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Problem Set 2

2.1 Given x, y, z ∈ R2. Prove that x · (y + z) = x · y + x · z.

2.2 (a) Prove that for any x, y ∈ R2 we have |x · y| ≤ |x||y|. Moreover, show that equality holds iff x, y, and
the origin are collinear (i.e., all lie on a single line)

(b) Prove that for any x, y ∈ R2 we have |x + y| ≤ |x|+ |y|. [Hint: consider |x + y|2 using dot products.]

2.3 A linear map from R3 to R is a function R3 → R which is additive and scales. Prove that f : R3 → R is
a linear map iff f(x, y, z) = ax + by + cz for some a, b, c ∈ R.

2.4 Suppose f : R2 → R is a linear map such that f(2, 3) = 2 and f(1, 2) = −1. Determine a formula for
f(x, y).

2.5 Is there a function f : R2 → R which scales but is not additive? Either give an example of such a
function, or prove that no such function exists.

2.6 (a) For any h ∈ R2, define a function Mh : R2 → R by Mh(x) := h · x. Prove that Mh is a linear map.

(b) Let F denote the set of all linear maps from R2 → R, and consider the function M : R2 → F defined
by M(h) := Mh. (Reread the last sentence. The output of the function M is, itself, a function.) Show
that M is additive and scales. [Hint: To do this, you will have to figure out what the words additive and
scale mean in this context. Don’t look them up – the point of the problem is to show you that you can
arrive at a natural definition yourself.]

2.7 The dot product gives a way of combining two points in R2 to yield a real number. Suppose ⊗ is a
different way to combine two points to get a number, satisfying the following properties:

(i) (1, 0)⊗ (0, 1) = 1

(ii) x⊗ x = 0 for every x ∈ R2

(iii) For any a ∈ R2, the functions La : R2 → R and Ra : R2 → R are both linear maps, where
La(x) := a⊗ x and Ra(x) := x⊗ a.

(a) These properties look complicated, but are actually not so bad once you get past the notation. Build
up your intuition by finding the value of (1, 0)⊗ (1, 1). (Show your work.)

(b) Determine a formula for (a, b)⊗ (c, d). Justify your answer.
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