
PHYSICAL MEASUREMENTS VIA INTEGRATION

LEO GOLDMAKHER

ABSTRACT. Many physical quantities can be expressed using integrals, thereby reducing many questions about
the world to questions about math. In this note we’ll focus on three frequently occurring examples of this: area,
volume, and length.

1. AREA

Recall that, by definition,
∫ b

a

f(x) dx is the area between f(x), the x-axis, and the vertical lines a and b (with

the convention that area below the x-axis are counted negatively). But this isn’t the end of the story: given
the same region, there are often several different ways to represent its area as an integral. Let’s look at a nice
example: the circle.

1.1. Area of a circle. Say we wanted to find the area of a circle of radius R. There are at least three ways to
use integration to do so.

Method 1: The circle itself isn’t a function (it fails the ‘vertical line test’), but a semicircle is: it’s the function

f(x) =
√
R2 − x2.

Here’s a picture:

−R R
x

A typical narrow vertical strip drawn at x has width dx and height
√
R2 − x2, hence has area

√
R2 − x2 dx.

Summing all the different strips yields the total area:

Area of semicircle of radius R =

∫ R

−R

√
R2 − x2 dx.

How do we actually compute this integral? A nice trick is to make a substitution that simplifies the integrand:
writing

x = R sin θ,

we find that
dx = R cos θ dθ.

EXERCISE 1. Using the substitution above, show that∫ √
R2 − x2 dx = R2

∫
cos2 θ dθ.



SOLUTION. Plugging in the trigonometric substitution for x given above, we find∫ √
R2 − x2 dx =

∫ √
R2 − (R sin θ)2 · (R cos θ dθ) =

∫ √
R2 −R2 sin2 θ ·R cos θ dθ

=

∫ √
R2(1− sin2 θ) ·R cos θ dθ

=

∫ √
R2 ·

√
1− sin2 θ ·R cos θ dθ

= R2

∫ √
cos2 θ · cos θ dθ = R2

∫
cos2 θ dθ

EXERCISE 2. Use integration by parts to show that∫
cos2 θ dθ =

1

2
sin θ cos θ +

1

2
θ.

[Hint: sin2 x = 1− cos2 x.]

SOLUTION. Taking u = cos θ and dv = cos θ dθ, we find du = − sin θ dθ and v = sin θ, so the integration by
parts formula yields ∫

cos2 θ dθ = sin θ cos θ +

∫
sin2 θ dθ

= sin θ cos θ +

∫
(1− cos2 θ) dθ

= sin θ cos θ +

∫
dθ −

∫
cos2 θ dθ

= sin θ cos θ + θ −
∫

cos2 θ dθ

Note that we have
∫
cos2 θ dθ on both sides of the equation, and we’re trying to solve for

∫
cos2 θ dθ! Adding

this quantity to both sides and simplifying gives∫
cos2 θ dθ =

1

2
sin θ cos θ +

1

2
θ.

Plugging this in above, we find∫ √
R2 − x2 dx = R2

∫
cos2 θ dθ =

1

2
R2 sin θ cos θ +

1

2
R2θ.

But of course, the antiderivative of
√
R2 − x2 shouldn’t be in terms of θ – it should be in terms of x!

EXERCISE 3. Use the right triangle below to deduce that∫ √
R2 − x2 dx =

1

2
x
√
R2 − x2 + 1

2
R2 sin−1

( x
R

)
.

xR

θ



SOLUTION. Recall that we set x = R sin θ; rewriting this, we have sin θ = x/R, which is where the picture
of the right triangle above comes from. By the Pythagorean theorem, the third side of the triangle must be√
R2 − x2. Thus cos θ =

√
R2−x2

R
. Plugging this in, we obtain∫ √

R2 − x2 dx =
1

2
R2 sin θ cos θ +

1

2
R2θ

=
1

2
R2 · x

R
·
√
R2 − x2
R

+
1

2
R2 sin−1

x

R

=
1

2
x
√
R2 − x2 + 1

2
R2 sin−1

x

R

Finally we can evaluate the definite integral we started with:

EXERCISE 4. Use the above to prove that∫ R

−R

√
R2 − x2 dx =

πR2

2
.

SOLUTION. ∫ R

−R

√
R2 − x2 dx =

1

2
x
√
R2 − x2 + 1

2
R2 sin−1

x

R

∣∣∣∣∣
R

−R

=
1

2
R2 sin−1(1)− 1

2
R2 sin−1(−1) = 1

2
R2π

2
− 1

2
R2
(
−π
2

)
=
πR2

2

Since this represents the area of the semicircle, we deduce the famous formula πR2 for the area of the circle of
radius R.

Method 2: The circle isn’t a function, but we can still draw a picture of it in the plane:

−R
y R

Consider a typical horizontal slice located at height y with tiny thickness dy. What is the length of this slice?
From the Pythagorean theorem we see that the right endpoint is (

√
R2 − y2, y); similarly, the left endpoint is

(−
√
R2 − y2, y). Thus the length of the slice is 2

√
R2 − y2, so its area is 2

√
R2 − y2 dy. Summing together

the areas of all such slices yields the area of the entire circle:

Area of circle of radius R =

∫ R

−R
2
√
R2 − y2 dy.



Now that we’ve set up the area as an integral, we can forget about what the letters represent geometrically and
evaluate the integral. But notice that this is precisely the same integral we’ve already evaluated:

Area of circle of radius R =

∫ R

−R
2
√
R2 − y2 dy = 2

∫ R

−R

√
R2 − y2 dy = 2

∫ R

−R

√
R2 − x2 dx = πR2.

Method 3: Rather than partitioning the circle into straight-line strips, we can split it up into thin circular strips:

−R R
r

dr

2πr

Taking a typical strip of radius r around the origin and thickness dr, we can cut and unfold it into a straight
line of thickness dr and length 2πr; thus, this strip would have area 2πr dr. Summing the areas of all the strips
together produces the area of the circle:

Area of circle of radius R =

∫ R

0

2πr dr.

This integral is much more straightforward than the ones from Methods 1 and 2:∫ R

0

2πr dr = 2π

∫ R

0

r dr = 2π · r
2

2

∣∣∣∣∣
R

0

= 2π
R2

2
− 0 = πR2.

1.2. Exercises.

EXERCISE 5. Consider the diamond shape drawn below:

(a, 0)

(0, b)

(−a, 0)

(0,−b)



(a) Write down an integral that represents the area of the diamond as a sum of horizontal slices. Then
evaluate the integral.

SOLUTION. Let’s draw a picture of the upper right quarter of the diamond; if we figure out the area
of this, we can simply multiply it by 4 to get the area of the entire diamond. We will slice this up into
many thin horizontal slices. A typical slice is pictured below:

(a, 0)

(0, b)

Next, we’ll find the area of our typical slice, and then sum up over all the areas of all the slices. To find
the area of the slice, we need to add some labels to our picture from above:

(a, 0)

(0, b)

(x, y)
x

y

dy

Note that we don’t have to call these x and y; we only did so because it’s traditional to label the co-
ordinates of a point (x, y), and that forces the labels we chose. Once we settled on y for the height,
however, this forces us to call the thickness of the slice dy, since this represents a tiny change in the
height.

Having labelled the diagram, we can now carry out our strategy. The area of the slice at height y is
x dy. Summing all these slices together yields

Area of triangle =

∫ b

0

x dy.

Two important comments on this integral:
• Both x and y are non-constant variables – the higher up we take the slice, the larger y is and the

smaller x is. By contrast, both a and b are constants – they’re not changing throughout the problem.
• As things stand, we cannot evaluate this integral because it’s in terms of two different variables.

So we have to find some way to relate the two variable x and y to one another.
• The fact that the integral is with respect to dy tells you that you want to rewrite the entire integrand

in terms of y. In other words, we need to solve for x in terms of y.



There are (at least) two ways to solve for x in terms of y. One approach is to recognize that the triangle
we’re looking at is similar to the smaller right triangle whose base is our slice. This implies that the
ratios of the sides are equal:

x

a
=
b− y
b

.

A different approach is to notice that the right endpoint of the slice has coordinates (x, y), and that
point lies on the line connecting (a, 0) to (0, b). This line has equation y = − b

a
x + b; in other words,

every point on the line satisfies this equation. In particular, the right endpoint of our slice satisfies this
equation. Using either of these methods, we’re led to discover

x =
a

b
(b− y).

Plugging this back into our integral produces

Area of triangle =

∫ b

0

x dy

=

∫ b

0

a

b
(b− y) dy

=
a

b

∫ b

0

(b− y) dy

=
a

b
(by − 1

2
y2)

∣∣∣∣∣
b

0

=
a

b
(b2 − 1

2
b2) =

1

2
ab.

Since this is 1/4 of the diamond, the area of the diamond must be 4× 1
2
ab = 2ab.

Note that we just used calculus to figure out the formula for the area of a right triangle. This is silly –
there are much easier ways to discover the formula! – but it’s a good illustration of the ideas involved
in finding the area of a general region where simpler approaches are unavailable.

(b) Write down an integral that represents the area of the diamond as a sum of vertical slices. Then evaluate
the integral.

SOLUTION. This is extremely similar to the previous problem, so we just set up the integral and leave
the rest to the reader. First things first: draw a picture of a typical slice and label both the location and
the size of the slice:

(a, 0)

(0, b)

(x, y)

y

x
dx



Since the area of the slice is y dx, we have

Area of triangle =

∫ a

0

y dx.

Since (x, y) lies on the line y = − b
a
x+ b, we deduce

Area of triangle =

∫ a

0

(
− b
a
x+ b

)
dx = − b

a

∫ a

0

x dx+ b

∫ a

0

dx =
1

2
ab

(c) (Optional) Can you find another way to set up an integral representing the area of the diamond?

EXERCISE 6. A standard ellipse is a circle that’s stretched out by some amount horizontally and by some other
amount vertically. Any standard ellipse that’s centered at the origin can be described as the set of points (x, y)
satisfying (x

a

)2
+
(y
b

)2
= 1.

Here’s what the graph of this looks like when a = 2 and b = 1:

(−2, 0) (2, 0)

(0,−1)

(0, 1)

Write down an integral for the area of the illustrated ellipse, and evaluate it. You must explain how the integral
is related to the drawing.

SOLUTION. We figure out the area of 1/4 of the ellipse. We start by drawing a vertical slice at x, of width dx.
Let’s say it has height y.

(2, 0)

(0, 1)

y

x

(x, y)

Since the area of the slice is y dx, we find that the area of the whole region is the sum of all these slice areas:

Area of quarter-ellipse =

∫ 2

0

y dx.

Now we must find a relationship between x and y. Since (x, y) are the coordinates of the top of this slice,
which is located on the ellipse, we deduce that x and y must satisfy the equation of the ellipse:(x

2

)2
+ y2 = 1.



Since the integral is with respect to dx, we need to solve for y:

y =

√
1− x2

4
.

Plugging this in, we have now expressed the area of the entire ellipse as an integral:

Area of ellipse = 4

∫ 2

0

√
1− x2

4
dx = 2

∫ 2

0

√
4− x2 dx.

We recognize this integral from above:
∫ 2

0

√
4− x2 dx is the area of a quarter circle of radius 2. Thus,

Area of ellipse = 2

∫ 2

0

√
4− x2 dx = 2× 1

4
π(22) = 2π.

It’s a good exercise to carry out the same argument for a general ellipse with x-radius a and y-radius b; the area
you should get is πab.

2. VOLUME

It turns out that the ideas above generalize beautifully to finding volumes of three-dimensional solids. We
consider an example.

2.1. Volume of a sphere. Given a solid sphere of radius R. What is its volume? Consider the following
picture:

Rh dh

Consider a thin horizontal slice of the sphere at some height h above the center of the sphere. The slice is
essentially cylindrical, with thickness dh.

EXERCISE 7. Explain why the volume of the slice is π(R2 − h2) dh.

SOLUTION. The slice looks like a cylinder with thickness dh and radius
√
R2 − h2 (by the Pythagorean theo-

rem). Thus the volume of the cylinder is π(
√
R2 − h2)2 dh = π(R2 − h2) dh.

Summing up over all the slices, we obtain the volume of the sphere:

Volume of sphere of radius R =

∫ R

−R
π(R2 − h2) dh

EXERCISE 8. Conclude that the volume of a sphere of radius R is 4
3
πR3.

SOLUTION. We have

Volume of sphere of radius R =

∫ R

−R
π(R2 − h2) dh = π

(
R2h− 1

3
h3
) ∣∣∣∣∣

R

−R

=
4

3
πR3.



Unexpectedly, we can use this formula to derive a formula for the surface area of a sphere. Let S(r) represent
the surface area of the sphere of radius r. Break a solid sphere of radius R up into very thin spherical shells
of thickness dr. Since the shell of radius r has volume S(r) dr, we can find the total volume of the sphere of
radius R:

Volume of sphere of radius R =

∫ R

0

S(r) dr.

But we just figured out above a formula for the volume. Plugging this in, we get

4

3
πR3 =

∫ R

0

S(r) dr.

Now we do something crazy: we’ve been thinking of R as a specific number, but since the above formula is
true for any choice of R, we can think of R as a variable. Differentiating with respect to R, we find

4πR2 =
d

dR

∫ R

0

S(r) dr.

By the Fundamental Theorem of Calculus, the right hand side is simply S(R). In other words, we’ve figured
out that

Surface area of a sphere of radius R = S(R) = 4πR2.

2.2. Exercises.

EXERCISE 9. Consider a right circular cone, i.e. a cone whose base is a circle and whose top vertex lies
directly above the center of the base. Here’s a picture:

R

H

By considering a thin horizontal slice at height h above the base and thickness dh, represent the volume of the
cone as an integral. Then evaluate the integral to find a simple formula for the volume of the cone.

SOLUTION. We start by drawing a typical slice, say, a distance h above the base of the cone (and therefore of
thickness dh) and of radius r:



R

r

h

H

This slice is essentially a cylinder; its volume is πr2 dh. Thus, the volume of the cone is

Volume of cone =

∫ H

0

πr2 dh.

All that remains is to find the relationship between r and h.

Note that in the illustration, the dashed lines outline two similar right triangles: a small one inside of a bigger
one. Using similarity, we have

r

R
=
H − h
H

.

We deduce r = R
H
(H − h), whence

Volume of cone =

∫ H

0

πr2 dh

= π

∫ H

0

(R
H
(H − h)

)2
dh

=
πR2

H2

∫ H

0

(H − h)2 dh

=
πR2

H2
× −1

3
(H − h)3

∣∣∣∣∣
H

0

=
πR2

H2
× 1

3
H3 =

1

3
πR2H.

3. LENGTH

Surprisingly, the same slicing approach can be employed to obtain a formula for the length of a curve. For
example, consider the following picture:



x

y

0 a b

y = f(x)

x

Question: If you walk along the curve y = f(x), starting at a and ending at b, how far have you walked?

Slice the curve into many very short pieces, and zoom in on a typical piece (say, the one I’ve indicated in the
blue box, located at x). If the piece is short enough, it looks like a straight line segment:

dx

Assuming the total horizontal change during this part of the walk is a tiny quantity dx, how long is this piece
of the walk? In other words, how long is the hypotenuse of the right triangle drawn above? If we can figure out
the height, we can use the Pythagorean theorem to find out!

This whole picture should look familiar to you – it’s precisely the same set-up we used to define the derivative
of f at x! Recall that f ′(x) is the slope of the hypotenuse. When the slope of a straight line is m, that means
that if you go over 1, you go up m; if you go over 2, you go up 2m; if you go over 1

3
, you go up 1

3
m. Thus,

since the slope of the line drawn above is f ′(x) and we’re going over dx, we must go up f ′(x) dx. By the
Pythagorean theorem, we find that the length of the hypotenuse is√

(dx)2 +
(
f ′(x) dx

)2
=
√

(dx)2 + f ′(x)2 (dx)2 =

√(
1 + f ′(x)2

)
(dx)2 =

√
1 + f ′(x)2 dx

Summing up the lengths of all these tiny pieces together yields the total length of the walk:

Total length of walk along f from a to b =
∫ b

a

√
1 + f ′(x)2 dx.

3.1. Example. Suppose a piece of string happens to look precisely like the curve f(x) = x3/2 between x = 0
and x = 5:



5

How long is the piece of string? By our formula, the total length is∫ 5

0

√
1 +

(
3

2
x1/2

)2

dx =

∫ 5

0

(
1 +

9

4
x

)1/2

dx =
2

3
· 4
9

(
1 +

9

4
x

)3/2
∣∣∣∣∣
5

0

=
335

27

3.2. Exercises.

EXERCISE 10. Find the length along the curve y = x2/3 from x = 0 to x = 13
√
13.

SOLUTION. The most natural approach is to simply employ the given formula for length: we have

Length =

∫ 13
√
13

0

√
1 +

(
dy

dx

)2

dx =

∫ 13
√
13

0

√
1 +

4

9
x−2/3 dx

The integral is complicated, so guessing seems out of the question. The next line of attack, as always, is
u-substitution. Take u = x2/3, so that x = u3/2 and dx = 3

2

√
u du. Plugging these into the integral and

simplifying yields∫ √
1 +

4

9
x−2/3 dx =

3

2

∫ √
1 +

4

9u
·
√
u du =

3

2

∫ (
u+

4

9

)1/2

du =

(
u+

4

9

)3/2

=

(
x2/3 +

4

9

)3/2

.

This allows us to evaluate our definite integral:

Length =

∫ 13
√
13

0

√
1 +

4

9
x−2/3 dx =

(
x2/3 +

4

9

)3/2
∣∣∣∣∣
13
√
13

0

=

(
13 +

4

9

)3/2

−
(
4

9

)3/2

= 49

ALTERNATIVE (TRICKY) SOLUTION. Note that if we take the curve and move it around without changing its
shape, the length will remain the same. In particular, we can reflect (aka flip) the curve over the diagonal line
y = x without changing the length:

x = y2/3

y = x2/3

13
√
13

13

The new (flipped) curve is the inverse function of the original; everything about it is given by exchanging the
roles of x and y. In particular, its equation is x = y2/3, and we are considering the portion of this where y
is between 0 and 13

√
13. In other words, the length we’re looking for is the same as the length of the curve



y = x3/2 between x = 0 and x = 13. This is precisely the same problem we solved in the example, except
with a different endpoint! Thus,

Length =

∫ 13

0

√
1 +

(
3

2
x1/2

)2

dx =
2

3
· 4
9

(
1 +

9

4
x

)3/2
∣∣∣∣∣
13

0

= 49.

EXERCISE 11. Recall that the equation of a standard ellipse centered at the origin with x-radius a and y-radius
b is (x

a

)2
+
(y
b

)2
= 1.

Figure out an integral representing the perimeter (circumference) of this ellipse. [Don’t worry about evaluating
this integral – no one knows how to do that.]

SOLUTION. As usual, we simplify the problem by looking at a quarter-ellipse (and then multiplying by 4).
Taking a very short slice of the curve, located at x and having a horizontal width of dx:

(a, 0)

(0, b)

x

dx

The length of the segment, however, is not dx, because the segment is tilted. Here’s a picture (having zoomed
in on the segment):

dy

dx

By the Pythagorean theorem, the length of the segment is

Length of segment =
√

(dx)2 + (dy)2 =

√(
1 +

(dy)2

(dx)2

)
(dx)2

=

√
1 +

(
dy

dx

)2

dx

Summing up over all the different segments, we find

Length of quarter-ellipse =

∫ a

0

√
1 +

(
dy

dx

)2

dx.

Note that this is precisely the same formula we obtained earlier, using a slightly different approach.

In any event, all that remains is to determine dy
dx

. Rearranging the equation of the ellipse yields

y =
b

a

√
a2 − x2,

and differentiating produces
dy

dx
=
b

a
× −2x

2
√
a2 − x2

= − bx

a
√
a2 − x2



Plugging this back into our length formula gives

Circumference of ellipse = 4

∫ a

0

√
1 +

(
dy

dx

)2

dx

= 4

∫ a

0

√
1 +

b2

a2
· x2

a2 − x2
dx

=
4b

a

∫ a

0

√
a2

b2
− 1 +

a2

a2 − x2
dx
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