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Problem Set 5 – KEY

5.1 Let ~v := 2~e1 − 3~e2, ~w := ~e1 + ~e2.

(a) What is the change of basis matrix from ~e1, ~e2 to ~v, ~w?

The change of basis map is P =

(
2 1
−3 1

)
(b) Use the change-of-basis matrix (as we did in the lecture 17–18 summary) to express the vector ~e1+2~e2
as a linear combination of ~v and ~w. (You should not solve a system of equations.)

P−1 =
1

5

(
1 −1
3 2

)
Thus

P−1(1, 2) =
1

5

(
1 −1
3 2

)(
1
2

)
=

(
−1/5
7/5

)
It follows that ~e1 + 2~e2 = − 1

5~v + 7
5 ~w.

5.2 The goal of this exercise is to explore linear maps which fix the unit circle U . Suppose f : R2 → R2 is a

linear map with det f > 0 and f(U) = U . Write the matrix of f as

(
a b
c d

)
.

(a) Prove that a2 + c2 = 1 and b2 + d2 = 1. [Hint: Consider f(1, 0) and f(0, 1).]

Since (1, 0) ∈ U and f(U) = U , we see that (a, c) = f(1, 0) ∈ U . It follows that a2 + c2 = 1.
Similarly, we have (b, d) = f(0, 1) ∈ U , whence b2 + d2 = 1.

(b) Prove that a2 + b2 = c2 + d2. [Hint: Consider f−1(1, 0) and f−1(0, 1).]

Since f is invertible and f(U) = U , we see that f−1(U) = U . We know that f−1 =

1
det f

(
d −b
−c a

)
whence

(
d

det f ,
−c

det f

)
= f−1(1, 0) ∈ U . It follows that

c2 + d2 = (det f)2.

Similarly, we have
(
−b

det f ,
a

det f

)
= f−1(0, 1) ∈ U , whence

a2 + b2 = (det f)2 = c2 + d2.



(c) Prove that det f = 1.

From above, we know that a2 + b2 = (det f)2 = c2 + d2. We also know that a2 + c2 = 1 =
b2 + d2. From all this we deduce that

2(det f)2 = a2 + b2 + c2 + d2 = 2,

whence det f = ±1. Since we’re assuming det f > 0, we conclude that det f = 1.

(d) Prove that f = Rθ for some θ.

First note that, since a2 + c2 = 1, there must exist some θ such that a = cos θ and c = sin θ.
Thus, to conclude the proof it suffices to show the following:

Lemma 1. a = d and b = −c.

Proof. From (c), we know that
ad− bc = 1. (†)

From our proof of (b) we know that a2 + b2 = (det f)2 and c2 + d2 = (det f)2; plugging in
(†) shows that a2 + b2 = 1 = c2 + d2. From this it follows that

(ad− bc)2 = (a2 + b2)(c2 + d2).

Expanding both sides and simplifying yields

(ac+ bd)2 = 0,

whence
ac+ bd = 0. (‡)

Our strategy is to combine (†) and (‡) to obtain the claimed relationships between a, b, c, d.

• (†) and (‡) imply
d(ad− bc) + c(ac+ bd) = d;

expanding and simplifying the left side yields a = d.

• (†) and (‡) imply
−c(ad− bc) + d(ac+ bd) = −c;

expanding and simplifying the left side yields b = −c.

We conclude that a = d and b = −c as claimed.
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(e) Now suppose g : R2 → R2 is a linear map such that det g < 0 and g(U) = U . Prove that there exists
some angle θ such that g = Rθρ, where ρ is the reflection across the horizontal axis. [Hint: If you use
part (d), the proof is quite short.]

Given g as in the problem, set
f := g ◦ ρ.

Note that
det f = (det g)(det ρ) = −det g > 0.

Moreover, f(U) = U (see Lemma below). Part (d) therefore implies that f = Rθ. Thus,
since ρ2 is the identity, we have

g = fρ = Rθρ

as claimed. It remains only to prove:

Lemma 2. f(U) = U

Proof. It suffices to prove that ρ(U) = U , since this would imply

f(U) = gρ(U) = g(U) = U.

We will do this by showing that ρ(U) is a subset of U , and also that U is a subset of ρ(U);
this is only possible if the two are equal. (This is a common trick for proving two sets are
equal.)

Pick any point (a, b) ∈ U , so that a2 + b2 = 1. Then ρ(a, b) = (a,−b) is in U as well, since
a2 + (−b)2 = 1. This shows that ρ(U) is a subset of U , since every point in ρ(U) lives in U .
On the other hand, since ρ = ρ−1, this implies ρ−1(U) is a subset of U as well. But then U
must be a subset of ρ(U). This completes the proof.

(f) Suppose a linear map h : R2 → R2 satisfies h(U) = U . Prove that either h = Rθ or h = Rθρ. [Hint:
The proof is short, but there is something to check.]

Observe that h must be nonsingular (since otherwise the image of h would be contained in
some line, contradicting that h(U) = U). It follows that deth is either positive or negative.
Part (d) implies that if deth > 0, then h = Rθ. Part (e) implies that if deth < 0, then
h = Rθρ.
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5.3 Suppose f : R2 → R2 is a linear map with det f < 0. Prove that f admits a singular value decomposition.
(State a precise theorem, analogous to Theorem 4 from the lectures 17–18 summary.)

Theorem 3. Suppose f : R2 → R2 is nonsingular. Then ∃α, β, k, ` ∈ R such that

f = Rα ◦
(
k 0
0 `

)
◦Rβ .

Proof. In class, we proved this in the case det f > 0, so it remains to prove the case det f < 0.
Consider the linear map f ◦ ρ. We have det(f ◦ ρ) = (det f)(det ρ) > 0, whence (from class)
we deduce the existence of α, β, k, ` ∈ R such that

f ◦ ρ = Rα ◦
(
k 0
0 `

)
◦Rβ .

Composing both sides on the right by ρ, we find

f = Rα ◦
(
k 0
0 `

)
◦Rβ ◦ ρ.

By problem M1–4(a) from Midterm 1, we know that

Rβρ = ρR−β .

Thus,

f = Rα ◦
(
k 0
0 `

)
◦ ρ ◦R−β

= Rα ◦
(
k 0
0 −`

)
◦R−β .

This concludes the the proof.

5.4 Let f :=

(
1 1
1 0

)
. The goal of this exercise is to determine and apply the singular value decomposition

of f . It turns out the SVD of f is intimately linked to the so-called golden ratio:

ϕ :=
1 +
√

5

2

As usual, let U denote the unit circle centered at the origin.

(a) As discussed in class, f(U) is an ellipse centered at the origin. Determine the lengths of the major
and minor radii of this ellipse. Express your answer in terms of ϕ. [Hint: this is a calculus problem.]
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We are trying to maximize and minimize the magnitude of f(x) where x ∈ U . Any point
on U has the form (cos θ, sin θ) for some θ, so we are trying to find the extreme values of
|f(cos θ, sin θ)|. The strategy is to use calculus to determine the θ where these extreme values
occur. Set

d(θ) := |f(cos θ, sin θ)|2 = (cos θ + sin θ)2 + cos2 θ.

A bit of double-angle formula magic gives

d(θ) =
3

2
+ sin 2θ +

1

2
cos 2θ.

Note that
√
d(θ) is maximized (or minimized) iff d(θ) is maximized (or minimized). We

therefore set out to determine all θ for which d(θ) has an extreme value. To do this, we find
where d′(θ) = 0. We have

d′(θ) = 2 cos 2θ − sin 2θ = 0.

This immediately implies that cos 2θ 6= 0. Dividing both sides by cos 2θ and rearranging
yields

tan 2θ = 2.

We have therefore found that |f(cos θ, sin θ)| has an extreme value at θm = 1
2 tan−1 2. Now

that we know tan 2θm = 2, it’s fairly straightforward to determine the radii. Simple geometric
arguments give

sin 2θm =
2√
5

and cos 2θm =
1√
5

This allows us to compute d(θm); some simple algebra gives

d(θm) =
3 +
√

5

2

Set
~v := f(cos θm, sin θm).

Since θm > 0, we see that ~v is the radius of the ellipse located in the first quadrant. The
magnitude of the radius is

|~v| =
√
d(θm) = ϕ.

Now set
~w := f(cos(θm +

π

2
), sin(θm +

π

2
));

I claim ~w is perpendicular to ~v (and must therefore be the second radius of the ellipse). To
see this, note that

~v · ~w = f(cos θm, sin θm) · f(cos(θm +
π

2
), sin(θm +

π

2
))

= f(cos θm, sin θm) · f(− sin θm, cos θm)

= (cos θm + sin θm, cos θm) · (cos θm − sin θm,− sin θm)

=
1

2
(cos 2θm)(2− tan 2θm)

= 0.

A straightforward calculation gives

|~w| =
√
d(θm + π/2) = ϕ− 1.

Thus ~v is the major radius (with magnitude ϕ) and ~w is the minor radius (with magnitude
ϕ− 1).
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(b) Let α denote the tilt of the ellipse f(U), i.e., the angle formed by the positive horizontal axis and the
radius of the ellipse in the first quadrant. Prove that tanα = ϕ− 1.

In part (a) we proved that the major radius of the ellipse is

~v = f(cos θm, sin θm) = (cos θm + sin θm, cos θm).

By the half-angle formula,

tan θm =
sin 2θm

1 + cos 2θm
= ϕ− 1.

It follows that

tanα =
cos θm

cos θm + sin θm

=
1

1 + tan θm

=
1

ϕ

= ϕ− 1.

Note that tanα = tan θm, whence
α = θm.

(c) As discussed in lecture, there exists a square grid which gets mapped by f to a rectangular grid.

Describe (as precisely as possible) these two grids for f =

(
1 1
1 0

)
. [Note: det f < 0!]

We saw above that f(cos θm, sin θm) is the major radius of the ellipse. Let

S := {(Rθm(x~e1 + y~e2) : x, y ∈ Z}.

In other words, S is the canonical square grid, tilted by an angle of θm counterclockwise.
Our work above shows that R := f(S) is the rectangular grid

R = {x~v + y ~w : x, y ∈ Z}.

By our work above, ~v is the vector of length ϕ at an angle θm, and ~w is a vector perpendicular
to ~v of length ϕ−1. In other words,R is the rectangular grid built out of ϕ×(ϕ−1) rectangles,
tilted at an angle θm.
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(d) Determine the singular value decomposition of f , i.e., determine α, β, k, ` such that

f = Rα

(
k 0
0 `

)
Rβ .

By our work in problem 5.3 and the above parts, we know that

f = Rθm

(
ϕ 0
0 1− ϕ

)
Rβ

for some angle β. To determine this angle β, note that

~v = Rθm(ϕ~e1) = Rθm

(
ϕ 0
0 1− ϕ

)
~e1

On the other hand,
f−1(~v) = Rθm~e1,

whence

~v = f(Rθm~e1) = Rθm

(
ϕ 0
0 1− ϕ

)
RβRθm~e1

Putting the above together gives
RβRθm~e1 = ~e1

whence β = −θm. Thus, we conclude that the Singular Value Decomposition of

(
1 1
1 0

)
is

(
1 1
1 0

)
= Rθm

(
ϕ 0
0 1− ϕ

)
R−θm

where θm = tan−1(ϕ− 1).
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