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MATH 250 : LINEAR ALGEBRA

Problem Set 2 - KEY

2.1 Given z,y,2 € R?. Prove that - (y +2) =2 -y + - 2.

Write = (z1,x2), y = (y1,¥2), and z = (21, 22). Then

r-(y+2)=(z1,72) (Y1 + 21,92 + 22)
=T1Y1 + X121 + T2y2 + T222
= (z1,72) - (Y1,y2) + (w1, 22) - (21, 22)
=x-y+a-z

QED

2.2 (a) Prove that for any z,y € R? we have |z - y| < |2||y|. Moreover, show that equality holds iff x, y, and
the origin are collinear (i.e., all lie on a single line)

From class (Lecture Summary 6, Proposition 3 (5)) we know
z -y = |z[ [yl cosf
where 60 is the angle Zx0y. Thus
|-yl = |z|[y|| cos ] < |z|[yl.

[This is called the Cauchy-Schwarz inequality.] QED

(b) Prove that for any x,y € R? we have |z +y| < |z| + |y|. [Hint: consider |z + y|* using dot products.]

From class (Lecture Summary 6, Proposition 3 (3)), we know that |p|?> = p - p for
any p € R%. Thus

[z +yf = (z+y) (z+y)
=(@x+y)-z+(x+y)y by 2.1
=z-(x+y)+y-(x+y) by LS6 Prop 3(1)
=r-r+r-yty-r+y-y
= [z +2(z - y) + |y
< |z[*+2[z|ly| + [y[* by (a)
= (|| + ly])*.

The claim follows. [This is called the triangle inequality.) QED




2.3 A linear map from R? to R is a function R? — R which is additive and scales. Prove that f: R? — R is
a linear map iff f(z,y,z) = ax + by + ¢z for some a,b, c € R.

As usual with if and only if statements, we prove the two directions separately.
(=) Suppose f:R3 — R is linear. Let

a:= f(1,0,0) b:= f(0,1,0) c:= f(0,0,1)
Then

[y, 2) = f(,0,0) + f(0,y,0) + f(0,0,2) by additivity
= 2£(1,0,0) +yf(0,1,0) + 2£(0,0,1) by scaling
=ax + by + cz.

(<) Given a,b,c € R, let f(x,y,z) := ax + by + cz. To show f is linear, it suffices
to prove that f is additive and scales.

e Additivity:
flryy,2) + f(2',y, 7)) = ax + by + cz + ax’ + by + c2’
=a(z+2') +b(y +y) +c(z+2)
=fle+2'y+y,24+2).
e Scaling

f(kx, ky, kz) = akx + bky + ckz = k(ax + by + cz) = k f(x,y, 2).

QED

2.4 Suppose f : R? — R is a linear map such that f(2,3) = 2 and f(1,2) = —1. Determine a formula for
flz,y).

SOLUTION 1. Since f is linear, Theorem 2 from Lecture 5 implies that Ja,b € R
such that

f(z,y) = ax +by.

Plugging in the given points yields a system of equations

2a + 3b =2
a+2b=-1

Solving the system, we find a = 7 and b = —4. Thus, f(x,y) = Tz — 4y.

SOLUTION 2. By scaling, f(2,4) = —2. By additivity, we have
FO,1) = F2.4) — £(2,3) = 4,
By scaling this implies f(0,2) = —8, and again by additivity we find
f(1,0) = f(1,2) — f(0,2) = -1 +8=T.

Finally,




2.5 Is there a function f : R? — R which scales but is not additive? Either give an example of such a
function, or prove that no such function exists.

There are many such functions, but some care must be taken that your function is
well-defined. For example, the function sending (z,y) to y?/z almost works, but
not quite — it’s not defined for x = 0. This can be fixed by setting

L ifz#0
ﬂ%w_{o ifx=0

Another good idea which doesn’t quite work at first is the function sending (z,y)
to /xy; this doesn’t scale by negative numbers! However, building on this idea

gives
9(z,y) = Va?y,

which does scale but isn’t additive. A third example is

x ify#0
hmﬂ){o ify =0




2.6 (a) For any h € R2, define a function M}, : R? — R by My (z) := h - x. Prove that Mj, is a linear map.

In class we proved that a function f : R? — R is linear iff 3 € R? such that
f(x) = h-x. Thus, M is linear. QED

(b) Let F denote the set of all linear maps from R? — R, and consider the function M : R? — F defined
by M(h) := Mj. (Reread the last sentence. The output of the function M is, itself, a function.) Show
that M is additive and scales.

Given two function f and g, we define a new function f + ¢ by the condition

(f +9)(x) = f(z) + g(x).

Given a function f and a real number «, we define a new function af by the
condition

(af)(z) = af (z).
Now, I claim that M is linear, i.e., that it’s additive and scales. We verify these:
e Additivity of M: given h,k € R?, we have (for arbitrary = € R?)
(M(h+k))(z) = Mpsr(2)
=(h+k) =z
=h-z+k- -z
= ]\/[h(:c) + Mk(l‘)
= (M(h) + M(k)) ().

We deduce that M (h+k) = M(h)+ M (k), since we’ve just checked that these
two functions agree on every possible input.

e Scaling of M: given arbitrary a € R and = € R?, we have
(M(ah))(z) = Map(z) = (ah) -z = a(h - z) = (aM(h))(z)

Since they agree on all z, we deduce that M (ah) = aM(h). QED




2.7 The dot product gives a way of combining two points in R? to yield a real number. Suppose ® is a
different way to combine two points to get a number, satisfying the following properties:
(i) (1,00©(0,1) =1
(ii) 2 ®x = 0 for every x € R?
(iii) For any a € R?, the functions L, : R> — R and R, : R?> — R are both linear maps, where
Ly(z) :==a®x and R,(z) =z ® a.

(a) These properties look complicated, but are actually not so bad once you get past the notation. Build
up your intuition by finding the value of (1,0) ® (1,1). (Show your work.)

The following will prove to be useful:

Lemma 1. Given x,y,z € R? and o € R we have
@F+y)®z=202+ty®z, Q@Y +2)=20y+tr®z (*)

and
() @y =a(z®y) =2 (ay). (1)

Proof. We have
(z+y)®z=R.(r+y)=R.(2)+ R.(y) =2R@2+y®2

by the additivity of R.; the second statement of (*) is proved similarly, using the
L function instead. We also have

(az) ®y = R,(az) = aR, () = alz © )

since R, scales. The second equality of (1) is proved similarly, using the L function
instead. ]

Let’s see how this applies to our problem, for example. Relation (*) yields

(1,0) ® (1,1) = (1,0) ® ((1,0) + (0, 1))
=(1,0) ® (1,0) + (1,0) ® (0,1)

QED




(b) Determine a formula for (a,b) ® (¢, d). Justify your answer.

Before turning to the main question, we prove a couple of useful results.

Lemma 2. Given a,b,z,y € R?, we have
(a+b)@(xz+y)=(a®2)+ (a@y)+(box)+ (bRY).
Proof. This follows by repeatedly applying (*) from part (a) and expanding. [

Lemma 3. For any =,y € R?, we have
Ty =—(y®u).

Proof. We compute (z+y)®(z+y) in two different ways. On one hand, by property
(ii) of ®, we know
(z4+y)®@(r+y)=0.

On the other hand, by the lemma we have

Et+y)e@@+ty=@ez)+@ey) +Yez)+ (YY)
=(z®y)+ (Yye).

Putting these two computations together yields the claim. O
Armed with this lemma, I now claim
Proposition 4. (a,b) ® (¢,d) = ad — be.
Proof. Write
(a,b) = (a,0) + (0,b)  and (¢,d) = (c,0) + (0,d).
Using Lemma 2, we find
(a,b) ® (¢,d) = (a,0) ® (¢,0) + (a,0) ® (0,d) + (0,b) ® (c,0) + (0,b) ® (0, d).
Now (1) from part (a) implies
(a,0) ® (c,0) = ac((1,0) @ (1,0)) = 0.

Similarly,
(0,b) ® (0,d) = 0.

It follows that
(a,b) @ (c,d) = ad((1,0) ® (0,1)) + be((0,1) @ (1,0))
= ad — bc

by Lemma 3. QED




