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Problem Set 2 – KEY

2.1 Given x, y, z ∈ R2. Prove that x · (y + z) = x · y + x · z.

Write x = (x1, x2), y = (y1, y2), and z = (z1, z2). Then

x · (y + z) = (x1, x2) · (y1 + z1, y2 + z2)

= x1y1 + x1z1 + x2y2 + x2z2

= (x1, x2) · (y1, y2) + (x1, x2) · (z1, z2)

= x · y + x · z

qed

2.2 (a) Prove that for any x, y ∈ R2 we have |x · y| ≤ |x||y|. Moreover, show that equality holds iff x, y, and
the origin are collinear (i.e., all lie on a single line)

From class (Lecture Summary 6, Proposition 3 (5)) we know

x · y = |x| |y| cos θ

where θ is the angle ∠x0y. Thus

|x · y| = |x| |y| | cos θ| ≤ |x| |y|.

[This is called the Cauchy-Schwarz inequality.] qed

(b) Prove that for any x, y ∈ R2 we have |x+ y| ≤ |x|+ |y|. [Hint: consider |x+ y|2 using dot products.]

From class (Lecture Summary 6, Proposition 3 (3)), we know that |p|2 = p · p for
any p ∈ R2. Thus

|x+ y|2 = (x+ y) · (x+ y)

= (x+ y) · x+ (x+ y) · y by 2.1

= x · (x+ y) + y · (x+ y) by LS6 Prop 3(1)

= x · x+ x · y + y · x+ y · y
= |x|2 + 2(x · y) + |y|2

≤ |x|2 + 2|x| |y|+ |y|2 by (a)

= (|x|+ |y|)2.

The claim follows. [This is called the triangle inequality.] qed



2.3 A linear map from R3 to R is a function R3 → R which is additive and scales. Prove that f : R3 → R is
a linear map iff f(x, y, z) = ax+ by + cz for some a, b, c ∈ R.

As usual with if and only if statements, we prove the two directions separately.
(⇒) Suppose f : R3 → R is linear. Let

a := f(1, 0, 0) b := f(0, 1, 0) c := f(0, 0, 1)

Then

f(x, y, z) = f(x, 0, 0) + f(0, y, 0) + f(0, 0, z) by additivity

= xf(1, 0, 0) + yf(0, 1, 0) + zf(0, 0, 1) by scaling

= ax+ by + cz.

(⇐) Given a, b, c ∈ R, let f(x, y, z) := ax+ by + cz. To show f is linear, it suffices
to prove that f is additive and scales.

• Additivity:

f(x, y, z) + f(x′, y′, z′) = ax+ by + cz + ax′ + by′ + cz′

= a(x+ x′) + b(y + y′) + c(z + z′)

= f(x+ x′, y + y′, z + z′).

• Scaling

f(kx, ky, kz) = akx+ bky + ckz = k(ax+ by + cz) = k f(x, y, z).

qed

2.4 Suppose f : R2 → R is a linear map such that f(2, 3) = 2 and f(1, 2) = −1. Determine a formula for
f(x, y).

Solution 1. Since f is linear, Theorem 2 from Lecture 5 implies that ∃a, b ∈ R
such that

f(x, y) = ax+ by.

Plugging in the given points yields a system of equations

2a+ 3b = 2

a+ 2b = −1

Solving the system, we find a = 7 and b = −4. Thus, f(x, y) = 7x− 4y.

Solution 2. By scaling, f(2, 4) = −2. By additivity, we have

f(0, 1) = f(2, 4)− f(2, 3) = −4.

By scaling this implies f(0, 2) = −8, and again by additivity we find

f(1, 0) = f(1, 2)− f(0, 2) = −1 + 8 = 7.

Finally,
f(x, y) = xf(1, 0) + yf(0, 1) = 7x− 4y.
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2.5 Is there a function f : R2 → R which scales but is not additive? Either give an example of such a
function, or prove that no such function exists.

There are many such functions, but some care must be taken that your function is
well-defined. For example, the function sending (x, y) to y2/x almost works, but
not quite – it’s not defined for x = 0. This can be fixed by setting

f(x, y) =

{
y2

x if x 6= 0

0 if x = 0

Another good idea which doesn’t quite work at first is the function sending (x, y)
to
√
xy; this doesn’t scale by negative numbers! However, building on this idea

gives

g(x, y) = 3
√
x2y,

which does scale but isn’t additive. A third example is

h(x, y) =

{
x if y 6= 0

0 if y = 0.
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2.6 (a) For any h ∈ R2, define a function Mh : R2 → R by Mh(x) := h · x. Prove that Mh is a linear map.

In class we proved that a function f : R2 → R is linear iff ∃h ∈ R2 such that
f(x) = h · x. Thus, Mh is linear. qed

(b) Let F denote the set of all linear maps from R2 → R, and consider the function M : R2 → F defined
by M(h) := Mh. (Reread the last sentence. The output of the function M is, itself, a function.) Show
that M is additive and scales.

Given two function f and g, we define a new function f + g by the condition

(f + g)(x) := f(x) + g(x).

Given a function f and a real number α, we define a new function αf by the
condition

(αf)(x) := αf(x).

Now, I claim that M is linear, i.e., that it’s additive and scales. We verify these:

• Additivity of M : given h, k ∈ R2, we have (for arbitrary x ∈ R2)(
M(h+ k)

)
(x) = Mh+k(x)

= (h+ k) · x
= h · x+ k · x
= Mh(x) +Mk(x)

=
(
M(h) +M(k)

)
(x).

We deduce that M(h+k) = M(h)+M(k), since we’ve just checked that these
two functions agree on every possible input.

• Scaling of M : given arbitrary α ∈ R and x ∈ R2, we have(
M(αh)

)
(x) = Mαh(x) = (αh) · x = α(h · x) =

(
αM(h)

)
(x)

Since they agree on all x, we deduce that M(αh) = αM(h). qed
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2.7 The dot product gives a way of combining two points in R2 to yield a real number. Suppose ⊗ is a
different way to combine two points to get a number, satisfying the following properties:

(i) (1, 0)⊗ (0, 1) = 1

(ii) x⊗ x = 0 for every x ∈ R2

(iii) For any a ∈ R2, the functions La : R2 → R and Ra : R2 → R are both linear maps, where
La(x) := a⊗ x and Ra(x) := x⊗ a.

(a) These properties look complicated, but are actually not so bad once you get past the notation. Build
up your intuition by finding the value of (1, 0)⊗ (1, 1). (Show your work.)

The following will prove to be useful:

Lemma 1. Given x, y, z ∈ R2 and α ∈ R we have

(x+ y)⊗ z = x⊗ z + y ⊗ z, x⊗ (y + z) = x⊗ y + x⊗ z, (*)

and
(αx)⊗ y = α(x⊗ y) = x⊗ (αy). (†)

Proof. We have

(x+ y)⊗ z = Rz(x+ y) = Rz(x) +Rz(y) = x⊗ z + y ⊗ z

by the additivity of Rz; the second statement of (*) is proved similarly, using the
L function instead. We also have

(αx)⊗ y = Ry(αx) = αRy(x) = α(x⊗ y)

since Ry scales. The second equality of (†) is proved similarly, using the L function
instead.

Let’s see how this applies to our problem, for example. Relation (*) yields

(1, 0)⊗ (1, 1) = (1, 0)⊗
(
(1, 0) + (0, 1)

)
= (1, 0)⊗ (1, 0) + (1, 0)⊗ (0, 1)

= 0 + 1

= 1

qed
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(b) Determine a formula for (a, b)⊗ (c, d). Justify your answer.

Before turning to the main question, we prove a couple of useful results.

Lemma 2. Given a, b, x, y ∈ R2, we have

(a+ b)⊗ (x+ y) = (a⊗ x) + (a⊗ y) + (b⊗ x) + (b⊗ y).

Proof. This follows by repeatedly applying (*) from part (a) and expanding.

Lemma 3. For any x, y ∈ R2, we have

x⊗ y = −(y ⊗ x).

Proof. We compute (x+y)⊗(x+y) in two different ways. On one hand, by property
(ii) of ⊗, we know

(x+ y)⊗ (x+ y) = 0.

On the other hand, by the lemma we have

(x+ y)⊗ (x+ y) = (x⊗ x) + (x⊗ y) + (y ⊗ x) + (y ⊗ y)

= (x⊗ y) + (y ⊗ x).

Putting these two computations together yields the claim.

Armed with this lemma, I now claim

Proposition 4. (a, b)⊗ (c, d) = ad− bc.

Proof. Write

(a, b) = (a, 0) + (0, b) and (c, d) = (c, 0) + (0, d).

Using Lemma 2, we find

(a, b)⊗ (c, d) = (a, 0)⊗ (c, 0) + (a, 0)⊗ (0, d) + (0, b)⊗ (c, 0) + (0, b)⊗ (0, d).

Now (†) from part (a) implies

(a, 0)⊗ (c, 0) = ac
(
(1, 0)⊗ (1, 0)

)
= 0.

Similarly,
(0, b)⊗ (0, d) = 0.

It follows that

(a, b)⊗ (c, d) = ad
(
(1, 0)⊗ (0, 1)

)
+ bc

(
(0, 1)⊗ (1, 0)

)
= ad− bc

by Lemma 3. qed
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