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LEO GOLDMAKHER

Our first goal for today is to prove a result we claimed last time:

Theorem 1. If f : R2 → R2 is a nonsingular linear map, then f is invertible and f−1 : R2 → R2 is linear.

(For the definitions of nonsingular and invertible, check out the previous lecture summary.)
Before launching into the proof, we make a useful observation about nonsingular linear maps.

Lemma 2. Given f : R2 → R2 a nonsingular linear map. Then f(p) = 0 if and only if p = 0.

Proof. Since f is linear, we can write

f =

(
a b
c d

)
Moreover, since f is nonsingular, we know that ad− bc 6= 0.

(⇒)

Suppose f

(
x
y

)
=

(
0
0

)
. Then

ax+ by = 0

cx+ dy = 0

Solving these for x and y (and keeping in mind that ad− bc 6= 0) yields x = 0 = y.

(⇐) f(0) =
(
a b
c d

)(
0
0

)
= 0. �

Armed with this lemma, we can now give a nice (matrix-free!) proof of Theorem 1.

Proof of Theorem 1. Given f : R2 → R2 a nonsingular linear map. We first prove f is invertible, i.e., that the
preimage of any point in the plane consists of precisely one point.

Pick y ∈ R2. Since f is nonsingular, we know that im (f) = R2; in particular, y ∈ im (f). Thus, we see that
f−1(y) 6= ∅, whence

#f−1(y) ≥ 1.

Now, pick any two points p, q ∈ f−1(y). By definition, f(p) = y = f(q), whence by additivity,

f(p− q) = 0.

Lemma 2 immediately implies that p = q. Thus, it’s impossible to pick two distinct elements of f−1(y); this
shows that

#f−1(y) = 1.

It remains only to prove that f−1 is linear. I leave this as an exercise to the reader. �

This theorem shows that the vast majority of linear maps are invertible, and that inverting them preserves
linearity. Another operation which preserves linearity is composition:

Proposition 3. The composition f ◦ g of any two linear maps f, g : R2 → R2 is linear.
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Proof. Given f and g linear, we wish to prove that f ◦ g is linear. In other words, we must show that f ◦ g is
additive and scales.

ADDITIVITY: We have

(f ◦ g)(x+ y) = f
(
g(x+ y)

)
= f

(
g(x) + g(y)

)
= f

(
g(x)

)
+ f
(
g(y)

)
= (f ◦ g)(x) + (f ◦ g)(y)

SCALING: Similar proof. �

Since f ◦ g is linear, we must be able to write it as a matrix. Can we relate this matrix to the matrices of f and

g? Sure! Let’s say f =

(
a b
c d

)
and g =

(
` m
n p

)
. Then

(f ◦ g)
(
x
y

)
= f

((
` m
n p

)(
x
y

))

= f

(
`x+my
nx+ py

)
=

(
a b
c d

)(
`x+my
nx+ py

)
=

(
a`x+ amy + bnx+ bpy
c`x+ cmy + dnx+ dpy

)
=

(
a`+ bn am+ bp
c`+ dn cm+ dp

)(
x
y

)
In other words, we’ve shown that(

a b
c d

)
◦
(
` m
n p

)
=

(
a`+ bn am+ bp
c`+ dn cm+ dp

)
This is frequently called matrix multiplication, but really this has nothing to do with any familiar multiplication;
it’s simply the composition of two functions.

Remark. One nice feature of the matrix notation is that it allows you to describe functions and their composi-
tions without specifying the input. By contrast, consider f, g : R→ R defined by f(x) = x2 and g(x) = log x.
I defy you to express f ◦ g without writing down an input!


