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Problem Set 4

4.1 Suppose f, g, h : R2 → R2 are linear maps. Without using matrices, prove that f ◦ (g +h) = f ◦ g + f ◦h.

4.2 Prove that a singular linear map f : R2 → R2 is not invertible.

4.3 The zero function is

(
0 0
0 0

)
, i.e., the function mapping R2 → R2 which outputs 0 for all inputs. Now

suppose f ◦ g is a linear map R2 → R2, where neither of f, g : R2 → R2 are the zero function. Must f be
linear? If so, prove it. If not, produce a counterexample.

4.4 Given f : A → B a function and a ∈ A. (Note: f is not necessarily linear!) What can you say about
f
(
f−1(f(a))

)
? Be as specific as you can, and justify your answer.

4.5 Suppose f : R2 → R2 is a nonsingular linear map with matrix

(
a b
c d

)
.

(a) Without using matrices, prove that f−1 : R2 → R2 is a linear map.

(b) What is the matrix of f−1? Show your work.

4.6 Do not use a computer or calculator for this exercise!

In each of the following examples, determine (i) the matrix of (f ◦ g), (ii) the matrix of (g ◦ f), (iii) the
matrix of f−1. If the matrix of f−1 does not exist, carefully explain (with suitable examples) why not.

(a) f =

(
1 2
3 4

)
, g =

(
1 1
1 0

)
(b) f =

(
2 −6
−3 9

)
, g =

(
2 5
4 −1

)
(c) f =

(
1 2
0 −4

)
, g =

(
3 −1
0 2

)
(d) f =

(
a 0
0 d

)
, g =

(
k 0
0 `

)
, ad 6= 0

4.7 This exercise explores what linear maps do to triangles. Throughout, let f : R2 → R2 be a linear map.

(a) Given A,B ∈ R2, the notation AB denotes the line segment whose endpoints are A and B. Prove
that f(AB) = f(A)f(B). In other words, a linear function sends line segments to line segments.

(b) Consider a triangle 4ABC in the plane. What can you say about the shape of the image of 4ABC
under f? [Hint: f might be singular or nonsingular.]

4.8 Consider the matrix

(
a b
c d

)
. If ad − bc < 0, what does this tell you about the geometric effect the

matrix has on the plane? Try to describe this as precisely as you can. [Hint: play around with what the
matrix does to a triangle.]
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