Instructor: Leo Goldmakher

NAME:	
SECTION:	

Williams College Department of Mathematics and Statistics

MATH 250 : LINEAR ALGEBRA

Problem Set 7 – due Friday, April 29th

INSTRUCTIONS:

This assignment must be turned in as a hard copy to the mailbox of your TA (on your left as soon as you enter Bronfman from Science Quad, labelled by last name), by **5pm** sharp. Assignments submitted later than Friday at 5pm will be returned without being marked.

Please print and attach this page as the first page of your submitted problem set.

PROBLEM	GRADE		
7.1			
7.2			
7.3			
7.4			
Total			

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to search for problems or solutions. I also understand that I must write down the final version of my assignment without reference to notes copied from anyone else's speech or written text. I pledge to abide by the Williams honor code.

SIGNATURE:_____

Problem Set 7

- **7.1** Let V be a vector space.
 - (a) Given $\vec{v} \in V$, prove that \vec{v} has a unique additive inverse.
 - (b) Prove that $-1 \cdot \vec{v} = -\vec{v}$.
- 7.2 Problem 2.2 from Chapter 1 of the textbook. (Of course, you must justify your answers with proof or counterexample.)
- **7.3** Let $M_{2\times 2}(\mathbb{R})$ denote the space of 2×2 matrices with real entries. What is the dimension of $M_{2\times 2}(\mathbb{R})$? Prove it. [*Hint: First find a basis. Then prove it's a basis. This gives you the dimension.*]
- 7.4 Recall that a magic square is a square array of numbers such that each row, each column, and the two main diagonals have the same sum. In class we saw two examples of 3×3 magic squares:

1	1	1	Γ	8	1	6
1	1	1	Γ	3	5	7
1	1	1		4	9	2

(a) The square on the above right uses each of the numbers from 1 to 9 exactly once. Determine all 3×3 magic squares with this property. Prove that you've found all of them. [*Hint: what can you say about the central square?*]

(b) Let $MSS_n(\mathbb{R})$ denote the vector space of $n \times n$ magic squares with real entries. What is the dimension of $MSS_2(\mathbb{R})$? Prove it.

(c) What is the dimension of $MSS_3(\mathbb{R})$? Prove it.