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Last time we began discussing examples of linear maps. In particular, we proved the following:

Proposition 1. A function f : R→ R is lin-
ear if and only if there exists k ∈ R such that
f(x) = kx.

Theorem 2. A function f : R2 → R is lin-
ear if and only if there exist a, b ∈ R such
that f(x, y) = ax+ by.

These are clearly quite similar. The first thing we do is to rewrite Theorem 2 in a way which makes it look the
same as the proposition. To do this, we need to recall the definition of the dot product:

Definition. Given two points x = (x1, x2) and y = (y1, y2) in R2, we define their dot product to be

x · y := x1y1 + x2y2.

It’s important to keep in mind that x·y ∈ R; the dot product of two points yields a number. Using this language,
we can now rewrite Theorem 2 in a way which makes it look exactly like the proposition:

Theorem 2. A function f : R2 → R is linear if and only if there exists k ∈ R2 such that f(x) = k · x.

Note that both k and x are points in R2 in the above theorem; the output of f is still a number, since dot products
output numbers.

The phrases if and only if, there exists, and such that have come up a bunch of times, and will continue to
arise. Henceforth we will abbreviate these:

• The symbol iff means if and only if.
• The symbol ∃ means there exist(s).
• The symbol s.t. means such that.

Thus our theorem reads: f : R2 → R is linear iff ∃k ∈ R2 s.t. f(x) = k · x.
Since our theorem is now phrased in terms of dot products, we explored some properties of this product.

Here are a few:

Proposition 3 (Properties of the dot product). Given x, y, z ∈ R2 and α, β ∈ R. Let 0 denote the origin. Then:
(1) x · y = y · x
(2) x · (y + z) = x · y + x · z
(3) x · x = |x|2, where |x| denotes the distance between x and 0.
(4) (αx) · (β y) = αβ(x · y)
(5) x · y = |x||y| cos θ, where θ denotes the angle ∠x0y.
(6) x · y = 0 iff ∠x0y = π

2
.

Before we prove these, a few comments.
• The first property allows us to say ‘the dot product of x and y’ without specifying the order in which

we multiply them.
• The quantity |x| is usually called the magnitude of x. Note that it’s a very natural extension of the

absolute value you’re familiar with, which measures the distance between a point on the real number
line and the number 0.
• When we say the angle ∠x0y, we’re being a little sloppy: there are two different angles that might refer

to. Fortunately, the cosine function agrees on the two choices!
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• We will sometimes refer to θ as ‘the angle between x and y’.
• We will always use radians in this course. Radians, which measure a physical quantity (the distance

you’ve walked around the circle), are much more natural than degress (which were invented by people
for convenience). Because of this, measuring angles in degrees leads to all sorts of issues; for example,
if f(x) = sinx with x in degrees, then f ′(x) 6= cosx!
• By convention, we say the angle between 0 and any other point is π/2. (Note that without this, property

(6) would be false as stated.)

Proof. We prove these individually.
(1) Write x = (x1, x2) and y = (y1, y2). Then

x · y = x1y1 + x2y2 = y · x.
(2) Similar to the first one.
(3) Once again similar to the above, once we note that |x| =

√
x21 + x22 by the Pythagorean theorem. (Make

sure you can explain this.)
(4) Once more, similar to the above.
(5) This is the hardest property to prove. The idea is to first renormalize x and y so that they’re both on

the unit circle, then use properties we already know about the unit circle (in particular, we know a nice
relationship between the angle a point forms with the horizontal axis and the coordinates of that point).
Finally, we undo the renormalization. Here’s a formal proof.

If either x or y are 0, the statement trivially holds, so we may assume for the remainder of the proof
that neither x nor y are 0. Set

x̂ :=
x

|x|
and ŷ :=

y

|y|
and observe that the angle between x̂ and ŷ is still θ but now |x̂| = 1 = |ŷ|. Since x̂ and ŷ lie on the
unit circle we may write

x̂ := (cosα, sinα) and ŷ := (cos β, sin β).
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An illustration of the proof
We therefore have

x · y = (|x| x̂) · (|y| ŷ)
= |x| |y| (x̂ · ŷ) by (4)

= |x| |y|(cosα cos β + sinα sin β)

= |x| |y| cos(α− β) = |x| |y| cos(−θ)
= |x| |y| cos θ since cos is an even function.



(6) This follows easily from the previous property.
�

This completes the proofs of the properties. If you’ve seen polar coordinates before, we can write the proof
of Property (5) in a more compact way:

Shorter version of the proof of Property (5). As before, we may assume neither x nor y are 0. Write x and y in
polar coordinates:

x = (|x|, α) and y = (|y|, β).
Then in rectangular coordinates we have

x = (|x| cosα, |x| sinα) and y = (|y| cos β, |y| sin β),
so

x · y = |x| |y|(cosα cos β + sinα sin β)

= |x| |y| cos |α− β|.
Since |α− β| is the angle between x and y, we’re done. �


