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MATH 250 : LINEAR ALGEBRA

Midterm Exam 1 – KEY

M1–1 Consider g : R2 → R2 defined by
g(x, y) := (x, y2),

and let L be the line segment connecting (0, 0) to (2, 1). What is the image g(L)? Sketch a picture, and
give as precise a mathematical description as you can.

First observe that we can express L as a set of points:

L = {(2t, t) : 0 ≤ t ≤ 1}.

It follows that
g(L) = {g(2t, t) : 0 ≤ t ≤ 1} = {(2t, t2) : 0 ≤ t ≤ 1}.

If we label the first coordinate as x and the second as y, we see that all of these points
satisfy the condition y = 1

4x
2. Thus, the points of g(L) are precisely those points on the

parabola y = 1
4x

2 with 0 ≤ x ≤ 2. Here’s a picture:

y

x(0, 0)

(2, 1)

g(L)

M1–2 Carefully explain why f
(
f−1(x)

)
= x for any x ∈ im (f). What happens if x 6∈ im (f)?

Recall that the preimage of x is defined to be

f−1(x) := {y : f(y) = x}.

If x 6∈ im (f), then f
(
f−1(x)

)
= f(∅) = ∅. If x ∈ im (f), then f−1(x) 6= ∅, whence

f
(
f−1(x)

)
= f

(
{y : f(y) = x}

)
=

{
f(y) : f(y) = x

}
= {x}
= x

(recall our convention that sets consisting of a single element are indistinguishable from that
element).



M1–3 Let f : R2 → R2 be a linear map. In class we showed that the image of the unit square whose lower left
vertex is at the origin has area det f . Prove that this is true for an arbitrary unit square in the plane.

We first prove the special case of the ‘upright’ square:

Lemma 1. Suppose f : R2 → R2 is linear, and let S denote the unit square whose lower left
corner is the origin. If S′ is a translation of S, then the area of f(S′) is det f .

Proof. Label the lower left corner of S′ as (p, q), so S′ = (p, q) + S. Then the other corners
of S′ are located at (p + 1, q), (p, q + 1), and (p + 1, q + 1). Problem 4.7 implies that the
image of S′ is the quadrilateral with vertices

f(p, q), f(p+ 1, q), f(p+ 1, q + 1), and f(p, q + 1).

By additivity, we can rewrite these in the form

f(p, q) + f(0, 0), f(p, q) + f(1, 0), f(p, q) + f(1, 1), and f(p, q) + f(0, 1).

Thus f(S′) = f(p, q) + f(S), i.e., f(S′) is simply a translation of f(S). It follows that

area f(S′) = area f(S) = det f

as claimed.

Our goal is to bootstrap from this special case to the general case. But first, we arm ourselves
with one more preparatory result:

Lemma 2. Given an arbitrary unit square T ⊆ R2, there exists an angle α such that Rα(T )
is an upright square (i.e., the sides of Rα(T ) are parallel to the coordinate axes).

Proof. If T is upright, we’re done (take α = 0). Thus we may suppose T is not upright. It
follows that T has a side with positive slope; label the endpoints of this side A and B. We
define a function g : R → R by setting g(θ) to be the slope of the line segment Rθ(AB).
Note that g is a continuous function, and that g(0) > 0 > g

(
π
2

)
. By the intermediate value

theorem, there exists an α between 0 and π
2 such that g(α) = 0. Thus one side of Rα(T ) is

parallel to the horizontal axis; this implies Rα(T ) is an upright square.

We are now in a position to handle the general case.

Proposition 3. Suppose f : R2 → R2 is linear. If T is an arbitrary unit square in the
plane, then area f(T ) = det f .

Proof. By Lemma 2, there exists α ∈ R such that S′ := Rα(T ) is an upright unit square. It
follows that T = R−α(S′), whence

f(T ) = (f ◦R−α)(S′).

Lemma 1 implies that

area f(T ) = det(f ◦R−α)

= (det f)(detR−α)

= det f

since for any θ we have detRθ = cos2 θ + sin2 θ = 1.
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M1–4 In class we’ve considered several times the linear map ρ : R2 → R2 which reflects across the horizontal
axis. In this problem we explore the more general reflection σL : R2 → R2 across a given line L.

(a) Prove that Rθ ◦ ρ = ρ ◦R−θ.

From class we know that

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
and ρ =

(
1 0
0 −1

)
.

Thus

Rθ ◦ ρ =

(
cos θ − sin θ
sin θ cos θ

)
◦
(

1 0
0 −1

)
=

(
cos θ sin θ
sin θ − cos θ

)
while

ρ ◦R−θ =

(
1 0
0 −1

)
◦
(

cos θ sin θ
− sin θ cos θ

)
=

(
cos θ sin θ
sin θ − cos θ

)
The claim follows.

(b) Prove that if L is a line passing through the origin, then σL is linear. [Hint: Write σL as a composition
of linear maps. ]

[See illustration on next page.] To find where the reflection map σL sends a point x, we can
tilt our head until L is horizontal (or vertical), then flip over this axis, and then finally untilt
our head. Let’s translate this into the language of linear algebra:

σL = Rθ ◦ ρ ◦R−θ

(For a rigorous proof, see Lemma below.) Since all three of these operations are linear, their
composition must also be linear.

Lemma 4. σL = Rθ ◦ ρ ◦R−θ

Proof due to Yuxin Wu. Let θ denote the angle formed between L and the positive horizontal
axis. Set

p := Rθ

(
1
0

)
and q := Rθ

(
0
1

)
.

Then σL(p) = p and σL(q) = −q. It follows that

σL ◦Rθ
(

1
0

)
= Rθ

(
1
0

)
and σL ◦Rθ

(
0
1

)
= Rθ

(
0
−1

)
whence

R−θ ◦ σL ◦Rθ
(

1
0

)
=

(
1
0

)
and R−θ ◦ σL ◦Rθ

(
0
1

)
=

(
0
−1

)
This implies that

R−θ ◦ σL ◦Rθ =

(
1 0
0 −1

)
= ρ.

The claim follows.
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Label as θ the angle formed by L and the positive part of the horizontal axis:

x

y

−2 −1 1 2

1

2

L

θ

x

σL(x)

An illustration of σL

(c) Suppose L and L′ are two distinct lines in the plane, both passing through the origin. Describe
σL ◦ σL′ geometrically, with justification. [Hint: Use parts (a) and (b).]

Applying part (a) to part (b), we see that σL = Rα ◦ ρ for some α. (In fact, α = 2θ, where
θ is the angle illustrated above.) Similarly, σL′ = Rβ ◦ ρ for some β. Applying (a) yields

σL ◦ σL′ = Rα ◦ ρ ◦Rβ ◦ ρ = Rα ◦R−β ◦ ρ ◦ ρ = Rα−β .

Thus σL ◦ σL′ is a rotation.

M1–5 We say a function φ : R2 → R2 is distance-preserving iff

|φ(x)− φ(y)| = |x− y| ∀x, y ∈ R2.

In other words, the distance between the images of any two points is the same as the distance between
the two points themselves.

(a) Give an example of a distance-preserving function which is not a linear map.

Let Tk : R2 → R2 be the translation map, defined by

Tk(x) := x+ k.

Then for any two points x, y ∈ R2, we have

|Tk(x)− Tk(y)| = |(x+ k)− (y + k)| = |x− y|

so Tk is distance-preserving. On the other hand, Tk cannot be linear for any k 6= 0, since
Tk(0) 6= 0.

(b) Suppose f : R2 → R2 is distance-preserving and satisfies f(0) = 0. Prove that |f(x)| = |x| for all
x ∈ R2.

By the definition of distance-preserving, we have

|f(x)| = |f(x)− f(0)| = |x− 0| = |x|

for any x ∈ R2.

4



(c) Suppose f is as in (b). Prove that f(x) · f(y) = x · y for all x, y ∈ R2. [Hint: Start with the
distance-preserving relation |f(x)− f(y)| = |x− y|.]

Using properties of dot products, as well as part (b), we see

|f(x)− f(y)|2 =
(
f(x)− f(y)

)
·
(
f(x)− f(y)

)
= f(x) · f(x)− 2

(
f(x) · f(y)

)
+ f(y) · f(y)

= |f(x)|2 + |f(y)|2 − 2
(
f(x) · f(y)

)
= |x|2 + |y|2 − 2

(
f(x) · f(y)

)
.

On the other hand, since f is distance preserving, we have

|f(x)− f(y)|2 = |x− y|2 = (x− y) · (x− y) = x · x− 2(x · y) + y · y = |x|2 + |y|2 − 2(x · y).

The claim immediately follows.

(d) Suppose f is as in (b). Prove that f must be linear. [Hint: First prove that |f(αx)− αf(x)| = 0.]

As usual, to prove that f is linear we must verify that it’s additive and scales.
Scaling. Given α ∈ R and x ∈ R2 we have

|f(αx)− αf(x)|2 =
(
f(αx)− αf(x)

)
·
(
f(αx)− αf(x)

)
= f(αx) · f(αx)− 2α

(
f(x) · f(αx)

)
+ α2

(
f(x) · f(x)

)
= (αx) · (αx)− 2α(x · αx) + α2(x · x)

= 0.

It follows that |f(αx)− αf(x)| = 0, whence f(αx) = αf(x) as claimed.

Additivity. Given x, y ∈ R2, we have

|f(x+ y)− f(x)− f(y)|2 =
(
f(x+ y)− f(x)− f(y)

)
·
(
f(x+ y)− f(x)− f(y)

)
.

Expanding this, using part (b), and simplifying yields

|f(x+ y)− f(x)− f(y)|2 = 0.

This implies that f(x+ y) = f(x) + f(y) as claimed.

Combining both of the above properties proves that f must be linear.
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(e) Suppose f is as in (b). Prove that there exists θ ∈ R such that either f = Rθ or f = Rθ ◦ ρ. Here
ρ : R2 → R2 is the reflection across the horizontal axis, i.e., ρ(x, y) := (x,−y).

By part (d) we know f is linear, hence can be written as a matrix. The first column of this
matrix is f(1, 0) and the second is f(0, 1), so it suffices to figure out what these can be. By
part (b), we know that

|f(1, 0)| = |(1, 0)| = 1,

which means f(1, 0) lies on the unit circle centered at the origin. Thus there exists some θ
such that

f(1, 0) = (cos θ, sin θ).

Next, by part (c) we have

f(1, 0) · f(0, 1) = (1, 0) · (0, 1) = 0,

whence f(1, 0) and f(0, 1) are perpendicular. Since f(0, 1) also lies on the unit circle, we
deduce that either

f(0, 1) =
(

cos
(
θ +

π

2

)
, sin

(
θ +

π

2

))
= (− sin θ, cos θ)

or
f(0, 1) =

(
cos

(
θ − π

2

)
, sin

(
θ − π

2

))
= (sin θ,− cos θ).

Putting all this together, we conclude that there exists θ ∈ R such that either

f =

(
cos θ − sin θ
sin θ cos θ

)
or f =

(
cos θ sin θ
sin θ − cos θ

)
In the former situation, f = Rθ; in the latter, f = Rθ ◦ ρ (see M1-4(a) above).

(f) Prove that any distance-preserving map φ : R2 → R2 can be written as the composition of a
translation, a rotation, and (possibly) a reflection. [A translation is a map Tk : R2 → R2 defined by
Tk(x) := x+ k. I’m asking you to prove that either φ = Tk ◦Rθ or φ = Tk ◦Rθ ◦ ρ.]

Consider the function
f := T−φ(0) ◦ φ.

From M1-5(a), we know that any translation is distance-preserving. It follows that for any
x, y ∈ R2, |f(x) − f(y)| = |

(
T−φ(0) ◦ φ

)
(x) −

(
T−φ(0) ◦ φ

)
(y)| = |φ(x) − φ(y)| = |x − y|;

thus f is distance-preserving. Also, f(0) =
(
T−φ(0) ◦ φ

)
(0) = φ(0)− φ(0) = 0. The map f

therefore satisfies the hypotheses of part (e), and thus ∃θ such that f = Rθ or f = Rθ ◦ ρ.
Since φ = Tφ(0) ◦ f , we conclude that either φ = Tφ(0) ◦Rθ or φ = Tφ(0) ◦Rθ ◦ ρ.
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