## LINEAR ALGEBRA: LECTURE 2

## LEO GOLDMAKHER

Today we continued exploring which functions  $f: \mathbb{R} \to \mathbb{R}$  satisfy

$$f(x+y) = f(x) + f(y) \qquad \forall x, y \in \mathbb{R}. \tag{1}$$

(Recall the notation from class:  $\forall$  means for every, and  $\in$  means contained in.) In a sense, we're solving the above equation for the function f. This is quite different from what you've done in previous math courses, where you've tried to solve equations for numbers. This is a theme which will recur throughout linear algebra: where previously numbers were 'nouns' and functions were 'verbs' acting on those nouns, in linear algebra the functions themselves will be our nouns.

Last time we discovered a few nice properties of any f satisfying (1). For example:

**Proposition 1.** If f satisfies (1), then  $f(-x) = -f(x) \ \forall x \in \mathbb{R}$ .

**Proposition 2.** If f satisfies (1), then  $f(n) = nf(1) \ \forall n \in \mathbb{Z}$ .

(Here  $\mathbb{Z}$ , coming from the German word *zahl*, denotes the set of all integers.)

These results, as well as some other examples we tried, led us to guess the following.

**Conjecture 3.** If f satisfies (1), then  $f(x) = xf(1) \ \forall x \in \mathbb{R}$ .

We began approaching this conjecture by proving a special case of it.

**Proposition 4.** If f satisfies (1), then  $f\left(\frac{a}{b}\right) = \frac{a}{b}f(1) \ \forall a,b \in \mathbb{Z}$  with  $b \neq 0$ .

*Proof.* If a=0, we're done. Thus, we may assume for the remainder of the proof that neither a nor b is 0.

We split the proof into several cases. First, suppose a and b are both positive. Then we have

$$f(1) = f\left(\frac{1}{b} + \dots + \frac{1}{b}\right)$$

$$= f\left(\frac{1}{b}\right) + f\left(\frac{1}{b} + \dots + \frac{1}{b}\right)$$

$$= f\left(\frac{1}{b}\right) + f\left(\frac{1}{b}\right) + f\left(\frac{1}{b} + \dots + \frac{1}{b}\right)$$

$$= \dots$$

$$= bf\left(\frac{1}{b}\right),$$

from which it follows that

$$f\left(\frac{1}{h}\right) = \frac{1}{h}f(1).$$

Date: February 8, 2016.

Next, we have

$$f\left(\frac{a}{b}\right) = f\left(\frac{1}{b}\right) + f\left(\frac{a-1}{b}\right)$$

$$= f\left(\frac{1}{b}\right) + f\left(\frac{1}{b}\right) + f\left(\frac{a-2}{b}\right)$$

$$= \cdots$$

$$= af\left(\frac{1}{b}\right)$$

$$= \frac{a}{b}f(1)$$

as claimed. This handles the case when both a and b are positive.

If a and b are both negative, a simple trick saves us a lot of work: using what we just proved above, we would have

$$f\left(\frac{a}{b}\right) = f\left(\frac{-a}{-b}\right)$$
$$= \frac{-a}{-b}f(1)$$
$$= \frac{a}{b}f(1)$$

We have therefore proved the theorem in all circumstances but one: that a and b have opposite signs. But then -a and b must have the same sign, whence (by our above proofs) we must have

$$f\left(\frac{-a}{b}\right) = \frac{-a}{b}f(1).$$

Applying Proposition 1 yields

$$f\left(\frac{a}{b}\right) = -f\left(\frac{-a}{b}\right) = -\frac{-a}{b}f(1) = \frac{a}{b}f(1).$$

The proof is now over.

Note that the square at the end of the proof indicates that the proof is over. Another, more traditional, symbol for this is: QED.

Having warmed up by verifying a special case, we seem to be within striking distance of proving our earlier conjecture. There are some surprises, however. We will discuss these (and other matters) next lecture.