INTEGRATING RATIONAL FUNCTIONS WITH LINEAR DENOMINATOR

LEO GOLDMAKHER

Abstract. A rational function is a function of the form $\frac{f(x)}{g(x)}$, where f and g are polynomials. In this note I'll describe a method for finding the anti-derivative of any rational function with a linear denominator.

1. First examples

Recall that

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

What if we're trying to integrate a more complicated expression, like

$$
\int \frac{2 x^{2}-5 x+3}{x} d x ?
$$

It's not at all obvious (to me, at least) how to guess an anti-derivative of the integrand. A second approach might be u-substitution; taking $u=2 x^{2}-5 x+3$, we find that $d u=(4 x-5) d x$, but plugging this into our integral only makes it more complicated, not less.
But there's a nice trick that simplifies the integral considerably - we separate the fraction into a sum of three simpler fractions. Here's how this looks:

$$
\begin{aligned}
\int \frac{2 x^{2}-5 x+3}{x} d x & =\int \frac{2 x^{2}}{x}-\frac{5 x}{x}+\frac{3}{x} d x \\
& =\int 2 x-5+\frac{3}{x} d x \\
& =x^{2}-5 x+3 \ln |x|+C
\end{aligned}
$$

This idea applies to a much more general situation - in which we have any linear polynomial in the denominator of the fraction - with a few small twists.

2. A MORE COMPLICATED EXAMPLE

Consider the anti-derivative

$$
\int \frac{2 x^{2}-5 x+3}{x-2} d x
$$

How do we deal with this integral? One way is to attempt to imitate the example above and split the fraction into three simpler fractions:

$$
\frac{2 x^{2}-5 x+3}{x-2}=\frac{2 x^{2}}{x-2}-\frac{5 x}{x-2}+\frac{3}{x-2}
$$

Unfortunately, this doesn't simplify the problem. For example, how would we find the anti-derivative of $\frac{2 x^{2}}{x-2}$? There are two standard approaches:
2.1. Polynomial long division. This is a process that works well but is a bit complicated, so I generally don't use it. Thus, rather than explain this approach in detail, I'll merely illustrate how it works on the above example. We have

$$
\begin{aligned}
\frac{2 x^{2}-5 x+3}{x-2} & =\frac{2 x(x-2)+4 x}{x-2}-\frac{5 x}{x-2}+\frac{3}{x-2} \\
& =2 x-\frac{x}{x-2}+\frac{3}{x-2} \\
& =2 x-\frac{(x-2)+2}{x-2}+\frac{3}{x-2} \\
& =2 x-1+\frac{5}{x-2} .
\end{aligned}
$$

As a consequence, we deduce

$$
\begin{aligned}
\int \frac{2 x^{2}-5 x+3}{x-2} d x & =\int 2 x-1+\frac{5}{x-2} d x \\
& =x^{2}-x+5 \ln |x-2|+C
\end{aligned}
$$

Having demonstrated how polynomial long division works, I'll now turn to a method I prefer.
2.2. u-substitution. In our introductory examples we had just a single x in the denominator, and this made the process of finding the anti-derivative relatively simple. Our next example

$$
\int \frac{2 x^{2}-5 x+3}{x-2} d x
$$

is made more complicated because the denominator is $x-2$, rather than a single variable.
The trick is to force the denominator to just be a single variable by using u-substitution. Setting $u=x-2$, we find $d u=d x$, so

$$
\int \frac{2 x^{2}-5 x+3}{x-2} d x=\int \frac{2 x^{2}-5 x+3}{u} d u
$$

The expression on the right hand side is not a nice integral because it's in terms of two different variables, x and u. To make it all in terms of u, we solve for x : since $u=x-2$, we have $x=u+2$. Plugging this into our integral we find

$$
\begin{aligned}
\int \frac{2 x^{2}-5 x+3}{x-2} d x & =\int \frac{2 x^{2}-5 x+3}{u} d u \\
& =\int \frac{2(u+2)^{2}-5(u+2)+3}{u} d u \\
& =\int \frac{2\left(u^{2}+4 u+4\right)-5(u+2)+3}{u} d u \\
& =\int \frac{2 u^{2}+3 u+1}{u} d u \\
& =\int \frac{2 u^{2}}{u}+\frac{3 u}{u}+\frac{1}{u} d u \\
& =\int 2 u+3+\frac{1}{u} d u \\
& =u^{2}+3 u+\ln |u|+C \\
& =(x-2)^{2}+3(x-2)+\ln |x-2|+C .
\end{aligned}
$$

Although this looks like a long computation, conceptually it consists of just four steps:
Step 1. Set u to be the denominator, and solve for both $d x$ and x in terms of u and $d u$.

Step 2. Substituting in, rewrite the original integral exclusively in terms of u and $d u$; the denominator should now just be u.
Step 3. Separate the fraction into a sum of fractions, and integrate these one at a time.
Step 4. Rewrite your answer in terms of just x.

3. AN EVEN MORE COMPLICATED EXAMPLE

Let's try the u-substitution method for a more involved example. Consider

$$
\int \frac{10 x^{3}+4}{3 x+1} d x
$$

Setting $u=3 x+1$, we find (with a bit of algebra) that

$$
d x=\frac{1}{3} d u \quad \text { and } \quad x=\frac{u-1}{3} .
$$

Substituting these into our integral yields

$$
\begin{aligned}
\int \frac{10 x^{3}+4}{3 x+1} d x & =\int \frac{\frac{10(u-1)^{3}}{3^{3}}+4}{u} \frac{1}{3} d u \\
& =\frac{1}{3} \int \frac{\frac{10}{27}\left(u^{3}-3 u^{2}+3 u-1\right)+4}{u} d u \\
& =\frac{1}{3} \int \frac{10}{27} u^{2}-\frac{10}{9} u+\frac{10}{9}+\frac{98}{27 u} d u \\
& =\frac{1}{3}\left(\frac{10}{27} \cdot \frac{1}{3} u^{3}-\frac{5}{9} u^{2}+\frac{10}{9} u+\frac{98}{27} \ln |u|\right)+C \\
& =\frac{10}{243} u^{3}-\frac{5}{27} u^{2}+\frac{10}{27} u+\frac{98}{81} \ln |u|+C \\
& =\frac{10}{243}(3 x+1)^{3}-\frac{5}{27}(3 x+1)^{2}+\frac{10}{27}(3 x+1)+\frac{98}{81} \ln |3 x+1|+C
\end{aligned}
$$

Dept of Mathematics and Statistics, Williams College, Williamstown, MA, USA 01267
Email address: Leo. Goldmakher@williams.edu

