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Problem Set 8

8.1 In class we sketched a proof that any linearly independent set in a finite-dimensional vector space is
contained in a basis of that space. The goal of this exercise is to complete this proof. Throughout, let V
be a finite-dimensional vector space, and recall that for any finite set A = {~v1, ~v2, . . . , ~vn} ⊆ V we define

span A :=

{
α1~v1 + · · ·+ αn~vn : αj ∈ R ∀j

}
(i.e. span A is the set of all vectors which can be formed by linearly combining the elements of A).

(a) Suppose L ⊆ V is linearly independent, and that S ⊆ V spans V . Prove that if span L ⊇ S then L
is a basis of V .

(b) Suppose L ⊆ V is linearly independent, and that ∃~v ∈ V such that ~v 6∈ span L. Prove that L ∪ {~v}
is linearly independent.

(c) Write out a careful proof that any linearly independent set in a finite-dimensional vector space is
contained in a basis of that space.

8.2 Consider the set F of all functions f : R → R satisfying the differential equation f ′′ + f = 0. (Here f ′′

means the second derivative of f . Note that we are implicitly assuming that both f ′ and f ′′ exist, since
otherwise it would be difficult to satisfy the given differential equation!)

(a) Prove that the F is a vector space.

(b) What is the dimension of F? Prove it! [Hint: Differentiate the functions g(x) = f(x) cosx−f ′(x) sinx
and h(x) = f(x) sinx+ f ′(x) cosx.]

(c) Consider the function T : F → R2 defined by

T (f) :=
(
f(0), f(π/2)

)
Is T a linear map? Either way, justify your answer.

8.3 Given V a finite-dimensional vector space, let V̂ denote the set of all linear maps T : V → R.

(a) Prove that V̂ is a vector space.

(b) Prove that dimV = dim V̂ .

(c) Give an explicit example of a non-constant linear map ϕ : V → ̂̂
V . (Here

̂̂
V denotes the set of all

linear maps V̂ → R.)
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