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Problem Set 7

7.1 Let V be a vector space.

(a) Given ~v ∈ V , prove that ~v has a unique additive inverse.

(b) Prove that −1 · ~v = −~v.

7.2 Problem 2.2 from Chapter 1 of the textbook. (Of course, you must justify your answers with proof or
counterexample.)

7.3 Let M2×2(R) denote the space of 2 × 2 matrices with real entries. What is the dimension of M2×2(R)?
Prove it. [Hint: First find a basis. Then prove it’s a basis. This gives you the dimension.]

7.4 Recall that a magic square is a square array of numbers such that each row, each column, and the two
main diagonals have the same sum. In class we saw two examples of 3× 3 magic squares:

1 1 1
1 1 1
1 1 1

8 1 6
3 5 7
4 9 2

(a) The square on the above right uses each of the numbers from 1 to 9 exactly once. Determine all 3× 3
magic squares with this property. Prove that you’ve found all of them. [Hint: what can you say about
the central square? ]

(b) Let MSSn(R) denote the vector space of n×n magic squares with real entries. What is the dimension
of MSS2(R)? Prove it.

(c) What is the dimension of MSS3(R)? Prove it.
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