(S1 ×R).

(a) Show that ∂/∂z is symplectic.

(b) Compute
∫

S1
ι∂/∂zω and conclude that ∂/∂z is not Hamiltonian.

You can also explore more relations between symplectic and Hamiltonian fields
here:

Exercise 21

Let (M, ω) be a symplectic manifold. Show that:

(a) for any X, Y , Z ∈ S(M, ω), the Jacobi-type identity

ω(X, [Y , Z]) + ω(Y , [Z, X]) + ω(Z, [X, Y ]) = 0

holds.
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(b) [S(M, ω),S(M, ω)] ⊆ H(M, ω) (in words: the Lie bracket of two symplectic
fields is Hamiltonian).

And we’ll conclude this section with an instructive exercise:

Exercise 22

Let Q be a smooth manifold, X ∈ X(Q) be a complete vector field, and consider
its flow Φt,X : Q→ Q, for each t ∈ R. Equip T∗Q with ωcan. Show that:

(a) there is a complete vector field X̂ ∈ X(T∗Q) such that Φ̂t,X = Φt,X̂ for all
t ∈ R, where ̂ on the left side denotes a cotangent lift, as usual. Hint: use
the functorial behavior of ̂ to show that Φ̂t,X defines a flow on T∗Q.

(b) the field X̂ in found in (a) is Hamiltonian and find an energy function for it.
Hint: Use Cartan’s homotopy formula.

Exercise 23

Let Q be a smooth manifold, f : Q → R be a smooth function, and consider the
cotangent bundle (T∗Q, ωcan). If π : T∗Q → Q is the natural projection, we have
the pull-back π∗ f : T∗Q → R. Show that the time 1 of the flow of Xπ∗ f maps the
zero section Q ↪→ T∗Q to the graph of −d f . Hint: show that Xπ∗ f is vertical and
compute Φt,Xπ∗ f (x, 0) explicitly, for instance, using cotangent coordinates.

2.4 Submanifolds and local forms

This situation will mimic what happened with subspaces of a symplectic vector
space (V, Ω). As usual, we’ll smoothly apply the all the linear algebra concepts previ-
ously seen to all tangent spaces to a manifold. For this, let’s register our first definition:

Definition 14

Let (M, ω) be a symplectic manifold and N ⊆ M a submanifold. We’ll say that N
is symplectic, isotropic, coisotropic or Lagrangian if, for every x ∈ N, the tangent
space TxN is a subspace of (Tx M, ωx) of the corresponding type.

Remark. More abstractly, one can say that an immersion ι : N ↪→ M is Lagrangian
if ι∗ω = 0 and 2 dim N = dim M. This is particularly useful to show that certain
submanifolds are Lagrangian, when employing convenient identifications.

Two immediate examples: any curve in a symplectic manifold is isotropic, and
any hypersurface is coisotropic, for dimensional reasons (of course, these are not all
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the examples). Still, the main focus will thus be on Lagrangian submanifolds. Mid-
dimensional submanifolds appear naturally in several situations, while symplectic
submanifolds generally turn out to be studied as symplectic manifolds on their own
right. Before going to examples, the following result should further emphasize why
should one care about Lagrangian submanifolds.

Proposition 5

Let (M, ω, H) be a Hamiltonian system, and assume that N ⊆ M is a coisotropic
submanifold which is contained in some energy level of H. Then N is invariant
under the Hamiltonian flow. More precisely, Φt,X H [N] = N for all t for which the
flow is defined.

Proof: It suffices to show that for each x ∈ N, we have X H|x ∈ TxN — the result then
follows by integration. Since we assume that N is coisotropic, we have by definition
that (TxN)ωx ⊆ TxN. So, let’s show that X H|x ∈ (TxN)ωx . For any v ∈ TxN, we have
that

ωx(X H|x, v) = dHx(v) = 0,

using that N is contained in an energy level of H. This concludes the proof.

Remark. So, coisotropic submanifolds contained in energy levels of a Hamiltonian
system are invariant under the dynamics. This holds a fortiori for Lagrangian sub-
manifolds. However, in dynamics one often cares about minimal invariant sets. But
“Lagrangian” not only means “maximal isotropic”, but also “minimal coisotropic”.

With this in place, here’s our first non-trivial example.

Example 20

Let (M1, ω1) and (M2, ω2) be symplectic manifolds, and let ϕ : M1 → M2 be
smooth. Let’s see that the graph

gr(ϕ) = {(x, ϕ(x)) | x ∈ M1}

is a Lagrangian submanifold of (M1 × M2, ω1 ⊕ (−ω2)) if and only if we have
dim M1 = dim M2 and ϕ∗ω2 = ω1 (which then implies that ϕ is a local diffeomor-
phism). First, note that for every x ∈ M1 we have that

T(x,ϕ(x))gr( f ) = {(v, dϕx(v)) | v ∈ Tx M1}.

With this, if ṽ = (v, dϕx(v)), w̃ = (w, dϕx(w)) ∈ T(x,ϕ(x))gr(ϕ), we may compute

(ω1 ⊕ (−ω2))(x,ϕ(x))(ṽ, w̃) = (ω1)x(v, w)− (ω2)ϕ(x)(dϕx(v), dϕx(w))

= (ω1)x(v, w)− (ϕ∗ω2)x(v, w),

which says that T(x,ϕ(x))gr(ϕ) is isotropic if and only if ϕ∗ω2 = ω1. As for the
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dimension, we have that gr(ϕ) is diffeomorphic to M1, so that

dim gr(ϕ) =
1
2
(dim M1 + dim M2)

if and only if dim M1 = dim M2.

Remark. Taking (M, ω)
.
= (M1, ω1) = (M2, ω2) and ϕ = IdM in the above example,

we see that the diagonal of M, ∆(M)
.
= {(x, x) | x ∈ M}, is a Lagrangian submanifold

of (M × M, ω ⊕ (−ω)). In this case, the projection ∆(M) → M is a symplectomor-
phism.

As usual, cotangent bundles will serve as rich source of examples.

Example 21 (Lagrangian submanifolds of cotangent bundles)

There are three types of submanifolds here which deserve attention:

(1) Fibers. That is, any fixed cotangent space T∗x Q. We consider the inclsion
ι : T∗x Q ↪→ T∗Q, given by ι(p) = (x, p). We have that

(ι∗λ)p = λ(x,p) ◦ dιp = p ◦ dπ(x,p) ◦ dιp = p ◦ d(π ◦ ι)p = p ◦ 0 = 0,

since (π ◦ ι)(p) = x is a constant. Hence ι∗λ = 0 leads to ι∗ωcan = 0. If
B ∈ Ω2(Q) is closed, the fact that π ◦ ι again implies that ι∗π∗B = 0. So T∗x Q
is a Lagrangian submanifold of both (T∗Q, ωcan) and (T∗Q, ωB), as it already
has the correct dimension.

Q0
∼= Q

T∗x Q

Figure 3: Embedding Q in T∗Q as the zero section.

(2) Ranges of 1-forms. Let σ ∈ Ω1(Q) and let Qσ
.
= Ran(σ) ⊆ T∗Q. More

precisely, Qσ is the range of σ regarded as a map σ : Q → T∗Q. Note that
Qσ is automatically mid-dimensional. The inclusion Qσ ↪→ T∗Q is identified
with σ itself. By Exercise 12 (p. 17), we have that σ∗λ = σ, so that applying
−d we have σ∗ωcan = −dσ. Moreover, since π ◦ σ = IdQ, we have that if
B ∈ Ω2(Q) is closed, then σ∗π∗B = B. So, Qσ is a Lagrangian submanifold
of (T∗Q, ωcan) if and only if σ is closed, and it is a Lagrangian submanifold of
(T∗Q, ωB) if and only if dσ = B (i.e., σ is a magnetic potential for B). Note
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that Q0 = Q is always a Lagrangian submanifold of (T∗Q, ωcan), but never for
(T∗Q, ωB). Broadly speaking, the introduction of a magnetic term eliminates
the choice of a distinguished Lagrangian section of T∗Q — this is akin to what
happens when one deals with affine spaces in terms of vector spaces (there is
no canonical choice of origin).

Qσ
∼= Q

T∗x Q

Figure 4: Embedding Q in T∗Q as the graph Qσ.

(3) Conormal bundles: Let P ⊆ Q be a submanifold. The conormal bundle of P
(relative to Q) is the vector bundle π∗ : ν∗P → P whose fibers are the annihi-
lators of the tangent spaces to P. Namely, for all x ∈ P, we have

ν∗x P .
= Ann(TxP) = {p ∈ T∗x Q | p|TxP = 0}.

We have that

dim ν∗P = dim P + (dim Q− dim P) = dim Q =
1
2

dim T∗Q,

so the dimension of ν∗P is already correct. Let ι : N∗P ↪→ T∗Q be the inclusion,
and write π : T∗Q→ Q for the projection. Note that π∗ : ν∗P→ P is valued on
P, so its derivative is valued on the tangent spaces to P, which are annihilated
by elements in the fibers of ν∗P. So the relation π ◦ ι = π∗ gives that

(ι∗λ)(x,p) = p ◦ dπ∗(x,p) = 0,

provided (x, p) ∈ ν∗P. We conclude that ν∗P is a Lagrangian submanifold of
(T∗Q, ωcan). One can also easily see that ν∗P will be a Lagrangian submanifold
of (T∗Q, ωB), for closed B ∈ Ω2(Q), if and only if B pulls back to the zero 2-
form on P.

The main idea we’ll discuss here is called Moser’s trick. It is crucial to the study
of deformation of symplectic structures, to establishing local form theorems for sub-
manifolds of symplectic manifolds and, in particular, has Darboux’s theorem as a con-
sequence. For that, fix a manifold M and recall that an isotopy is a family (ϕt)t∈R of
diffeomorphisms of M with ϕ0 equal to the identity map, and such that the joint map
R× M 3 (t, x) 7→ ϕt(x) ∈ M is smooth. Note that an isotopy does not necessarily
satisfy the group-like property that flows of vector fields satisfy, but for each such iso-
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topy there is an associated time-dependent vector field on M, that is, a family (X t)t∈R

of vector fields on M such that the joint map R×M 3 (t, x) 7→ X t,x ∈ Tx M ⊆ TM is
smooth. Namely, the isotopy defines the time-dependent vector field with the relation

d
dt

ϕt(x) = X t,ϕt(x).

When M is compact, a time-dependent vector field gives rise to an isotopy, via “inte-
gration”.

Lemma 2 (Moser’s trick)

Let M be a compact manifold with symplectic forms ω0 and ω1. Assume that
(ωt)t∈[0,1] is a smooth family of symplectic forms joining ω0 and ω1, such that the
cohomology class [ωt] is independent of t. Then there is an isotopy (ϕt)t∈R such
that ϕ∗t ωt = ω0 for all t ∈ [0, 1] — in particular, ϕ∗1ω1 = ω0.

Proof: The idea essentially consists in reverse engineering what (ϕt)t∈R must be. Since
the cohomology class [ωt] in H2

dR(M) is independent of t, we may get a smooth family
of 1-forms (αt)t∈[0,1] such that

d
dt

ωt = dαt, for all t ∈ [0, 1].

Now, if the isotopy exists and we denote by (X t)t∈R its associated time-dependent
vector field, we may take the derivative of ϕ∗t ωt using a “product rule” and Cartan’s
homotopy formula to obtain

0 =
d
dt

ϕ∗t ωt = ϕ∗t LX t ωt + ϕ∗t

(
d
dt

ωt

)
= ϕ∗t

(
d(ιX t ωt) + ιX t(dωt) +

d
dt

ωt

)
= ϕ∗t d (ιX t ωt + αt) .

So, provided we can solve Moser’s equation ιX t ωt + αt = 0 for X t, we can extend it
from [0, 1] to R and then integrate it to the desired isotopy, by compactness of M. But
we can clearly solve Moser’s equation: it suffices to take, for each (t, x) ∈ [0, 1]×M,
the vector X t,x to be the image of −αt,x under the isomorphism T∗x M → Tx M induced
by ωt. Hence ϕ∗t ωt is independent of t, and it equals its value for t = 0, namely,
ϕ∗0ω0 = (IdM)∗ω0 = ω0.

Compactness of M is a somewhat strong assumption above. But we can work
around it, to some extent. One useful tool we’ll need for this is a more powerful ver-
sion of Poincaré’s Lemma:

Lemma 3 (Poincaré’s Lemma — relative version)

Let M be a smooth manifold, N ⊆ M be a compact submanifold, and α ∈ Ωk(M)
a closed k-form such that ι∗α = 0, where ι : N ↪→ M is the inclusion. Then there is
a (tubular) neighborhood of N in M and a (k− 1)-form β defined on such neigh-
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borhood such that α = dβ holds there, with βx = 0 for all x ∈ N.

Remark. If αx = 0 for all x ∈ N, one can also arrange for the first order partial deriva-
tives of β, relative to any adapted coordinate system to N, to also vanish along N.
Note that when N is a single point, this is the usual Poincaré’s Lemma. See [26] or [43]
for a proof.

With this in place:

Theorem 9 (Moser stability)

Let M be a smooth manifold, N ⊆ M be a compact submanifold, and assume that
ω0, ω1 ∈ Ω2(M) are two symplectic forms such that (ω0)x = (ω1)x for all x ∈ N.
Then there are (tubular) neighborhoods U0 and U1 of N in M and a diffeomor-
phism ϕ : U0 → U1 such that ϕ∗ω1 = ω0 and ϕ(x) = x for all x ∈ N.

Proof: (Sketch) By Poincaré’s Lemma there is a 1-form β defined on a tubular neigh-
borhood U0 of N such that ω1−ω0 = dβ holds there. Define ωt

.
= ω0 + t dβ on U0, for

all t ∈ [0, 1]. By compactness of N and [0, 1], reducing U0 if necessary, we may assume
that all ωt are symplectic. Now, since

d
dt

ωt = dβ

does not depend on t, by reducing U0 further, Moser’s trick gives an isotopy ϕt of U0
such that ϕ∗t ωt = ω0 for all t ∈ [0, 1]. Let ϕ = ϕ1 and U1 = ϕ[U0] — we may arrange
for ϕ(x) = x for all x ∈ N by doing a choice of gauge β 7→ β + d f , with f smooth
on U0, according to the remark after Poincaré’s Lemma above, before running Moser’s
argument.

Theorem 10 (Darboux)

Let (M, ω) be a symplectic manifold. Around each point in (M, ω) there are coor-
dinates (x1, . . . , xn, y1, . . . , yn) for which ω is expressed as

ω =
n

∑
k=1

dxk ∧ dyk.

We’ll call such coordinates Darboux coordinates for (M, ω).

Proof: Let N be a singleton in Theorem 9 above. More precisely, fix x0 ∈ M and pick
coordinates (x̃1, . . . , x̃n, ỹ1, . . . , ỹn) around x0 such that(

∂

∂x̃1

∣∣∣∣
x0

, . . . ,
∂

∂x̃n

∣∣∣∣
x0

,
∂

∂ỹ1

∣∣∣∣
x0

, . . . ,
∂

∂ỹn

∣∣∣∣
x0

)

Page 36



OSU — SYMPLECTIC GEOMETRY CRASH COURSE IVO TEREK

is a Darboux basis for (Tx0 M, ωx0). On this coordinate domain, consider ω itself and

ω̃ =
n

∑
k=1

dx̃k ∧ dỹk.

Since ωx0 = ω̃x0 by construction, reducing the coordinate domain if necessary, by
Moser we obtain a diffeomorphism ϕ of this domain for which ϕ∗ω̃ = ω. Then
we set xi .

= x̃i ◦ ϕ and yj
.
= ỹj ◦ ϕ for all i, j = 1, . . . , n. By definition of pull-back,

(x1, . . . , xn, y1, . . . , yn) are the desired Darboux coordinates.

Note that in the same way that every symplectic vector space (V, Ω) is symplecto-
morphic to the prototype (R2n, Ω2n) with the correct dimension (due to the existence
of Darboux bases), this theorem is saying that every point in a symplectic manifold
(M, ω) has a neighborhood symplectomorphic to an open subset of (R2n, ω2n) (due to
the existence of Darboux coordinates). In particular, we know that cotangent coordi-
nates for cotangent bundles are Darboux coordinates, so pretty much everything we
have established for a cotangent bundle holds locally in an arbitrary symplectic man-
ifold — for instance, Theorem 7 (p. 23) tells us how to describe Hamiltonian flows in
Darboux coordinates.

More importantly, this theorem says that there are no local invariants in symplec-
tic geometry, such as curvature. We know that curvatures come from a connection on
the manifold. But even that becomes slightly tricky, as there is no “Koszul formula” in
this setting.

Proposition 6 ([34])

Let M be a smooth manifold, and ω ∈ Ω2(M) be a non-degenerate 2-form. There
is a torsionfree connection on M which parallelizes ω if and only if ω is closed.
And if this is the case, there are infinitely many such connections.

Proof: If ω is closed, then (M, ω) is symplectic. Cover M with Darboux coordinates,
on each such domain define a local connection declaring all the Christoffel symbols to
vanish, and then “glue” everything into a single connection using a partition of unity.
Conversely, if there is such a torsionfree connection ∇ parallelizing ω, recall that (up
to a constant multiple depending on conventions), dω is the alternator of ∇ω, which
is zero by assumption.

We’ll conclude this section by stating local form results for symplectic and La-
grangian submanifolds. They require two brief concepts:

• If M is a smooth manifold and N is a submanifold, we can define the normal
bundle of N relative to M even without a Riemannian metric on M. Namely,
since for all x ∈ N we may regard TxN as a subspace of Tx M, we can just consider
the quotient νxN = Tx M/TxN. This of course defines νN → N, we have an
isomorphism TN ⊕ νN ∼= TM|N, and when M does have a Riemannian metric,
we have νN ∼= TN⊥. If we have a smooth map f : M1 → M2 between two
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manifolds which restricts to a smooth map N1 → N2 between submanifolds, for
each x ∈ N1 we have a “derivative” ν fx : νxN1 → ν f (x)N2 given by

ν fx(v + TxN1) = d fx(v) + Tf (x)N2.

If f is a diffeomorphism, this bundle morphism νN1 → νN2 is an isomorphism
and, conversely, given an isomorphism νN1 → νN2 covering a diffeomorphism
N1 → N2, such diffeomorphism extends to a diffeomorphism on a tubular neigh-
borhood of N1 which induces the given bundle isomorphism via derivative (the
gist of it is to take Riemannian metrics on M1 and M2 and use normal exponen-
tial maps).

• A symplectic vector bundle, denoted by (E, ω) → M, is nothing more than
vector bundle E→ M equipped with (smoothly varying) linear symplectic forms
ωx on each fiber Ex. Note that the requirement dω = 0 is meaningless in this
setting. We already have plenty of examples: the tangent bundle of a symplectic
manifold, every symplectic vector space is a symplectic vector bundle over a
point, the direct sum of any vector bundle with its dual, normal bundles (in the
above sense) of symplectic submanifolds of symplectic manifolds, and so on.
In particular, a morphism of symplectic vector bundles is exactly what you’re
thinking — a bundle morphism preserving the symplectic structures.

Theorem 11 (Weinstein’s symplectic normal form theorem)

Let (M1, ω1) and (M2, ω2) be symplectic manifolds, with symplectic submani-
folds N1 and N2, and νN1 → νN2 be an isomorphism of symplectic vector bun-
dles covering a symplectomorphism N0 → N1. Then such symplectomorphism
extends to a symplectomorphism between tubular neighborhoods of N0 and N1
which induces the given isomorphism via derivative.

To motivate the next result, consider a symplectic manifold (M, ω) and a Lagran-
gian submanifold Q ⊆ M. We know that for each point x ∈ Q, TxQ ∼= (TxQ)ωx holds,
and the isomorphism Tx M ∼= T∗x M induced by ωx directly restricts to an isomorphism
(TxQ)ωx ∼= Ann(TxQ). Dualizing, it follows that νxQ ∼= T∗x Q. Gathering those isomor-
phisms as x ranges over Q, we have an isomorphism νQ ∼= T∗Q of symplectic vector
bundles.

Theorem 12 (Weinstein’s Lagrangian neighboorhood theorem)

Let (M, ω) be a symplectic manifold and Q ⊆ M be a Lagrangian submanifold.
Then there is a tubular neighborhood U of Q in M and a neighborhood U0 of Q as
the zero section in T∗Q, and a diffeomorphism ϕ : U0 → U such that ϕ(x, 0) = x
for all x ∈ Q and ϕ∗(ω) = ωcan.

For proofs of the last two results, see [28]. Let’s explore one last consequence of
this. We have seen after Example 20 (p. 32) that if (M, ω) is a symplectic manifold,
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then the diagonal ∆(M) is a Lagrangian submanifold of (M×M, ω⊕ (−ω)), but now
we know that the projection ∆(M) → M actually extends to a symplectomorphism
ϕ∆ in some neighborhood of ∆(M), taking values in a neighborhood of M as the zero
section of T∗M:

M
∆(M)

ϕ∆

M
M

T∗M

Figure 5: Illustrating the symplectomorphism ϕ∆.

Now, if ϕ ∈ Sp(M, ω), we know by Example 20 (p. 32), again, that the graph gr(ϕ)
is a Lagrangian submanifold of (M × M, ω ⊕ (−ω)). If ϕ is C1-close to the identity,
then gr(ϕ) is close enough to ∆(M), and so the image L .

= ϕ∆[gr(ϕ)] ⊆ T∗M is close
enough to the zero section, thus being equal to Mσ for some closed σ ∈ Ω1(M), as in
Example 21 (p. 33).

M
∆(M)

ϕ∆

M
M

T∗M

gr(ϕ)

L

Figure 6: Sending gr(ϕ) to T∗M as L = Mσ.

In particular, we see that fixed points of ϕ are in bijective correspondence with
zeros of σ.

Corollary 3

Let (M, ω) be a compact symplectic manifold with H1
dR(M) = 0 and ϕ ∈ Sp(M, ω)

be C1-close to the identity function. Then ϕ has at least two fixed points.

Proof: As per the above discussion, consider the closed 1-form σ corresponding to the
graph gr(ϕ). Since H1

dR(M) = 0, write σ = d f for some f : M → R. By compactness
of M, f achieves its maximum and minimum values at some points in M — those
correspond to zeros of σ and hence to fixed points of ϕ.
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3 Hamiltonian Actions

3.1 Poisson Manifolds

Let (M, ω, H) be a Hamiltonian system. One usually would like to find constants of
motion for the system to understand it better. We know that f ∈ C∞(M) is a constant
of motion if f is constant along integral curves of X H, and this is equivalent to d f (X H)
vanishing. By definition of Hamiltonian field, this is the same as requiring ω(X f , X H)
to vanish.

Definition 15

Let (M, ω) be a symplectic manifold. The Poisson bracket associated with ω is
the operation {·, ·}ω : C∞(M)× C∞(M)→ C∞(M) given by { f , g}ω

.
= ω(X f , Xg).

Example 22 ({·, ·}ω in coordinates)

Let (M, ω) be a symplectic manifold, take f , g ∈ C∞(M), and (xk, yk) be Darboux
coordinates for M. By Theorem 7 (p. 23), we know that

X f =
n

∑
k=1

(
∂ f
∂yk

∂

∂xk −
∂ f
∂xk

∂

∂yk

)
and Xg =

n

∑
k=1

(
∂g
∂yk

∂

∂xk −
∂g
∂xk

∂

∂yk

)
.

Hence, we obtain that

{ f , g}ω =
n

∑
k=1

(
∂ f
∂xk

∂g
∂yk
− ∂g

∂xk
∂ f
∂yk

)
,

by applying d f to Xg. The Hamiltonian fields and Poisson brackets of coordinate
functions also make sense where they are defined. So, in particular, we have that

Xxk = −
∂

∂yk
and Xyk =

∂

∂xk ,

as well as the relations

{xi, xj}ω = 0, {xi, yj}ω = δi
j, and {yi, yj}ω = 0,

for all i, j = 1, . . . , n. Hamilton’s equations, in turn, read simply

ẋk = {xk, H}ω and ẏk = {yk, H}ω.

In the same way that the symplectic form determines the Poisson bracket, the con-
verse actually holds.
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Exercise 24

Let M be a smooth manifold and ω, ω1, ω2 ∈ Ω2(M) be symplectic forms.

(a) Show that if {·, ·}ω1 = {·, ·}ω2 , then ω1 = ω2. Hint: Show that for all functions
f , g ∈ C∞(M), we’ll have that Xω1

f (g) = Xω2
f (g), so that Xω1

f = Xω2
f . Go from

there.

(b) Conclude that ϕ ∈ Sp(M, ω) if and only if { f ◦ ϕ, g ◦ ϕ}ω = { f , g}ω ◦ ϕ for all
f , g ∈ C∞(M).

However, Poisson brackets are more than just a convenient device to describe
Hamiltonian dynamics. It will turn out that the Poisson bracket alone is enough to
do Hamiltonian dynamics, even when a symplectic form is not present! Of course, a
few definitions are still required to make sense of this, but we’ll continue to develop
more intuition with examples and basic results first.

Example 23

Let M ⊆ R3 be an orientable surface, with unit normal field N : M → S2, and
standard area form ω ∈ Ω2(M). We have seen in Example 16 (p. 22) that for any
f ∈ C∞(M), we have that X f = grad f × N. With this, we may compute the
Poisson bracket on (M, ω) using double cross product identities:

{ f , g}ω = 〈N, X f × Xg〉
= 〈N, (grad f × N)× (grad g× N)〉
= 〈N × (grad f × N), grad g× N〉
= 〈〈N, N〉grad f − 〈N, grad f 〉N, grad g× N〉
= 〈grad f , grad g× N〉
= 〈N, grad f × grad g〉.

In particular, since grad f × grad g is always normal to the surface, we conclude
that { f , g}ω = 0 if and only if grad f and grad g are always proportional.

Exercise 25

Let (M, ω) be a symplectic manifold. Show that for any f , g ∈ C∞(M), we have
X{ f ,g}ω

= −[X f , Xg]. This negative sign is just collateral damage from our choices
of sign conventionsa. Hint: Use Cartan’s homotopy formula together with the
general identity ι[X,Y ] = LX ◦ ιY − ιX ◦LY for interior derivatives.

aPerhaps the “correct” definition of our Poisson bracket should have had the opposite sign
instead. Arguably, it wouldn’t look so natural. But we would have to pay the price somewhere.
To try to avoid this sort of thing, some texts (like [28], for example), even define the Lie bracket
with the opposite sign!
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Next, let’s finally justify the name “bracket” (which should have made you think
of a Lie bracket):

Theorem 13

Let (M, ω) be a symplectic manifold. Then the Poisson bracket {·, ·}ω is skew-
symmetric, R-bilinear, satisfies the Jacobi identity

{ f , {g, h}ω}ω + {g, {h, f }ω}ω + {h, { f , g}ω}ω = 0,

and the Leibniz rule

{ f , gh}ω = g{ f , h}ω + h{ f , g}ω,

for all f , g, h ∈ C∞(M).

Proof: Skew-symmetry and bilinearity over real scalars are obvious. For the Jacobi
identity, we will use for the second time in this text the condition dω = 0. First, we
have that

X f (ω(Xg, Xh)) = d{g, h}ω(X f ) = ω(X{g,h}ω
, X f )

= {{g, h}ω, f }ω = −{ f , {g, h}ω}ω.

Next, compute (with the result from the previous exercise) that

ω([Xg, Xh], X f ) = ω(−X{g,h}ω
, X f ) = ω(X f , X{g,h}ω

) = { f , {g, h}ω}ω.

Finally, we use that

0 = dω(X f , Xg, Xh) = X f (ω(Xg, Xh))− Xg(ω(X f , Xh)) + Xh(ω(X f , Xg))

−ω([X f , Xg], Xh) + ω([X f , Xh], Xg)−ω([Xg, Xh], X f ).

This becomes exactly the Jacobi identity for {·, ·}ω (in fact, dω = 0 is equivalent to the
Jacobi identity).

Corollary 4

Let (M, ω, H) be a Hamiltonian system, and f , g ∈ C∞(M) be constants of motion.
Then { f , g}ω is also a constant of motion.

Being a Lie bracket, it is natural to expect the Poisson bracket to have relations with
integrability and submanifolds. The next two results should illustrate this.

Proposition 7

Let (M, ω) be a symplectic manifold, and N ⊆ M be a submanifold. We define
the annihilator ideal of N to be C∞(M)N = { f ∈ C∞(M) | f |N = 0}. Then, the
following are equivalent:

(i) N is coisotropic.
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(ii) For each f ∈ C∞(M)N, X f is tangent to N along its points.

(iii) C∞(M)N is closed under {·, ·}ω.

Proof: First, note that if f ∈ C∞(M)N, then for each x ∈ N and v ∈ TxN, we have that
0 = d fx(v) = ωx(X f |x, v), so X f |x ∈ (TxN)ωx . In fact, we also have that such values
fill the space: (TxN)ωx = {X f |x | f ∈ C∞(M)N}. With this in place, we move on to
the implications.

(i) =⇒ (ii): Clear from the above as (TxN)ωx ⊆ TxN for all x ∈ N by (i).

(ii) =⇒ (iii): If f , g ∈ C∞(M)N, then { f , g}ω|N = d f (Xg)|N = 0 because for all
x ∈ N, d fx annihilates TxN and Xg|x ∈ TxN by (ii).

(iii) =⇒ (i): Take x ∈ N, and let’s show that (TxN)ωx ⊆ (TxNωx)ωx . For that, we
may just use Hamiltonian fields of functions coming from C∞(M)N. By (iii), we
have that ωx(X f |x, Xg|x) = { f , g}ω(x) = 0 if f , g ∈ C∞(M)N.

Corollary 5

Let (M, ω) be a symplectic manifold and f1, . . . , fk ∈ C∞(M) be functions in in-
volution, that is, { fi, f j}ω = 0 for all i, j = 1, . . . , k. Gather them into a map
f : M → Rk and assume it is a submersion. Then the fibers of f are coisotropic
submanifolds of M.

Proof: Since f is a submersion, the fibers of f are submanifolds of M, and the Hamil-
tonian fields {X fi |x}

k
i=1 form a basis for (TxN)ωx , for all x ∈ N. The involution as-

sumption says that these vectors are “orthogonal”, and so all of them are, in fact, in
TxN.

Remark. If 2k = n, we obtain a foliation by Lagrangian submanifolds, and this is the
usual setup to study integrable systems: a Hamiltonian system (M, ω, H) with di-
mension 2n admiting n constants of motion f1 = H, f2, . . . , fn which are in involution,
whose differentials are linearly independent in some open dense subset of M.

Exercise 26

The converse to the previous corollary holds: if (M, ω) is a symplectic manifold
and N ⊆ M is a codimension k coisotropic submanifold, then every point in N has
a neighborhood U in M and a submersion f : U → Rk whose coordinate functions
are in involution, and U ∩ N = f−1(0). Hint: Use induction on k and see [30].

Poisson brackets can also be related to a mild generalization of Hamiltonian fields.
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Exercise 27 (Challenge #3)

Let (M, ω) be a symplectic manifold. For each α ∈ Ω1(M), let Zα ∈ X(M) be
the unique field characterized by the relation ω(Zα, ·) = α. Now, define a bracket
[[·, ·]] : Ω1(M)×Ω1(M) → Ω1(M) by the relation Z[[α,β]]

.
= −[Zα, Zβ]. Fix 1-forms

α, β ∈ Ω1(M). Show that:

(a) [[α, β]] = LZβ
α−LZα β− d(ω(Zα, Zβ));

(b) If α and β are closed, so is [[α, β]].

(c) d{ f , g}ω = [[d f , dg]].

(d) [[·, ·]] is a Lie bracket on Ω1(M).

If Q is a smooth manifold and B ∈ Ω2(Q) is closed, consider (T∗Q, ωB).

(e) Show that for each H ∈ C∞(T∗Q), XB
H = X H − ZιXH (π∗B).

(f) Conclude that for f , g ∈ C∞(T∗Q), { f , g}ωB = { f , g}ωcan − (π∗B)(X f , Xg).

Hint: Expect the condition dω = 0 to appear somewhere between (a) and (d).

Remark. If (M,−dλ) is an exact symplectic manifold, E .
= Zλ is called the Euler

field. Its flow (compute it in Darboux coordinates and you’ll see the reason for the
name “Euler” field) is an useful tool in the proof of Theorem 6, mentioned in p. 21.

It will be useful later in this chapter to have an abstraction of all we discussed so
far. The inspiration comes from Theorem 13 (p. 42).

Definition 16 (Poisson geometry)

A Poisson manifold is a pair (P, {·, ·}), where P is a smooth manifold and {·, ·}
is a Lie bracket (to be called a Poisson bracket) on C∞(P) for which { f , ·} is a
derivation for all f ∈ C∞(P). Then:

(i) The vector field X f
.
= −{ f , ·} is called the Hamiltonian field of f .

(ii) The functions f ∈ C∞(P) for which X f = 0 are called Casimir functions.

(iii) The Poisson bivector is the twice-contravariant skew-symmetric tensor field
Π defined by linearly extending the prescription Π(d f , dg) .

= { f , g}, for all
f , g ∈ C∞(P).

Remark. The negative sign in (i) is again an attempt to do some damage control: it
makes X f so defined coincide with the Hamiltonian field in a symplectic manifold.
In any case, discussing Hamiltonian flows and coisotropic submanifolds now makes
sense in any Poisson manifold (the latter in view of Proposition 7, p. 42). Writing
(P, Π) instead of (P, {·, ·}) is also usual.

Page 44



OSU — SYMPLECTIC GEOMETRY CRASH COURSE IVO TEREK

Exercise 28

Check that in the above definition Π is indeed well-defined, e.g., by using coordi-
nates for P. Namely, show that if we take coordinates (x1, . . . , xm) for P and write
α, β ∈ Ω1(P) locally as

α =
m

∑
i=1

αi dxi and β =
m

∑
j=1

β j dxj,

then Π(α, β) = ∑n
i,j=1 αiβ j{xi, xj}, and that the result is coordinate-independent.

One usually writes Πij .
= {xi, xj} for the components of Π, so that

Π = ∑
1≤i<j≤m

Πij ∂

∂xi ∧
∂

∂xj .

So, if (M, ω) is a symplectic manifold, then (M, {·, ·}ω) is a Poisson manifold,
whose Casimir functions are precisely the (locally) constant ones. But not every Pois-
son manifold arises in this way.

Example 24 (Canonical Poisson prototype)

Consider R2n+r, with coordinates (x1, . . . , xn, y1, . . . , yn, z1, . . . , zr) and just mimic
the usual formula seen in Example 22 (p. 40), ignoring the z-coordinates. Namely,
define {·, ·} : C∞(R2n+r)× C∞(R2n+r)→ C∞(R2n+r) by

{ f , g} .
=

n

∑
k=1

(
∂ f
∂xk

∂g
∂yk
− ∂g

∂xk
∂ f
∂yk

)
.

Note that the Casimir functions for this bracket are precisely the ones depending
only on the z-variables. There’s a Darboux-type theorem (actually due to Lie)
stating that every Poisson bracket on R2n+r whose rank is equal to r (in general, it
doesn’t need to be constant) is locally equivalent to this standard one.

As the above example shows, there is no dimension restriction (dissapointingly,
note that one may also always choose {·, ·} = 0 on any manifold) and one has little to
no control over the Casimir functions of an arbitrary Poisson bracket. Still, there are
very interesting examples of non-trivial Poisson brackets coming from Mechanics.

Example 25 (Nambu mechanics)

Define {·, ·}N : C∞(R3)× C∞(R3)→ C∞(R3) by

{ f , g}N(x) .
= 〈x,∇ f (x)×∇g(x)〉,

where ∇ stands for the gradient operator, while 〈·, ·〉 and × denote the standard
Euclidean inner and cross products. This {·, ·}N is a Poisson bracket on R3, called
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the Nambu bracket (the only non-trivial thing to verify is the Jacobi identity).
Here’s some intuition: if x, y, z : R3 → R denote the coordinate functions on R3,
as a consequence of the cross product relations between vectors in the standard
basis of R3, we have that

{x, y}N = z, {y, z}N = x, and {z, x}N = y,

and thus the Nambu bivector is given by

ΠN = x
∂

∂y
∧ ∂

∂z
+ y

∂

∂z
∧ ∂

∂x
+ z

∂

∂x
∧ ∂

∂y
.

So, under the canonical isomorphism (R3)∧2 ∼= R3, ΠN corresponds to the posi-
tion vector field on R3. We now claim that a function f ∈ C∞(R3) is Casimir if
and only if it is radial. Assume that f is radial, so that f (x) = ρ(‖x‖2) for some
smooth ρ : R→ R. Then we have that ∇ f (x) = 2ρ′(‖x‖2)x, so

{ f , g}N(x) = 2ρ′(‖x‖2)〈x, x×∇g(x)〉 = 0

for all g ∈ C∞(R3). Conversely, assume that f is Casimir. Let’s show that for each
r > 0, the restriction f |rS2 is constant, by showing that its differential vanishes
(here, rS2 denotes the sphere centered at the origin with radius r). The condition
{ f , ·}N = 0 implies that for all x ∈ R3, we have x×∇ f (x) = 0, since the values
∇g(x) fill up Tx(R3) as g ranges over C∞(R3) (or, more simply, just take g = x,
g = y and g = z). Thus, write ∇ f (x) = α(x)x for some smooth α : R3 → R. Now
assume that γ : I → rS2 is any smooth curve, and compute

d
dt

f (γ(t)) = 〈∇ f (γ(t)), γ̇(t)〉 = α(γ(t))〈γ(t), γ̇(t)〉 = 0,

as desired (differentiate 〈γ, γ〉 = r2 to obtain 〈γ, γ̇〉 = 0). In higher dimensions,
we have (Rn)∧(n−1) ∼= Rn, so multivectors instead of bivectors are required to
study Nambu mechanics and Poisson brackets are no longer enough. See [21] for
more details.

Remark. More generally, once can fix any smooth function C : R3 → R and define a
Nambu bracket from C, by { f , g}N,C(x) .

= 〈∇C(x),∇ f (x)×∇g(x)〉. Then C itself is
a Casimir function and, as you may now expect, the associated bivector ΠN,C corre-
sponds under (R3)∧2 ∼= R3 to ∇C.

Exercise 29

Verify that {·, ·}N satisfies the Jacobi identity. Hint: Vector calculus identities
might help.

Page 46



OSU — SYMPLECTIC GEOMETRY CRASH COURSE IVO TEREK

Exercise 30

Let g be a Lie algebra. Define {·, ·}g∗ : C∞(g∗)× C∞(g∗)→ C∞(g∗) by setting

{ f , g}g∗(p) = p([d fp, d fp]),

where d fp, dgp ∈ g∗∗ ∼= g, so that taking their Lie bracket makes sense. This is
called the standard Lie-Poisson structure on g∗. Show that {·, ·}g∗ is a Poisson
bracket. Hint: You’ll need the Jacobi identity for [·, ·] somewhere.

Unfortunately, the dimension and the presence of non-constant Casimir functions
are not the only obstacle for a Poisson bracket to have been induced by a symplectic
form. In R2, define

{ f , g}(x, y) = y
(

∂ f
∂x

∂g
∂y
− ∂ f

∂y
∂g
∂x

)
.

This is clearly a Poisson bracket on R2. If f is Casimir, then f is constant on R×R>0
and R×R<0, hence constant on the entire R2 by continuity. But {·, ·} is not symplectic
as

det

(
0 y

−y 0

)
= y2

vanishes along the x-axis. A bit more is required.

Theorem 14 (Pauli-Jost)

Let (P, {·, ·}) be a Poisson manifold and assume that the induced map T∗P→ TP
characterized by d fx 7→ X f

∣∣
x, for all x ∈ P and f ∈ C∞(P), is an isomorphism.

Then there is a symplectic form ω ∈ Ω2(P) for which {·, ·}ω = {·, ·}.

Here’s a sketch of the proof: use the isomorphism T∗P ∼= TP to convert the bivector
Π to a 2-form ω — it is non-degenerate by assumption. And it is closed by the Jacobi
identity for {·, ·} (reverse the proof of Theorem 13, p. 42). It satisfies {·, ·}ω = {·, ·} by
construction.

For more on Poisson manifolds, see the delightful article [44], or the book [42] for
a more thorough presentation.

3.2 Group actions on manifolds

Throughout the rest of this text, we will explore symmetries of symplectic mani-
folds. Symmetries are naturally encoded on group actions. We are naturally led to
consider actions of Lie groups on manifolds. Thus, we’ll start briefly reviewing group
actions. Let’s fix some notation. Here, G will denote a (connected) Lie group, e its iden-
tity element4 and, for each g ∈ G, Lg, Rg, Cg, inv : G → G will denote, respectively, left

4The letter e comes from German, einselement.
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translation by g, right translation by g, conjugation by g, and the inversion map. The
Lie algebra g (also denoted by Lie(G)) of G is the tangent space TeG, and we’ll identify
it with the algebra XL(G) of left-invariant vector fields on G, via X 7→ XL, where XL

is the unique left-invariant extension of X ∈ g, namely, (XL)g
.
= d(Lg)e(X). Similar

comments hold for XR(G) and XR.

Definition 17

Let G be a Lie group and M be a smooth manifold. A (smooth) left action of G on
M, denoted G � M, is a smooth map G×M 3 (g, x) 7→ g · x ∈ M, satisfying:

(i) e · x = e for all x ∈ M

(ii) g · (h · x) = (gh) · x, for all g, h ∈ G, x ∈ M.

In other words, G � M is equivalent to a Lie group homomorphism G → Diff(M).
We will identify g ∈ G with the diffeomorphism g : M → M given by x 7→ g · x,
and given x ∈ M, we’ll write Ox : G → M for the orbit map of x, Ox(g) .

= g · x.
The orbit space of G � M, denoted by M/G, is the quotient of M under the
equivalence relation “x ∼ y ⇐⇒ there is g ∈ G such that y = g · x”.

Exercise 31

In the above definition, check that ∼ is indeed an equivalence relation.

Here are some frequent and useful concepts.

Definition 18

Let G � M be a Lie group action on a manifold.

(i) Given x ∈ M, G · x .
= {g · x | g ∈ G} is the orbit of x;

(ii) Given x ∈ M, Gx
.
= {g ∈ G | g · x = x} is the stabilizer of x;

(iii) The action is transitive if there is x ∈ M such that G · x = M.

(iv) The action is free if Gx = {e} for all x ∈ M.

(v) The action is proper if the enriched action G × M → M × M (given by
(g, x) 7→ (x, g · x)) is a proper map (i.e., whose inverse images of compact
sets are compact).

Remark. Given a smooth Lie group action G � M, freeness and properness of the
action are enough to ensure that M/G has a unique smooth manifold structure for
which the quotient projection M → M/G is a surjective submersion. In particular, if
G is compact, properness is automatic. For more precise conditions ensuring that the
quotient M/∼ of a manifold under an equivalence relation ∼ has a smooth manifold
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structure making M → M/∼ a surjective submersion, see Godement’s Theorem, for
example, in [20].

Example 26

(1) A real linear Lie group is a Lie subgroup of GLn(R) (for example, SLn(R),
O(n, R), SO(n, R), etc.). Each linear Lie group acts on Rn via evaluation. In
particular, restricting we obtain actions such as O(n, R) � Sn−1.

(2) S1 � S2 via rotations about the z-axis, where elements of S1 are regarded as
angles.

x

z

y

Figure 7: Action of the circle on the sphere.

(3) Any Lie group G acts on itself, in several ways:

• Via left translations: g · x .
= Lg(x) = gx.

• Via right translations: g · x .
= Rg−1 = xg−1.

• Via conjugation: g · x .
= Cg(x) = gxg−1.

(4) Fixed α ∈ R, we have an action R � T2 = R2/Z2 via

t · ((x, y)mod 1) .
= (x + t, y + αt)mod 1.

x

y

(x, y)
(x, y) + t(1, α)

T2
(x, y)

Figure 8: A line action on the torus.

Page 49



OSU — SYMPLECTIC GEOMETRY CRASH COURSE IVO TEREK

It is possible to show that if α ∈ Q, the orbits of the action are embedded closed
curves in T2, while if α ∈ R \Q, they’re dense in T2 (this is called Kronecker’s
flow theorem).

(5) Let Q be a smooth manifold, and let G � Q be a smooth action. This action
induces actions:

• G � TQ, via g · (x, v) .
= (g · x, dgx(v)).

• G � T∗Q, via g · (x, p) .
= (g · x, p ◦ (dgx)−1).

Combining the above, G will also act on every tensor bundle over Q.

To complement the examples above, consider the following exercise:

Exercise 32

(a) Which of the actions given in the above example are transitive? Free? Try
to describe the orbit spaces. Hint: The orbit-stabilizer theorem may come in
handy.

(b) Show that if the action G � Q is free and proper, so are G � TQ and G � T∗Q.
Hint: Recall that G � Q is proper if and only if given any sequences (gn)n≥1
in G and (xn)n≥1 in Q such that both (gn · xn)n≥1 and (xn)n≥1 converge in Q,
then (gn)n≥1 has a convergent subsequence in G.

And while we’re talking about the orbit-stabilizer theorem, note that each stabilizer
Gx is a closed subgroup of G (hence a Lie subgroup — not normal, in general), so the
quotient G/Gx is a smooth manifold as well. Then G/Gx → G · x ⊆ M says that
each orbit G · x is an immersed submanifold of G. If G is compact, the orbits are
embedded (simply because a proper injective immersion must be an embedding). To
further exploit the fact we’re dealing with Lie groups, derivatives must come into play.

Definition 19

Let G � M be a smooth Lie group action. For any X ∈ g, the action field of X is
X# ∈ X(M) defined by (X#)x

.
= d(Ox)e(X).

Remark. When emphasizing the manifold being acted on is needed, one might write
X#

M instead. Many texts directly define the action field by explictly writing

X#
x =

d
dt

∣∣∣∣
t=0

exp(tX) · x,

which automatically makes the flow relation Φt,X#(x) = exp(tX) · x true.
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Exercise 33

Let G � M be a smooth Lie group action. Show that:

(a) the map g 3 X 7→ X# ∈ X(M) is an anti-homomorphism of Lie algebras. For
right actions, it’s a homomorphism.

(b) given x ∈ M, (X#)x = 0 if and only if X ∈ gx
.
= Lie(Gx) (it is called the

stabilizer algebra at x).

Here are quick examples, based on the previous ones.

Example 27

(1) For the rotation action S1 � S2, since Lie(S1) = iR ∼= R (the obvious isomor-
phism, delete i), we have that

1#
(x,y,z) =

d
dθ

∣∣∣∣
t=0

(x cos θ− y sin θ, x sin θ + y cos θ, z) = −y
∂

∂x

∣∣∣∣
(x,y,z)

+ x
∂

∂y

∣∣∣∣
(x,y,z)

.

x

z

y

Figure 9: Infinitesimal generator for S1 � S2.

(2) Take a Lie group G acting on itself, and X ∈ g. For the action given by:

• left translations, we have X# = XR.

• right translations, we have X# = −XL (here d(inv)e = −Idg plays a role).

• conjugation, we have X# = XR − XL.

(3) For the action R � T2 coming from a parameter α ∈ R, we have that

1#
(x,y) =

d
dt

∣∣∣∣
t=0

(x + t, y + αt)mod 1 =
∂

∂θ1

∣∣∣∣
(x,y)

+ α
∂

∂θ2

∣∣∣∣
(x,y)

.

Page 51



OSU — SYMPLECTIC GEOMETRY CRASH COURSE IVO TEREK

T2
(x, y)

Figure 10: Infinitesimal generator for R � T2.

Exercise 34

(a) Let G1 � M1 and G2 � M2 be two smooth Lie group actions, ψ : G1 → G2
be a Lie group homomorphism, and F : M1 → M2 be ψ-equivariant, that is, it
satisfies F(g · x) = ψ(g) · F(x), for all g ∈ G1 and x ∈ M1. Show that for each
X ∈ g1 and x ∈ M1, we have dFx(X#

M1

∣∣
x) = dψe(X)#

M2

∣∣
F(x).

(b) Conclude that if G � Q is a smooth Lie group action, then for each X ∈ g, the
fields X#

TQ and X#
T∗Q project to X#

Q under the natural bundle projections.

Now, let’s get back to the symplectic category.

Definition 20

Let (M, ω) be a symplectic manifold and G be a Lie group. A smooth action
G � M is called a symplectic action if for each g ∈ G, the action map g : M → M
is a symplectomorphism. We’ll denote a symplectic action by G � (M, ω).

Remark. This is equivalent to requiring the homomorphism G → Diff(M) to be actu-
ally valued in Sp(M, ω).

As an immediate consequence of the definition, since the flows of the action fields
are given by Φt,X#(x) = exp(tX) · x (which in particular shows that X# is complete),
we have from Theorem 8 (p. 29) that all the action fields of a symplectic action are...
symplectic.

Example 28

(1) If (M, ω, H) is a compact Hamiltonian system, we obtain R � (M, ω) via
t · x .

= Φt,X H(x).

(2) More generally, if (M, ω) is a compact symplectic manifold and we have func-
tions f1, . . . , fk ∈ C∞(M) in involution, that is, { fi, f j}ω = 0 for all indices
i, j = 1, . . . , k, we obtain an action Rk � (M, ω) by

(t1, · · · , tk) · x
.
= Φt1,X f1

◦ · · · ◦Φtk,X fk
(x).

(3) Identify R2n ∼= Cn, so that we get an action Tn � (R2n, ω2n) via

(eiθ1 , · · · , eiθn) · (z1, . . . , zn)
.
= (eiθ1z1, · · · , eiθn zn).
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By the way, you can check that in complex coordinates, one has

ω2n =
i
2

n

∑
k=1

dzk ∧ dzk.

(4) If G � Q, then G � (T∗Q, ωcan) by Proposition 4 (p. 20). And clearly, if
B ∈ Ω2(Q) is closed, we’ll have G � (T∗Q, ωB) if and only if the original
action G � Q preserves B.

With this in place, the next natural question is whether if given G � (M, ω),
free and proper, ω induces a symplectic form in the orbit space M/G (which is a
smooth manifold, under the given assumptions). The answer is an unfortunate “no”,
as dim(M/G) = dim M−dim G might not be even. Thus we are forced to move on to
the next best thing that could survive in the quotient with good properties: the Poisson
bracket {·, ·}ω.

Theorem 15

Let G � (M, ω) be given. Then the algebra C∞(M)G of G-invariant functions is
closed under {·, ·}ω. Hence, if G � M is free and proper, there is a unique Poisson
bracket {{·, ·}} on M/G for which the quotient projection M → M/G becomes a
Poisson morphism.

Proof: By Exercise 24 (p. 41), for all f1, f2 ∈ C∞(M)G and g ∈ G, we have that

{ f1, f2}ω ◦ g
(∗)
= { f1 ◦ g, f2 ◦ g}ω ◦ g = { f1, f2}g∗ω = { f1, f2}ω,

where in (∗) we use invariance of f1 and f2. The rest is clear once we establish the
correspondence C∞(M)G ∼= C∞(M/G). But this is just the characteristic property
of surjective submersions. Namely, each f ∈ C∞(M)G passes to the quotient giving a
function f̃ ∈ C∞(M/G), while composing any given f̃ ∈ C∞(M/G) with the quotient
projection M → M/G gives f ∈ C∞(M)G — these two processes are inverses to each
other. With this in place, there’s nothing else to do: define

{{ f̃1, f̃2}}(G · x)
.
= { f1, f2}ω(x),

where the representative x of G · x is chosen at will.

Remark. The above result should be regarded as a little factory of Poisson manifolds
from symplectic manifolds, on its own right: just find the good Lie groups. In fact,
nothing changes if one replaces (M, ω) with some Poisson manifold (P, {·, ·}) instead,
assuming that the action G � P itself is a Poisson action, in the sense that every action
map g : P→ P preserves {·, ·}.
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Example 29

Let G be a Lie group acting on itself by left translations (which is clearly free
and proper), and also consider the induced action G � T∗G via cotangent lifts.
Let’s fully understand the quotient T∗G/G. For that, fix the global trivialization
Φ : G× g∗ → T∗G, given by Φ(g, p) .

= (g, p ◦ d(Lg)−1
e ). Using Φ to pull-back the

action on T∗G to G× g∗, we compute

g · (h, p) = Φ−1(g ·Φ(h, p)) = Φ−1(g · (h, p ◦ d(Lh)
−1
e ))

= Φ−1(gh, p ◦ d(Lh)
−1
e ◦ d(Lg)

−1
h ) = Φ−1(gh, p ◦ d(Lgh)

−1
e )

= Φ−1Φ(gh, p) = (gh, p).

That is, Φ undoes the twisting of the cotangent spaces. Since the action only hap-
pens on the first factor, it follows that

T∗G/G (G× g∗)/G g∗,Φ−1 pr2

but here’s the catch: this diffeomorphism is Poisson, when we equip g∗ with its
standard Lie-Poisson structure (of course, by Φ−1 and pr2 above we understand
the induced maps on the quotients). Note that

C∞((G× g∗)/G) ∼= C∞(G× g∗)G 3 f 7→ f (e, ·) ∈ C∞(g∗)

is an isomorphism. With this, it would suffice to check that for all X, Y ∈ g, one has
{ ˆ̂X, ˆ̂Y}Φ∗ω(g, p) = p([X, Y]), where ˆ̂X : G × g∗ → R is given by ˆ̂X(g, p) = p(X),
and this can be done in several ways (think about what is the most efficient one).

Exercise 35

In the setting of the above example, with the same notation, show that the “tau-
tological form” Φ∗λ ∈ Ω1(G× g∗) is given by (Φ∗λ)(g,p) = p ◦ (dg(e,p))

−1, where
by g we mean, as usual, the action g : G× g∗ → G× g∗ of the element g ∈ G.

3.3 Moment maps and Noether’s Theorem

Recall that if a symplectic manifold (M, ω) has H1
dR(M) = 0, then every symplectic

field is Hamiltonian. If a Lie group G acts on such (M, ω), then every action field X# is
Hamiltonian. It seems natural to try and collect all the Hamiltonian functions realizing
these fields into a single map. So, assume that there is a map µc : g → C∞(M) for
which XµX

c
= X# for all X ∈ g, where we write µX

c for what would be µc(X) — let’s
say that if such map µc exists, the action is weakly Hamiltonian. This implies that for

Page 54



OSU — SYMPLECTIC GEOMETRY CRASH COURSE IVO TEREK

each X, Y ∈ g, the relation

X
µ
[X,Y]
c

= [X, Y]# = −[X#, Y#] = −[XµX
c

, XµY
c
] = X{µX

c ,µY
c }ω

holds, by exercises 25 (p. 41) and 33 (p. 51). In a perfect world, this would imply
that µ

[X,Y]
c = {µX

c , µY
c }ω, but we can only say that those functions differ by a constant,

which depends on X and Y themselves. This cannot be helped.

Definition 21

A symplectic action G � (M, ω) is called a Hamiltonian action if there exists a
linear map µc : g→ C∞(M), to be called comoment map, such that the diagram

(g, [·, ·]) (C∞(M), {·, ·}ω)

(S(M, ω), [·, ·]) (H(M, ω), [·, ·])

#

µc

X•

commutes, where S(M, ω) and H(M, ω) stand (as before), respectively, for the
algebras of symplectic and Hamiltonian vector fields on (M, ω), and the verti-
cal maps are anti-homomorphisms. The associated moment map is the function
µ : M → g∗ given by µ(x)(X)

.
= µX

c (x), and µ and µc carry the same information.
We say that the data (M, ω, G, µ) forms a Hamiltonian G-space.

Remark. Digression. Moment/comoment maps need not exist for a given symplectic
action and, when they do, they might not be unique. One possible tool to study this
question is the so-called Chevalley-Eilenberg cohomology of a Lie algebra. Here’s
the quick gist of it: let ρ : g → gl(V) be a representation of g in some vector space V.
For each 0 ≤ k ≤ dim g, let Ak

ρ(g; V) denote the space of V-valued alternating k-linear
maps on g, and define the Chevalley-Eilenberg derivative d: Ak

ρ(g; V) → Ak+1
ρ (g; V)

by mimicking the classical Palais formula:

dω(X0, . . . , Xk) =
k

∑
i=0

(−1)iρ(Xi)ω(X0, . . . , X̂i, . . . , Xk)

+ ∑
0≤i<j≤k

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk).

Then we have the complex

· · · Ak−1
ρ (g; V) Ak

ρ(g; V) Ak+1
ρ (g; V) · · ·d d d d

and d2 = 0, meaning that if we set Zk
ρ(g; V) and Bk

ρ(g; V) as the kernel and range of
the correct d’s, we can form the cohomology Hk

ρ(g; V)
.
= Zk

ρ(g; V)/Bk
ρ(g; V).
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Exercise 36

Fix a Lie algebra g and its adjoint representation ad : g → gl(g). We have that
[·, ·] ∈ A2

ad(g; g). Show that the bracket [·, ·] is closed and defines the trivial class in
H2

ad(g; g). Hint: there is a (somewhat) obvious f ∈ A1
ad(g; g) for which d f = [·, ·].

For example, H1
ρ(g; V) controls the existence of ρ-invariant complements for ρ-invari-

ant subspaces of V, and H2
ρ(g; V) (for a certain ρ) controls whether g admits abelian

extensions. Whitehead’s Lemmas state that if g is semi-simple (that is, its Killing
form is non-degenerate) then both H1

ρ(g; V) and H2
ρ(g; V) are trivial (in particular,

the Weyl’s reducibility theorem for semi-simple Lie algebras follows from this). As
far as moment maps go, assume again that we have G � (M, ω) and a linear map
µc : g→ C∞(M) such that for each X ∈ g, µX

c is a Hamiltonian function for X#, but no
more, and indeed write µ

[X,Y]
c = {µX

c , µY
c }ω + ζµ(X, Y), for some ζµ(X, Y) ∈ R.

Exercise 37

Show that the map ζµ : g× g→ R satisfies:

(a) ζµ is bilinear;

(b) ζµ(Y, X) = −ζµ(X, Y) for all X, Y ∈ g;

(c) ζµ(X, [Y, Z]) + ζµ(Y, [Z, X]) + ζµ(Z, [X, Y]) = 0 for all X, Y, Z ∈ g.

Hence ζµ ∈ Z2
ρ0
(g; R), where ρ0 : g→ gl(R) is the trivial representation.

Note: item (c) says precisely that d(ζµ) = 0.

It turns out that µc can be “corrected” to a legitimate comoment map if and only if the
cohomology class [ζµ] is trivial in H2

ρ0
(g; R). Namely, we just add a primitive for ζµ to

µ. If [ζµ] is non-trivial, there is a way to make it trivial by passing to a certain central
extension of g (in other words, one must enlarge g) — this is related to phenomena
of group quantization, see [23] and the other references in [33] for more details. One
useful conclusion of all of this is the:

Theorem 16

A symplectic action G � (M, ω), where H1
dR(M) = 0 and G is semi-simple, is

Hamiltonian.

As for the uniqueness, we’ll just mention that two “comoment maps” for a weakly
Hamiltonian action differ by an element of the annihilator of the commutant ideal
[g, g]. End of digression.

With this in place, let’s revisit a few of the previous examples of symplectic actions.
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Example 30

(1) Consider a symplectic manifold (M, ω) and a smooth function H : M→ R for
which the Hamiltonian field X H is complete, and define the action R � (M, ω)
via Hamiltonian flow: t · x = Φt,X H(x). We know that Lie(R) = R, so given
a ∈ R, we can note that Φta,X H = Φt,aX H = Φt,XaH and compute

(a#)x =
d
dt

∣∣∣∣
t=0

(ta) · x =
d
dt

∣∣∣∣
t=0

Φta,X H(x) =
d
dt

∣∣∣∣
t=0

Φt,XaH(x) = XaH
∣∣
x,

so that µc : R → C∞(M) given by µa
c = aH works. It is a homomorphism

since {µa
c, µb

c}ω = ab{H, H}ω = 0 for all a, b ∈ R and R is abelian. The
corresponding moment map µ : M → R∗ takes a point x ∈ M to the map
µ(x) : R→ R given by multiplication by H(x) (so in this sense, µ = H).

(2) Consider the circle action S1 � (Cn, ω2n) given just by scalar multiplication:
eiθ · (z1, . . . , zn) = (eiθz1, . . . , eiθzn). In other words, compose the diagonal
inclusion S1 ↪→ Tn with the action seen in Example 28 (p. 52). Note that
Lie(S1) = iR:

S1

iR

Figure 11: Lie algebra of the circle group.

A direct computation (being careful with the identification R2n ∼= Cn) shows
that if ia ∈ iR, then

(ia)# =
n

∑
k=1

(
iazk ∂

∂zk − iazk ∂

∂zk

)
,
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so that

ι(ia)#ω2n = ω2n((ia)#, ·) = i
2

n

∑
k=1

(dzk ∧ dzk)((ia)#, ·)

=
i
2

n

∑
k=1

(iazk dzk − (−iazk dzk)) = − a
2

n

∑
k=1

(zk dzk + zk dzk)

= − a
2

n

∑
k=1

d(|zk|2) = d

(
− a

2

n

∑
k=1
|zk|2

)
.

This suggests that this circle action is indeed Hamiltonian with comoment
map µc : iR→ C∞(Cn) given by

µia
c (z) = −

a‖z‖2

2
.

You can directly check that {µia
c , µib

c }ω2n = 0 for all a, b ∈ R.

(3) Let (M,−dλ) be an exact symplectic manifold and assume that G � (M,−dλ)
is an action not only preserving ω = −dλ, but the primitive λ as well (clearly
the case of interest is when λ is indeed the tautological form on some cotan-
gent bundle M = T∗Q). We claim that this already ensures that the action is
Hamiltonian. Namely, given X ∈ g, Cartan’s homotopy formula comes into
play again:

0 = LX#λ = ιX#dλ + dιX#λ =⇒ ιX#ω = d(λ(X#)).

This leads us to consider µc : g → C∞(M) given by µX
c = λ(X#). Let’s verify

that this is a comoment map. For that, start noting that for any X, Y ∈ g, we
have

X#(λ(Y#)) = X#(µY
c ) = dµY

c (X#) = ω(XµY
c
, X#) = −ω(X#, Y#).

Now, we use the definition of exterior derivative to compute

{µX
c , µY

c }ω = ω(X#, Y#)

= Y#(λ(X#))− X#(λ(Y#)) + λ([X#, Y#])

= ω(X#, Y#)−ω(Y#, X#)− λ([X, Y]#),

so that cancelling one ω(X#, Y#) on both sides and reusing the very first line
of the computation, it follows that {µX

c , µY
c }ω = µ

[X,Y]
c , as required. Lastly,

note that we may write the moment map µ : M→ g∗ as µ(x) = (O∗x λ)e, where
Ox : G → M is the orbit map of x.

Remark. Note that if a smooth action G � Q preserves some A ∈ Ω1(Q), then the
action G � (T∗Q, ωB) induced via cotangent lifts, where B = dA, is Hamiltonian with
comoment map µc : g→ C∞(T∗Q) given by µX

c (x, p) = (p− Ax)(X#
Q

∣∣
x).
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Exercise 38

Let (M, ω) be a compact symplectic manifold, f1, . . . , fk ∈ C∞(M) be in involu-
tion, and consider the action Rk � (M, ω) given by composition of Hamiltonian
flows, as in Example 28 (p. 52). Namely, set

(t1, . . . , tk) · x = Φt1,X f1
◦ · · · ◦Φtk,X fk

(x).

Show that this action is Hamiltonian with comoment map µc : Rk → C∞(M)
given by

µ
(a1,...,ak)
c =

k

∑
i=1

ai fi

and moment map µ : M→ (Rk)∗ given by µ(x) = 〈 f (x), ·〉, where f = ( f1, . . . , fk)
and 〈·, ·〉 is the standard inner product in Rk. Hint: to show that µc is a Poisson
map, the involution assumption is crucial.

Let’s look at one last example, of mechanical flavor:

Example 31 (The reason for the name “co/moment” map)

Consider R3 equipped with its standard Euclidean inner product 〈·, ·〉, and con-
sider the diagonal derivative action SO(3) � TR3 ∼= R6, given by

R · (x, y) .
= (Rx, Ry).

Here, R6 is equipped with the standard symplectic form ω6. Recall that we have
a natural isomorphism (so(3), [·, ·]) ∼= (R3,×), via the map

R3 3 (a, b, c) 7→ A(a,b,c) =


0 −c b

c 0 −a

−b a 0

 ∈ so(3)

That is, A(a,b,c) is the matrix of (a, b, c)× _ relative to the standard basis of R3. The
inner product on R3 then induces an isomorphism so(3) ∼= so(3)∗. We claim that
this action is Hamiltonian with comoment map µc : R3 → C∞(R6) given by

µv
c (x, y) = 〈v, x× y〉.

A quick way to see this is to compute, for each v ∈ R3, the action field v# as
v#
(x,y) = (v× x, v× y) (the total derivative of a linear map is itself), and to note

that for any function f ∈ C∞(R6), if ∇ f = (∇x f ,∇y f ), then X f = (∇y f ,−∇x f ),
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so that (∇µv
c )(x,y) = (y× v, v× x) leads to Xµv

c = v# as required. So, with all due
isomorphisms, the moment map µ : R3 ×R3 → R3 appears as µ(x, v) = x × y,
which is the actual angular momentum.

Here’s one last exercise describing a simple construction providing more examples:

Exercise 39

Let (M1, ω1, G, µ1) and (M2, ω2, G, µ2) be two Hamiltonian G-spaces. Show that
(M1×M2, ω1⊕ω2, G, µ1⊕ µ2) is also a Hamiltonian G-space, where the action of
G on M1 ×M2 is diagonal and the new moment µ1 ⊕ µ2 : M1 ×M2 → g∗ is given
by (µ1 ⊕ µ2)(x, y) .

= µ1(x) + µ2(y).

We have seen that comoment maps are Poisson maps. It turns out that moment
maps are also Poisson maps.

Exercise 40

For a Hamiltonian G-space (M, ω, G, µ), show that the moment map µ : M → g∗

is a Poisson map, that is,

{ f ◦ µ, g ◦ µ}ω = { f , g}g∗ ◦ µ

holds for all f , g ∈ C∞(g∗). Here, {·, ·}g∗ is the standard Lie-Poisson structure on
g∗, as seen in Exercise 30 (p. 47). Hint: It suffices to show it holds for f = X̂ and
g = Ŷ, where X, Y ∈ g and X̂ and Ŷ are the natural images of X and Y in g∗∗

(hence maps g∗ → R). Use that µX
c = X̂ ◦ µ.

To further explore the properties of moment maps, let’s introduce a useful little
device: if (M, ω, G, µ) is a Hamiltonian G-space, for each x ∈ M let θx : g → T∗x M be
given by θx(X) = ωx(X#

x, ·). In other words, we have that

θx(X)(v) = ωx(X#
x, v) = d(µX

c )x(v) = dµx(v)X,

so θx is the dual of the derivative dµx : Tx M → g∗. Thus, simple linear algebra gives
us the:

Proposition 8

Let (M, ω, G, µ) be a Hamiltonian G-space. Then µ : M → g∗ is a submersion at
x ∈ M if and only if the stabilizer Gx is discrete.

Proof: Just note that Ran(dµx) = Ann(ker θx) = Ann(gx), since ωx is non-degenerate
and we use item (b) of Exercise 33 (p. 51). So dµx is surjective if and only if gx = 0.
The conclusion follows because we assume that G is connected.

The next natural thing to do would be to analyze the kernel of dµx.
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Proposition 9

Let (M, ω, G, µ) be a Hamiltonian G-space. Then for each x ∈ M, we have that
ker dµx and Tx(G · x) are ωx-orthogonal.

Proof: Recall that Tx(G · x) = {X#
x | X ∈ g} (this is a general fact about Lie group

actions on smooth manifolds), so it suffices to note that if X ∈ g and v ∈ ker dµx, we
have ωx(X#

x, v) = dµx(v)X = 0, because dµx(v) is the zero linear functional.

Let’s leave no stone unturned:

Proposition 10

Let (M, ω, G, µ) be a Hamiltonian G-space. Then the moment map µ : M → g∗

is G-equivariant, where in g∗ we consider the coadjoint action G � g∗ given by
g · p .

= p ◦Ad(g−1). Namely, we have that

µ(g · x) = µ(x) ◦Ad(g−1)

for all x ∈ M and g ∈ G.

Proof: Since G is connected, we may proceed infinitesimally, and just prove that

dµx(X#
M
∣∣
x) = X#

g∗
∣∣
µ(x),

by showing that both sides yield the same result when tested against an arbitrary
Y ∈ g. On one hand, we have that

dµx(X#
M
∣∣
x)Y = θx(Y)(X#

M
∣∣
x) = ωx(Y#

M
∣∣
x, X#

M
∣∣
x)

= {µY
c , µX

c }ω(x) = µ
[Y,X]
c (x)

= µ(x)([Y, X]).

On the other hand, we may take an arbitrary element p ∈ g∗, the 1-parameter sub-
group γX : R→ G given by γX(t) = exp(tX), and compute

X#
g∗
∣∣

p =
d
dt

∣∣∣∣
t=0

γX(t) · p =
d
dt

∣∣∣∣
t=0

p ◦Ad(γX(t)−1)

=
d
dt

∣∣∣∣
t=0

p ◦Ad(γ−X(t)) = p ◦ d
dt

∣∣∣∣
t=0

Ad(γ−X(t))

= p ◦ ad(−X) = p([·, X]),

concluding the proof.

Exercise 41

Let G be a Lie group. Show that the coadjoint action G � g∗ is a Poisson action,
when we equip g∗ with its standard Lie-Poisson structure. Namely, show that for
all f1, f2 ∈ C∞(g∗) and g ∈ G, we have { f1 ◦ g, f2 ◦ g}g∗ = { f1, f2}g∗ ◦ g.
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Hint: Again it suffices to show that the conclusion holds for f = X̂ and g = Ŷ,

where X, Y ∈ g. Verify that X̂ ◦ g = ̂Ad(g−1)X.

Remark. For dimension reasons, a Lie algebra need not carry a symplectic form. It
turns out that the coadjoint orbits carry natural symplectic forms — they’re called
the Kirillov-Kostant-Souriau forms (KKS forms, for short). The coadjoint action re-
stricted to each orbit is Hamiltonian, and the moment map is given by the inclusion
into g∗.

Let’s conclude this section with one of the most powerful theorems in Mathemati-
cal Physics.

Theorem 17 (Noether)

Let (M, ω, G, µ) be a Hamiltonian G-space, and H ∈ C∞(M) be G-invariant. Then
µ is constant along the integral curves of the Hamiltonian field X H.

Proof: Since H is G-invariant, its derivative kills all action fields. So, let γ : I → M be
an integral curve of X H. For any X ∈ g, compute:

(µ ◦ γ)′(t)X = dµγ(t)(γ
′(t))X = θγ(t)(X)(γ′(t))

= ωγ(t)(X#
γ(t), γ′(t)) = ωγ(t)(X#

γ(t), X H
∣∣
γ(t))

= −dHγ(t)(X#
γ(t)) = 0.

The fact that a powerful and celebrated theorem like this has such an easy proof
should not be cause for concern. This Hamiltonian formulation essentially sweeps the
dirt under the rug, as applying this theorem to some mechanical system requires not
only recognizing the underlying symplectic structure, but also recognizing a conve-
nient group G of symmetries acting on the configuration or phase space. It goes by the
slogan “symmetries generate conservation laws”.

As our first example of how to apply this, let’s put together everything we have
learned so far.

Example 32 (Killing fields)

Let (Q, g) be a Riemannian manifold, and X ∈ X(Q) be a Killing field (that is,
each stage of the flow of X is an isometry of Q or, equivalently, the covariant
differential ∇X is skew-adjoint, where ∇ is the Levi-Civita connection of (Q, g)).
Let’s assume, for simplicity, that X is completea, so we obtain an isometric action
R � (Q, g) given by its flow. This action lifts to an action R � (T∗Q, ωcan), which
is Hamiltonian by item (3) of Example 30 (p. 57), with moment map µ : T∗Q→ R∗

given by

µ(x, p)a = λ(x,p)(a#
T∗Q
∣∣
(x,p)) = p(a#

Q
∣∣
x) = p(aXx) = ap(Xx).

The Hamiltonian H : T∗Q→ R given by H(x, p) = gx(p, p)/2 is R-invariant, and
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we know that if (x, p) : I → T∗Q is an integral curve of X H, then x : I → Q is a
geodesic, by Example 19 (p. 27). Noether’s conclusion is that if X ∈ X(Q) is a
Killing field and x : I → Q is a geodesic, then the function t 7→ gx(t)(Xx(t), ẋ(t)) is
constant, since if p ∈ T∗x Q corresponds to v ∈ TxQ, then p(Xx) reads gx(Xx, v).

aThis assumption can be dropped.

Exercise 42

Let (Q, g) be a Riemannian manifold, A ∈ Ω1(Q) be a magnetic potential, and
X ∈ X(Q) be a Killing field such that LX A = 0. Show that if γ : I → Q is a
magnetic geodesic (in the sense of Exercise 19, p. 28), then there is c ∈ R such that

gγ(t)(γ̇(t), Xγ(t)) = Aγ(t)(Xγ(t)) + c, for all t ∈ I,

and conclude that

Bγ(t)(γ̇(t), Xγ(t)) = (∇γ̇(t)A)(Xγ(t)) + Aγ(t)

(
DX
dt

(t)
)

, for all t ∈ I.

To what extent is this constant c gauge invariant? Hint: You can assume that X
is complete, for simplicity (which allows you to mimic what we just did on the
previous example). See the remark after Example 30 (p. 57), and justify it.

Example 33

Consider again the Hamiltonian SO(3)-space (R6, ω6, SO(3),×) seen in Example
31 (p. 59), and the Hamiltonian H : R6 → R given by

H(x, y) =
‖y‖2

2
+ V(x),

where V : R3 → R is a radial function. Then H is clearly SO(3)-invariant. But
integral curves of X H have the form (γ, γ̇) : I → R6, with γ : I → R3 a solution to
Newton’s force equation γ̈(t) = F(γ(t)), where F(x) .

= −∇V(x) is the gradient
of V. Noether’s theorem now says that if γ : I → R3 is a solution to Newton’s
force equation, the angular momentum t 7→ γ(t)× γ̇(t) is constant.

Exercise 43 (Challenge #4 - The Lagrangian World)

Let Q be a smooth manifold and L : TQ→ R be a Lagrangian functiona. For each
(x, v) ∈ T∗Q, define the fiber derivative FL : TQ→ T∗Q by

FL(x, v)w .
=

d
dt

∣∣∣∣
t=0

L(x, v + tw).
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Say that L is hyperregular if FL is a diffeomorphism. If G � Q is an action and L
is G-invariant, show that for each X ∈ g, the Noether charge JX : TQ → R given
by JX(x, v) .

= FL(x, v)X#
x is constant along critical points of the action functional

AL[x] =
∫ b

a
L(x(t), ẋ(t))dt.

Hints: The lifted action G � (TQ, (FL)∗ωcan)) is Hamiltonian, the moment map
is the Noether charge, and integral curves of the Hamiltonian field of L computed
with (FL)∗ωcan project to critical points of the action functional of L. Alternatively,
use that L is hyperregular and send everything to (T∗Q, ωcan) with FL and that
Hamilton’s equations for the Legendre transform of L are equivalent to the Euler-
Lagrange equations for L. Note that the conclusion still holds if L is not assumed
to be hyperregular. See [38] for more details.

aThe name only means that the domain is TQ, just like when we say that a Hamiltonian on Q
is a function defined on T∗Q.

3.4 Marsden-Weinstein reduction

Let’s revisit the issue with quotients: quotients of symplectic manifolds under sym-
plectic actions do not need to be symplectic, for dimension reasons. But, again, what
exactly is the problem caused by the dimension of the space being odd? Since deriva-
tives comute with pull-backs, and the pull-back map induced by a surjective submer-
sion is injective, whatever 2-form survives in the quotient will be closed. But in odd
dimensions, it will be degenerate. Think of the linear setting:

Exercise 44

Let (V, Ω) be a symplectic vector space, and S ⊆ V be a subspace.

(a) If S is isotropic, Ω survives in the quotient SΩ/S as a symplectic form.

(b) If S is coisotropic, Ω survives in the quotient S/SΩ as a symplectic form.

(c) If S is any subspace, Ω survives in the quotient S/(S ∩ SΩ) as a symplectic
form.

On the above exercise, obviously items (a) and (b) follow from (c), but it still in-
structive to do them. The point here is that S ∩ SΩ is the radical of Ω|S×S, namely,
the kernel of the map S → S∗ induced by Ω, and quotienting out the radical leads to
non-degeneracy in the quotient. Related to dimensions of kernels, are dimensions of
ranges.
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Definition 22

Let M be a smooth manifold and ω ∈ Ω2(M). The rank of ω at x ∈ M is the
dimension of the range of the map Tx M→ T∗x M induced by ωx.

Note that the rank function is lower semicontinuous and, in particular, we see that
symplectic forms have full rank. So, consider the situation where ω has constant rank,
even if not full.

Definition 23

Let M be a smooth manifold and ω ∈ Ω2(M) have constant rank. The radical
distribution of ω is the distribution rad(ω) ↪→ TM given by

rad(ω)x
.
= rad(ωx) = {v ∈ Tx M | ωx(v, ·) = 0}.

The first thing (probably) anyone does when they come across a distribution of
subspaces, is to ask themselves when is it integrable. So, one checks for involutivity
directly: if the manifold M has a constant rank ω ∈ Ω2(M) and X, Y ∈ X(M) are
tangent to rad(ω), we may use Cartan’s homotopy formula together with the identity
mentioned in the hint for Exercise 25 (p. 41), and ιXω = ιY ω = 0, to compute:

ι[X,Y ]ω = LX(ιY ω)− ιX(LY ω)

= LX(ιY ω)− ιX(ιY(dω) + d(ιY ω))

= −dω(X, Y).

Proposition 11

Let M be a smooth manifold and ω ∈ Ω2(M) have constant rank. Then rad(ω)
is integrable if and only if dω annihilates rad(ω) — which in particular happens
when ω is closed.

This motivatives the following definition:

Definition 24

Let M be a smooth manifold. A 2-form ω ∈ Ω2(M) is called pre-symplectic if it
closed and has constant rank. We’ll say that the pair (M, ω) is a pre-symplectic
manifold. The radical foliation Fω of (M, ω) consists of the leaves of rad(ω)
and, we say that Fω is simple if the quotient leaf space M/Fω has the structure
of a smooth manifold for which the projection πω : M → M/Fω is a surjective
submersion.
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Example 34

(1) Let (M, ω) be a symplectic manifold. Then it is obviously pre-symplectic,
rad(ω) is trivial, and Fω consists of points, so M/Fω is just M itself.

(2) Consider the vector space R2n+r = Rn×Rn×Rr and define ω2n,r ∈ Ω2(R2n+r)
by assigning to each tangent space to R2n+r the skew-symmetric bilinear map
Ω2n,r : R2n+r ×R2n+r → R given by

Ω2n,r
(
(x, y, z), (x′, y′, z′)

) .
= 〈x, y′〉 − 〈x′, y〉,

where 〈·, ·〉 is the standard Euclidean inner product in Rn. Then ω2n,r is pre-
symplectic, we have that rad(ω2n,r)(x,y,z)

∼= Rr, and the leaf of Fω2n,r passing
through (x, y, z) is {(x, y)} ×Rr. The quotient R2n+r/F2n,r is just (R2n, ω2n).

Exercise 45

Let (V, Ω) be a pre-symplectic vector space. Show that V admits a basis

B= (e1, . . . , en, f1, . . . , fn, h1, . . . , hr)

such that for all i, j = 1, . . . , n and k, ` = 1, . . . , r we have

Ω(ei, ej) = Ω( fi, f j) = Ω(ei, hk) = Ω( f j, hk) = Ω(hk, h`) = 0 and Ω(ei, f j) = δij.

Or, in other words, the matrix of Ω relative to B is −J2n ⊕ 0r. The number r is
intrinsic to (V, Ω), identify it. You can call this B a pre-Darboux basis.

The fact that in the two previous examples the leaf spaces turned out to be sym-
plectic was not a coincidence.

Proposition 12

Let (M, ω) be a pre-symplectic manifold with simple radical distribution. Then
M/Fω has a unique symplectic structure ω̃ ∈ Ω2(M/Fω) such that (πω)∗ω̃ = ω.

Proof: Given any point x ∈ M, denote by [x] the leaf of Fω passing through x. If
πω : M → M/Fω is the quotient projection, as before, consider now the derivative
d(πω)x : Tx M → T[x](M/Fω). By definition of the leaf space, we have that its kernel
is ker d(πω)x = Tx[x] = rad(ωx). Thus, we get an isomorphism

T[x](M/Fω) ∼= Tx M/rad(ωx),

and so ωx passes to the quotient as a symplectic linear form ω̃x on T[x](M/Fω). This
defines a smooth ω̃ ∈ Ω2(M/Fω), which is non-degenerate and satisfies (πω)∗ω̃ = ω
by construction, and is closed since

0 = dω = d((πω)
∗ω̃) = (πω)

∗(dω̃) =⇒ dω̃ = 0,
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as π∗ω is injective. The condition (πω)∗ω̃ = ω forces such ω̃ to be unique.

Another way to produce symplectic quotients, apart from dealing with pre-sym-
plectic objects, is to explore Hamiltonian actions further. Let (M, ω, G, µ) be a Hamil-
tonian G-space, and take a regular value p ∈ g∗ of µ : M → g∗, so that the inverse
image µ−1(p) is an embedded submanifold of M. Since we’re always assuming that G
is connected, µ is G-equivariant by Proposition 10 (p. 61). Now, the stabilizer Gp acts
on µ−1(p), for if x ∈ µ−1(p), we have

µ(g · x) = µ(x) ◦Ad(g−1) = p ◦Ad(g−1) = p,

so g · x ∈ µ−1(p) as well. Write ιp : µ−1(p) ↪→ M for the inclusion. The pull-back
(ιp)∗ω is surely closed, but as you might expect, not necessarily non-degenerate. All
we have seen so far would come full circle if (ιp)∗ω were pre-symplectic. But it is.

Lemma 4

Let (M, ω, G, µ) be a Hamiltonian G-space and p ∈ g∗ be a regular value of µ.
Then for all x ∈ µ−1(p), we have that

rad((ιp)
∗ω)x = Tx(Gp · x),

so that dim rad((ιp)∗ω)x = dim Gp is independent of x, and thus (µ−1(p), (ιp)∗ω)
is pre-symplectic.

Proof: Let’s use the definition of radical with the result of Proposition 9 (p. 61) to
compute

rad((ιp)
∗ω)x = Tx(µ

−1(p)) ∩ (Tx(µ
−1(p))ωx

= ker dµx ∩
(
(Tx(G · x))ωx

)ωx

= ker dµx ∩ Tx(G · x)
= Tx(Gp · x),

as required. The very last step requires a quick explanation: if v ∈ Tx(G · x), then
v = (X#

M)x for some X ∈ g and, with this in place, v ∈ ker dµx if and only if (X#
g)p = 0

by Proposition 10 (p. 61) — which is equivalent to having X ∈ gp by item (b) of
Exercise 33 (p. 51), meaning that v ∈ Tx(Gp · x).

Theorem 18 (Marsden-Weinstein, Meyer)

Let (M, ω, G, µ) be a Hamiltonian G-space and p ∈ g∗ be a regular value for µ. As-
sume that the action Gp � µ−1(p) is free and proper. Then the quotient µ−1(p)/Gp
has a unique symplectic form ω◦ characterized by the relation π∗ω◦ = (ιp)∗ω,
where π : µ−1(p)→ µ−1(p)/Gp is the quotient projection. We call (µ−1(p)/Gp, ω◦)
the reduction of (M, ω) to level p.

Page 67



OSU — SYMPLECTIC GEOMETRY CRASH COURSE IVO TEREK

Proof: The space µ−1(p)/Gp is a smooth manifold because the action is assumed to
be free and proper. Now the 2-form (ip)∗ω in µ−1(p) is pre-symplectic and the leaves
of radical foliation F(ιp)∗ω are precisely the Gp-orbits. We are done, by Proposition 12
(p. 66).

(M, ω)

(µ−1(p), (ιp)∗ω)

(µ−1(p)/Gp, ω◦)

ιp

π

Remark. When the Lie group G is abelian, the adjoint representation is trivial, so we
have that G = Gp for all p ∈ g∗. And, for p = 0, we have that G0 = G. In this case,
µ−1(0)→ µ−1(0)/G turns out to be a principal G-bundle.

Just like what happened with Noether’s theorem, we again see a strong theorem
with a very simple proof. In practice, one wants to explicitly describe the reduced
form ω◦. Let’s see how one can usually try to do this in practice.

Example 35

(1) Let (M, ω) be a symplectic manifold, and H : M → R be a smooth function
for which the field X H is complete. We have seen that (M, ω, R, µ) is a Hamil-
tonian R-space, where µ = H and the action is given by Hamiltonian flows.
So, for each e ∈ R, each quotient Σe/R of an energy level which turns out to
be a manifold automatically inherits a symplectic structure ω◦. Explicitly, if
L ∈ Σe/R, and ṽ, w̃ ∈ TL(Σe/R), we have

(ω◦)L(ṽ, w̃) = ωx(v, w),

where x ∈ L and v, w ∈ TxΣe are such that dπx(v) = ṽ, and similarly for w̃ —
where π : Σe → Σe/R is the quotient projection. And as a quick sanity check,
do note that dim(Σe/R) = dim M− 2 is even.

(2) Consider the circular Hamiltonian action of S1 on Cn+1 ∼= R2n+2, equipped
with ω2n+2 — we have seen that the moment map is µ : Cn+1 → (iR)∗ given
by

µ(z) = −‖z‖
2

2
.

In particular, µ−1(−1/2) = S2n+1. Hence the quotient CPn = S2n+1/S1 inher-
its a symplectic form ωFS ∈ Ω2(CPn) — called the Fubini-Study form. There
is something slightly deeper going on here, in the following way: S2n+1 inher-
its a Riemannian metric from R2n+2 and the S1-action consists of isometries,
so there is a unique Riemannian metric gFS (called the Fubini-Study metric)
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on the quotient S2n+1/S1 for which the quotient projection S2n+1 → S2n+1/S1

is a Riemannian submersion (see [32] for more on those). With the natural
complex structure J that CPn has, the relation gFS = ωFS(·, J·) holds, making
CPn a Kähler manifold.

(3) Let (M,−dλ) be an exact symplectic manifold, and G � M be a Lie group ac-
tion preserving λ – hence automatically Hamiltonian by item (3) of Example
30 (p. 57). Assume that 0 ∈ g∗ is a regular value of the moment map µ and
that we are under the conditions of Theorem 18 (p. 67). In this case, the re-
duction of (M,−dλ) to level 0 is called the Marsden-Weinstein reduction of
(M,−dλ) and it is denoted by M//G. Let’s show that the reduced symplectic
structure (−dλ)◦ on M//G is also exact. Write ι : µ−1(0) ↪→ M for the inclu-
sion, π : µ−1(0) → M//G for the projection, and consider ι∗λ ∈ Ω1(µ−1(0)).
Clearly ι∗λ is G-invariant, but we also have that if x ∈ µ−1(0) and v ∈ ker dµx
satisfies dπx(v) = 0, then (ι∗λ)x(v) = 0, since x ∈ µ−1(0) says that λx
annihilates Tx(G · x) = ker dπx. Hence there is λ◦ ∈ Ω1(M//G) such that
π∗(λ◦) = ι∗λ. Once this is in place, we have that

π∗((dλ)◦) = ι∗(dλ) = d(ι∗λ) = d(π∗λ◦) = π∗(dλ◦),

and since π being a surjective submersion implies that π∗ is injective, it fol-
lows that (−dλ)◦ = −dλ◦ is exact.

(4) Let (M, ω, G, µ) be a Hamiltonian G-space under the conditions of Theorem 18
(p. 67), p ∈ g∗ be a regular value of the moment map µ, and H : M → R be a
G-invariant Hamiltonian. By G-invariance of H, we know that the restriction
H|µ−1(p) : µ−1(p) → R passes to the quotient as a function Hp : µ−1(p)/Gp,
namely, satisfying Hp ◦ π = H|µ−1(p), where π : µ−1(p) → µ−1(p)/Gp is the
quotient projection. But there’s more to it. First, we claim that the Hamiltonian
field X H is tangent to µ−1(p) along its points. More precisely, if x ∈ µ−1(p)
and γ is the integral curve of H starting at x, we have that

dµx(X H|x) =
d
dt

∣∣∣∣
t=0

µ(γ(t)) = 0

by Noether’s theorem, so X H|x ∈ Txµ−1(p). Next, G-invariance of H and ω
also gives us that d(Lg)x(X H|x) = X H|g·x, since for each v ∈ Tx M and g ∈ G
we know that H ◦ Lg = H implies dHg·x ◦ d(Lg)x = dHx, so evaluating at v
gives

ωx(X H|x, v) = ωg·x(X H|g·x, d(Lg)x(v)) = ωx(d(Lg−1)g·xX H|g·x, v).

Thus X H|x = d(Lg−1)g·xX H|g·x implies that d(Lg)x(X H|x) = X H|g·x, as claimed.
Hence there is a vector field X̃ ∈ X(µ−1(p)/Gp) such that dπ ◦ X H = X̃ ◦ π,
and we claim that this field X̃ is nothing more than X Hp , computed using the
reduced symplectic form ω◦. Let’s check this, identifying ω with its pull-back
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and H with its restriction, both to µ−1(p). Again, we’ll use that π∗ is injective,
so that

π∗ιX̃ω◦ = ιX H(π
∗ω◦) = ιX H ω

= dH = d(Hp ◦ π)

= dHp ◦ dπ = π∗(dHp)

= π∗ιX Hp
ω◦,

meaning that ιX̃ω◦ = ιX Hp
ω◦ finally yields X̃ = X Hp due to non-degeneracy

of ω◦.

Exercise 46 (Passing differential forms to action quotients)

Let’s clarify one part of the argument used in item (3) of the previous example.
Assume that M is a smooth manifold, G � M is a free and proper Lie group
action, with quotient projection π : M→ M/G, and α ∈ Ωk(M) is:

• G-invariant, and;

• G-horizontal, in the sense that for all x ∈ M and v1, . . . , vk ∈ Tx M, we have
that αx(v1, . . . , vk) = 0 whenever there is some i such that vi ∈ ker dπx.

Show that there is a unique α̃ ∈ Ωk(M/G) such that π∗α̃ = α.

Hint: there is only one choice of definition for α̃, but you need to check that the
expression you’re forced to consider is indeed well-defined; do the case k = 1 first
to get intuition, and then telescope a certain difference for the general case.

Remark: note that requiring α to be G-horizontal is to be expected, as we have
the isomorphism TG·x(M/G) ∼= Tx M/ker dπx — G-invariance alone is not strong
enough to ensure α survives in M/G.

In particular, reducing Hamiltonians on phase spaces is a useful technique for re-
ducing the number of degrees of freedom of a mechanical system.

Example 36 (Mechanics on the plane)

Consider, in R2, the motion of a particle with mass m > 0 under the action of a
potential function V : R2 → R. Such motion is described by the integral curves of
the Hamiltonian field of the total energy H : T∗R2 ∼= R4 → R given by

H(x, y, px, py) =
1

2m
(p2

x + p2
y) + V(x, y).

Assume that V has rotational symmetry, that is, that V is invariant under the
action S1 � R2 given by rotation. The action S1 � R4 given by cotangent lifts
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is Hamiltonian with moment map µ : R4 → R given by

µ(x, y, px, py) = −ypx + xpy.

Indeed, by item (3) of Example 30 (p. 57), and identifying Lie(S1) = iR ∼= R ∼= R∗

by setting µ(x, y, px, qy)
.
= µ(x, y, px, py)(1), we just have that

µ(x, y, px, py) = (px dx + py dy)|(x,y)(−y∂x|(x,y) + x∂y|(x,y)) = −ypx + xpy,

as claimed. It’s easy to see that every a ∈ R, a 6= 0, is a regular value for µ.
Using polar coordinates x = r cos θ and y = r sin θ, a straightforward computation
shows that

px = pr cos θ − pθ sin θ

r
and py = pr sin θ +

pθ cos θ

r
,

so that

H(r, θ, pr, pθ) =
1

2m

(
p2

r +
p2

θ

r2

)
+ V(r) and µ(r, θ, pr, pθ) = pθ.

By Noether’s theorem, the angular momentum pθ is constant along the path the
particle follows. Given a ∈ R, a 6= 0, the level set µ−1(a) consists of all possible
initial conditions for the particle for which the angular momentum is constant and
equal to a. Only the coordinates r and pr survive in the quotient µ−1(a)/S1, and
the reduced Hamiltonian is Ha : µ−1(a)/S1 → R given by

Ha(r, pr) =
p2

r
2m

+ Veff(r),

where Veff : µ−1(a)/S1 → R given by

Veff(r) =
a2

2mr2 + V(r)

is the effective potential.

Remark. Interesting dynamics are also induced by very complicated potentials. One
example is the Henon-Heiles potential VHH,λ : R2 → R, given by

VHH,λ(x, y) =
1

2m
(x2 + y2) + λ

(
x2y− y3

3

)
.

Moving through energy levels, one even has chaotic behavior. It’s a very frequent
illustrative example in two-dimensional dynamics, usually studied with numerical
techniques.
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Exercise 47 (Mechanics on the sphere)

Consider, in the sphere S2, the motion of a particle with mass m > 0 under the
action of a potential function V : S2 → R. Such motion is described by the integral
curves of the Hamiltonian field of the total energy H : T∗S2 → R, given by

H(x, y, z, px, py, pz) =
1

2m
(p2

x + p2
y + p2

z) + V(x, y, z).

Of course, we have (by unwittingly identifying TS2 ∼= T∗S2) that

T∗S2 = {(x, y, z, px, py, pz) ∈ T∗R3 | x2 + y2 + z2 = 1 and xpx + ypy + zpz = 0}.

Consider the circular action S1 � S2, as in item (2) of Example 26 (p. 49), and
assume that V is S1-invariant — which is to say that V only depends on z. Take
spherical coordinates

x = cos θ cos φ, y = sin θ cos φ, and z = sin φ,

where θ ranges from 0 to 2π and φ from −π/2 to π/2.

(a) Show that

px = −pθ
sin θ

cos φ
− pφ cos θ sin φ, py = pθ

cos θ

cos φ
− pφ sin θ sin φ,

and pz = pφ cos φ.

(b) Conclude that

H(θ, φ, pθ, pφ) =
1

2m

(
p2

θ

cos2 φ
+ p2

φ

)
+ V(φ) and µ(θ, φ, pθ, pφ) = pθ.

By Noether, pθ is again a conserved quantity.

(c) Show that for each regular value a ∈ R of µ, the reduced Hamiltonian and the
effective potential Ha, Veff : µ−1(a)/S1 → R are given by and related via

Ha(φ, pφ) =
p2

φ

2m
+ Veff(φ) and Veff(φ) =

a2

2m cos2 φ
+ V(φ).

Exercise 48 (Mechanics on the cylinder)

Consider, in the sphere S1 × R, the motion of a particle with mass m > 0 un-
der the action of a potential function V : S1 ×R → R. Again, such motion will
be described by the integral curves of the Hamiltonian field of the total energy
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H : T∗(S1 ×R)→ R, given by

H(x, y, z, px, py, pz) =
1

2m
(p2

x + p2
y + p2

z) + V(x, y, z),

and we may write (again with the aid of the metric) that

T∗(S1 ×R) = {(x, y, z, px, py, pz) ∈ T∗R3 | x2 + y2 = 1 and xpx + ypy = 0}.

Take cylindrical coordinates x = r cos θ, y = r sin θ, z = z.

(a) Show that pθ = −px sin θ + py cos θ, and conclude that in such coordinates,
the Hamiltonian is given by

H(θ, z, pθ, pz) =
1

2m
(p2

θ + p2
z) + V(θ, z).

Note we did not impose conditions on V, nor considered symmetries yet.

(b) Consider the action S1 � S1×R given by rotation and assume that the poten-
tial V is S1-invariant, which is to say that it depends only on z. Show that the
moment map µ : T∗(S1 ×R) → R is given by µ(θ, z, pθ, pz) = pθ. Conclude
that for each regular value a ∈ R of µ, we have

Ha(z, pz) =
p2

z
2m

+ Veff(z), with Veff(z) =
a2

2m
+ V(z)

on the quotient µ−1(a)/S1.

(c) Consider the action R � S1 × R given by translations and assume that the
potential V is R-invariant, which is to say it depends only on θ. Show that the
moment map µ : T∗(S1 ×R) → R is given by µ(θ, z, pθ, pz) = pz. Conclude
that for each regular value a ∈ R of µ, we have

Ha(θ, pθ) =
p2

θ

2m
+ Veff(θ), with Veff(θ) =

a2

2m
+ V(θ)

on the quotient µ−1(a)/R.

We’ll conclude the discussion with one last “fake” example:

Example 37

Let’s see that what would be a linear Marsden-Weinstein quotient is in fact trivial.
Namely, let (V, Ω) be a symplectic vector space, and let ω be the constant sym-
plectic form, which assigns to each tangent space TxV ∼= V, ωx

.
= Ω itself. We

have the obvious evaluation action Sp(V, Ω) � V. Recall that the Lie algebra

sp(V, Ω) = {ψ ∈ gl(V) | Ω(ψ(x), y) + Ω(x, ψ(y)) = 0, for all x, y ∈ V}
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consists of the so-called Hamiltonian operators. Important examples come as the
velocities of curves of symplectic transvections, namely, τ̇v given by

τ̇v(x) =
d

dλ

∣∣∣∣
t=0

τλ,v(x) =
d

dλ

∣∣∣∣
λ=0

(x + λΩ(x, v)v) = Ω(x, v)v,

for any non-zero v ∈ V. Now, given ψ ∈ sp(V, Ω), we have (ψ#)x = ψ(x) be-
cause the original action is linear. Given any (x, v) ∈ TV, we have the relation
ωx((ψ#)x, v) = Ω(ψ(x), v), so that µ : V → sp(V, Ω)∗ given by

µ
ψ
c (x) =

1
2

Ω(ψ(x), x)

does satisfy d(µψ
c )x = ωx((ψ#)x, ·), using that ψ is Ω-skew. If x ∈ µ−1(0), then

µτ̇v
c (x) = 0 leads to Ω(x, v)2 = 0 for all v ∈ V, so x = 0 from non-degeneracy

of Ω. But here a disaster happens: µc is not a comoment map, but instead is an
anti-Poisson map. On one hand we have

{µψ1
c , µ

ψ2
c }ω(x) = ωx((ψ

#
1)x, (ψ#

2)x) = Ω(ψ1(x), ψ2(x))

and on the other hand

µ
[ψ1,ψ2]
c (x) =

1
2

Ω([ψ1, ψ2](x), x)

=
1
2
(Ω(ψ1ψ2(x), x)−Ω(ψ2ψ1(x), x))

= −Ω(ψ1(x), ψ2(x)).

For more on symplectic reductions, see [13] and [26].
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Where to go from here?

Now you have the basic Symplectic Geometry kit needed to move on with your
mathematical life. Here are some topics you can try to explore next (perhaps in no
particular order).

Symplectic Topology: We have seen that if an even-dimensional compact manifold is
to admit a symplectic form, then all even degree de Rham cohomology spaces
must be non-trivial, and the manifold has to be orientable — but those are not
the only obstructions (S2× S4 is one possible witness). This raises the question of
whether is there a complete obstruction. In dimension 2, the complete criterion
is just orientability. In dimension 4, things already get much more complicated,
and conditions must be imposed on the Seiberg-Witten invariants of the mani-
fold (generally speaking, topology of 4-manifolds is a very complicated subject).
In higher dimensions, some information is certainly encoded on the cohomology
ring of the classifying space BSp2n(R) (via characteristic classes), but it seems
not much is known about it. On the other hand, every symplectic manifold car-
ries an almost-complex structure, which is compatible with ω, but not integrable
in general — and there are also complex and almost-complex manifolds which
carry no symplectic structure. In fact, given any group described with finitely
many generators and relations is the fundamental group of a four-dimensional
compact symplectic manifold. More on these relations between symplectic and
complex geometry leads us to the next topic.

Some references: [3], [18], [28], [37], [39].

Kähler Geometry: It is the intersection of Riemannian geometry, complex geometry,
and symplectic geometry. In the linear setting, we can say that a Kähler vector
space is a quadruple (V, Ω, J, g), where Ω is a symplectic structure, J is an al-
most complex structure which is also a symplectomorphism, and g = Ω(·, J·) is
an inner product on V. We’ll say that (Ω, J, g) is a compatible triple for V. A
Kähler basis is a basis B = (e1, . . . , en, Je1, . . . , Jen) which is both Darboux and
orthonormal. If S ⊆ V is a subspace, then J[SΩ] = S⊥ holds. On the smooth set-
ting, we say that a Kähler manifold is a quadruple (M, ω, J, g) where (ω, J, g) is
a field of compatible triples on the tangent spaces to M, with ω closed and J inte-
grable. This turns out to be equivalent to requiring a M to be a complex manifold
equipped with a hermitian metric (i.e., a Riemannian metric for which J∗g = g)
such that ∇J = 0, where ∇ is the Levi-Civita connection. One can talk about
things such as Lagrangian submanifolds, minimal and totally geodesic subma-
nifolds, complex submanifolds, holomorphic curvature, and much more. Being
complex manifolds, one can talk about complex differential forms of some bi-
degree (k, `) on any Kähler manifold, and talk about the Dolbeaut cohomology
spaces Hk,`

∂
(M) — in particular, the symplectic form ω itself defines a Dolbeaut

class [ω] ∈ H1,1
∂
(M). Kähler manifolds are also thoroughly studied in Algebraic

Geometry, appearing very prominently as submanifolds of complex projective
spaces.

Some references: [5], [19], [31], [45], etc.
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Geometric Quantization: A quantization procedure consists in passing from a clas-
sical description of a physical system, to a quantum description. For exam-
ple, if Q is the configuration space for a classical mechanical system and T∗Q
is the phase space of positions and momenta, classical observables (by which
we mean “physical quantities”) are simply functions f : T∗Q → R, which take a
state (x, p) and return the value f (x, p) of the physical quantity represented by
f when the system is at state (x, p) (for example, the energy of the system when
it is at said state). In the quantum setting, measurements of physical quantities
— now understood as quantum observables — only give us statistical distribu-
tions of possible values instead of a determined value. The spectrum of such
values is encoded as the mathematical spectrum of a symmetric operator on a
complex Hilbert space, which will now play the role of the quantum state space.
Namely, symmetric operators have real eigenvalues, and this is perhaps the first
motivation for the use of functional analysis tools in the study of quantum me-
chanics. However, is it possible that two distinct classical descriptions give rise
to the same quantum description under quantization, and so each such classi-
cal description is called a classical limit. In any case, T∗Q carries its standard
symplectic structure ωcan, and one might wonder what this becomes after quan-
tization. Since symplectomorphisms should naturally correspond to unitary op-
erators (because both preserve the structure of whatever space they’ll act on)
and the Poisson bracket of two classical observables should correspond to the
commutator of the corresponding quantum observables, one can formulate the
quantization problem in terms of category theory, by trying to find a functor from
the core of symplectic category to the core of the category of Hilbert spaces. It
turns out that imposing even weak assumptions on the spaces considered (moti-
vated by the behavior of Schrödinger’s equation) prohibits the existence of such
a functor (this is called Van Hove’s theorem). The next keyword, then, is pre-
quantization. Again, this has more than one possible formulation. One can
say that a prequantization of a symplectic manifold (M, ω) with integral class
[ω] is a (complex) Hermitian line bundle (L, 〈·, ·〉)→ M with a U(1)-connection
∇ : X(M)× Γ(L)→ Γ(L) parallelizing 〈·, ·〉 and satisfying R∇ = ω (in the sense
that for all X, Y ∈ X(M) and ψ ∈ Γ(L), the relation R∇(X, Y)ψ = ω(X, Y)ψ
holds) — taking the associated Hilbert space to be the space of (suitably nor-
malized) L2-sections of L (to be thought of as wavefunctions), one obtains a
(pre)quantum description satisfying most of the Dirac’s axioms for quantization
procedures.

Some references: [2], [16], [40], [43], etc.

Contact Geometry: A contact manifold is a pair (M, Σ), where Σ ↪→ TM is a non-
integrable distribution of hyperplanes — called a contact distribution. Up to a
non-zero functional multiple, choosing Σ amounts to choosing a non-vanishing
1-form α ∈ Ω1(M) such that Σ = ker α and dαx is non-degenerate on Σx, for all
x ∈ M — then α is called a contact form, and one often writes (M, α) instead
of (M, Σ). Darboux’s theorem implies that the dimension of a contact manifold
must be odd, and then non-degenerability can be rephrased as α ∧ (dα)∧n 6= 0.
The Reeb field of (M, α) is the unique vector field ξ ∈ X(M) satisfying α(ξ) = 1
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and dα(ξ, ·) = 0 (the latter condition does not contradict non-degenerability of
dα on Σ because ξ is transverse to Σ, not tangent). This field helps control the
geometry of (M, α), as Lξα = 0 by Cartan’s homotopy formula. A diffeomor-
phism between contact manifolds preserving the contact forms is called a con-
tactomorphism. One factory of examples comes from symplectic geometry: if
(M,−dλ) is an exact symplectic manifold, then (M ×R, π∗λ + dt) is a contact
manifold, where π : M ×R → M and t : M ×R → R are the projections. On
the other hand, if (M, α) is a contact manifold, then (M ×R, d(etα)) is a sym-
plectic manifold. The contact analogues of Lagrangian submanifolds are called
Legendrian submanifolds. In summary, contact geometry is the natural odd-
dimensional analogue of symplectic geometry, with applications in differential
equations, control theory, geometric quantization, among others.

Some references: [10], [26], [29], etc.

Symplectic Connections: Given a symplectic manifold (M, ω), a symplectic connec-
tion is a torsionfree connection ∇ which parallelizes ω. If S is any tensor field
of type (1, 2), and we define a connection ∇′ by ∇′XY = ∇XY + SXY , then a
very short computation shows that ∇′ is symplectic if and only if the trilinear
map (X, Y , Z) 7→ ω(SXY , Z) is fully symmetric; since the difference of any two
connections is a tensor, we conclude that the space of symplectic connections
on (M, ω) is an affine space whose translation space is Γ(T∗M�3). This is very
different from what happens in Riemannian geometry, where a metric uniquely
determines its Levi-Civita connection. It is not possible to make a “canonical”
choice of symplectic connection without having extra structure on the manifold
(e.g., being Kähler, pseudo-Kähler, or a symmetric symplectic space). Gener-
ally, the Ricci endomorphism r∇ of a symplectic connection (characterized by
Ric∇(X, Y) = ω(X, r∇(Y))) carries relevant geometric information (even though
what would be the “scalar curvature” vanishes as ω is skew), and one usu-
ally looks for the so-called preferred connections, satisfying the cyclic identity
(∇Xr∇)(Y , Z)+ (∇Yr∇)(Z, X)+ (∇Zr∇)(X, Y) = 0. Such connections also have
a variational characterization, and this entire theory has some links with geomet-
ric quantization. Symplectic connections are also useful in the study of symplec-
tic Lie groups, that is, Lie groups equipped with left-invariant symplectic forms.

Some references: [6], [7], [9], [12], etc.

Mirror Symmetry: Briefly, a Calabi-Yau manifold is a compact and Ricci-flat Käh-
ler manifold with vanishing first Chern class. Such manifolds are considered in
String Theory, where point-like particles are treated as one-dimensional strings,
and spacetimes have extra “hidden” dimensions. Mirror symmetry essentially
discusses when two given Calabi-Yau manifolds yield the “same” physical the-
ory, even though they might have different geometries. This is a relatively recent
area of research in mathematical physics (from roughly around the 90’s). Im-
portant tools and questions indeed come from symplectic geometry. Part of the
challenge seems to be making the aforementioned equivalence mathematically
precise. One such attempt is called Homological mirror symmetry (also known
as Kontsevich’s conjecture) — it discusses the so-called Floer homology: one

Page 77



OSU — SYMPLECTIC GEOMETRY CRASH COURSE IVO TEREK

defines the Floer cochain groups as certain modules generated by transversal
intersections of Lagrangian submanifolds of a given symplectic manifold, dual-
izes, and computes the homology of the resulting chain complex. The Fukaya
category of a symplectic manifold has Lagrangian submanifolds as objects, and
chain groups as morphisms. Understanding all of this requires a deep knowl-
edge not only of symplectic geometry, but also of algebraic geometry, algebraic
topology, category theory and, to some extent, actual Physics.

Some references: [3], [4], [22], etc.

Toric manifolds and Delzant polytopes: A toric manifold is simply a Hamiltonian
Tk-space for which the action is effective. The Atiyah-Guillemin-Sternberg con-
vexity theorem says that the set of fixed points of the action on a compact and
connected toric manifold is a finite union of connected symplectic submanifolds,
the moment map is constant on each submanifold, and the image of the mo-
ment map equals the convex hull of those values (inside the the dual Lie algebra
t∗ ∼= Rk of Tk). A Delzant polytope is a polytope in Rk such that for which
each vertex is the intersection of exactly n edges, and for each vertex we can find
vectors v1, . . . , vk ∈ Zk along those edges which form a basis for Zk. Delzant’s
theorem says that there is a bijective correspondence between toric manifolds
and Delzant polytopes — namely, the correspondence takes a toric manifold to
the image of its moment map. So, given a toric manifold, the associated Delzant
polytope actually encodes all of its geometry.

Some references: [13], [28].
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Action
field (of a Lie group action), 50
integral (of a Hamiltonian), 24

Angular momentum, 60
Annihilator ideal (of a submanifold), 42

Canonical
symplectic prototype, 1
symplectic structure, 16

Cartan’s homotopy formula, 29
Casimir function, 44
Chevalley-Eilenberg cohomology, 55
Christoffel symbols, 28
Coadjoint action, 61
Cogeodesic flow, 27
Comoment map, see also moment map
Conormal bundle, 34
Constant of motion, 25
Cotangent

bundle, 16
coordinates, 16
lift, 20
space, 16

Darboux
basis, 5
coordinates, 12

Diagonal (of a manifold), 33

Effective potential, 71
Energy

function, 30
functional (on a Riemannian

manifold), 29
surface, 25

Euler vector field, 44
Extended phase space, 24

Fubini-Study form, 68
Fundamental vector field, see also

action field

Geodesic field, 28

Hamilton’s equations, 23

Hamiltonian
G-space, 55
action, 55
flow, 25
operator, 11
system, 25
vector field, 22, 30, 44

Harmonic oscillator, 25
Henon-Heiles potential, 71

Integrable system, 43
Isotopy, 34

Killing vector field, 62
Kirillov-Kostant-Souriau form, 62

Lagrangian function, 63
Levi-Civita connection, 28
Lie-Poisson structure, 47, 54, 60, 61
Liouville form, see also tautological

form
Lorentz force, 28
Luneburg relations, 9

Magnetic
geodesic, 28
potential, 29
symplectic form, 18

Maslov index, 11
Moment map, 55
Moser’s trick, 34

Nambu
bivector, 46
bracket, 46

Noether charge, 64
Noether’s theorem, 62
Normal bundle (of a submanifold), 37

Orbit
map, 48
space, 48

Perfect pairing, 5
Poisson

action, 53
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bivector, 44
bracket, 40, 44
manifold, 44

Pre-symplectic manifold, 65

Radical
distribution, 65
foliation, 65

Riemannian submersion, 69

Stabilizer algebra, 51
Subspace

coisotropic, 3
isotropic, 3
Lagrangian, 3
symplectic, 3

Symplectic
complement, 2
connection, 37

gradient, see also Hamiltonian
vector field

group action, 52
linear map, 6
manifold, 14
transvection, 10
vector bundle, 38
vector field, 30
vector space, 1

Symplectomorphism
(between manifolds), 18
(between vector spaces), 6
group

(of a manifold), 18
(of a vector space), 9

Tautological form, 16
Time-dependent vector field, 35
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