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Problem Set 3

3.1 Compute each of the following.

(a)

(
2 3
−1 6

)(
5
4

)
(b)

(
−1 3
4 2

)(
1
3

)
(c) R3π/4(2, 1)

(d) ρ
(
Rπ/3(3, 4)

)
, where ρ : R2 → R2 is the reflection across the horizontal axis.

3.2 Below are matrices corresponding to functions mapping R2 to R2. Describe each function geometrically.
(For example, a geometric description of Rθ might be: it rotates the plane counterclockwise around the
origin by angle θ.)

(a)

(
0 1
1 0

)
(b)

(
2 0
0 5

)
(c)

(
−2 0
0 5

)
(d)

(
1 −1
1 1

)
3.3 Determine the matrix of F : R2 → R2 defined by F (x, y) := (2x− 3y, x+ y).

3.4 Suppose f : R2 → R2 is a linear function with matrix

(
3 −5
2 4

)
, and g : R2 → R2 is a linear function

with matrix

(
6 −1
−8 7

)
. Consider the functions h : R2 → R2 and k : R2 → R2 defined by

h(x, y) := f(x, y) + g(x, y) and k(x, y) := f
(
g(x, y)

)
.

(a) Determine h(1, 0), h(0, 1), k(1, 0), and k(0, 1).

(b) Prove that h is linear, and determine the matrix of h.

(c) Prove that k is linear, and determine the matrix of k.

3.5 Suppose T : R2 → R2 is linear such that T (0, 1) = (0, 1) and T (1, 0) =
(
1
4 ,

√
3
4

)
.

(a) Determine the matrix of T .

(b) Let S1 := {(x, y) : 0 ≤ x ≤ 1, 1 ≤ y ≤ 2}, S2 := {(x, y) : 1 ≤ x ≤ 2, 1 ≤ y ≤ 2}, and S3 := {(x, y) :
2 ≤ x ≤ 3, 1 ≤ y ≤ 2}. Carefully write the first letter of your first name in S1, the second letter of your
first name in S2, and the third letter of your first name in S3. (See below for illustration.) What would
these three letters look like after applying T to them? Draw a clear picture.

Leo’s name before applying T

3.6 Suppose f : R2 → R2 is linear with matrix

(
a b
c d

)
.

(a) Show that if ad− bc = 0, then there exists a line L passing through the origin such that all outputs
of f lie on L.

(b) Conversely, show that if there exists a line L such that f(x, y) is on L for every (x, y), then ad−bc = 0.
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