LINEAR ALGEBRA: LECTURE 8

LEO GOLDMAKHER

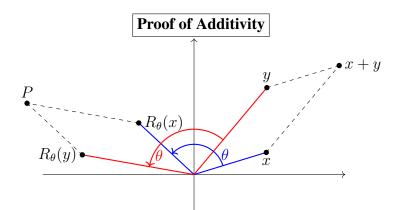
Last time we considered (a special case of) the rotation map

$$R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$$

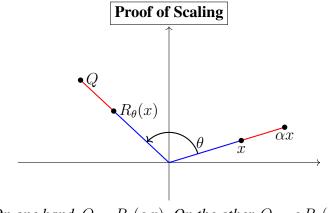
which rotates the plane counterclockwise about the origin by angle θ . Today we explored two questions:

- (1) Is R_{θ} linear?
- (2) Can we find a nice formula for $R_{\theta}(x, y)$?

Some of you suggested a geometric approach. The main idea, captured in the illustrations below, is that R_{θ} is a *rigid motion*: it doesn't affect shapes, and more precisely, moves shapes to congruent shapes. This gives two ways to describe rotated image of points like x + y and αx :



On one hand, $P = R_{\theta}(x+y)$. On the other, $P = R_{\theta}(x) + R_{\theta}(y)$.



On one hand, $Q = R_{\theta}(\alpha x)$. On the other, $Q = \alpha R_{\theta}(x)$.

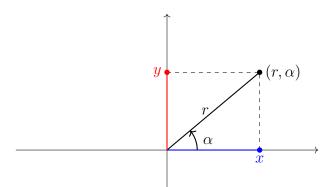
These pictures give an appealing way to think about the problem, not only because they're pretty, but because they gives a sense of why R_{θ} must be additive and scale. However, they're unsatisfying in a different way: it's difficult to tell how rigorous they are. For example, do these pictures represent the general situation? The illustration of additivity does not: what if x and y are collinear with the origin? And how do we know that there aren't some other configurations of x and y which behave differently than the above pictures suggest?

Date: February 24, 2016.

A different approach combines geometry with algebra. Given a point $(x, y) \in \mathbb{R}^2$, write it in polar coordinates as (r, α) , say. We can convert back and forth between rectangular and polar coordinates using the following dictionary:

$$x = r \cos \alpha$$
 $y = r \sin \alpha$
 $r = \sqrt{x^2 + y^2}$ $\alpha = \arctan(y/x)$

All these formulas can be read off from the following picture:



The point (x, y) *labelled in polar coordinates as* (r, α) *.*

The advantage of working in polar coordinates is that rotation becomes easy: we have

$$R_{\theta}(x,y) = (r,\theta + \alpha)$$

where the right hand side is in polar. Translating this back to rectangular coordinates, we find

$$R_{\theta}(x,y) = \Big(r\cos(\theta + \alpha), r\sin(\theta + \alpha) \Big).$$

Although technically this tells us where $R_{\theta}(x, y)$ is located, it's not a very satisfying answer because it's not in terms of x and y. This is easy to rectify using trig addition rules:

$$R_{\theta}(x,y) = \left(r\cos(\alpha + \theta), r\sin(\alpha + \theta)\right)$$
$$= \left(r(\cos\alpha\cos\theta - \sin\alpha\sin\theta), r(\sin\alpha\cos\theta + \cos\alpha\sin\theta)\right)$$
$$= \left(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta\right)$$

This formula will allow us to easily prove the linearity of R_{θ} . More importantly, it will give us a hint about the structure of linear maps from $\mathbb{R}^2 \to \mathbb{R}^2$. We'll pick this up next lecture.