Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

MATH 250 : LINEAR ALGEBRA

Problem Set 6 – KEY

6.1 Recall (from Lecture 21) the notion of an *equivalence relation*. Decide whether each of the following binary relations is an equivalence relation. If it is, prove it. If not, give an example of how it fails.
(a) ~ (matrix similarity)

This is an equivalence relation, because it satisfies all three of the defining properties:

- <u>Reflexivity.</u> $f = I^{-1}gI$, where I is the identity matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, whence $f \sim f$.
- Symmetry. Suppose $f \sim g$. Then $\exists P$ such that $f = P^{-1}gP$. But this implies that $g = PfP^{-1} = (P^{-1})^{-1}fP^{-1}$ whence $g \sim f$.
- Transitivity. Suppose $f \sim g$ and $g \sim h$. Then $\exists P, Q$ such that $f = P^{-1}gP$ and $g = Q^{-1}hQ$. It follows that $f = P^{-1}Q^{-1}hQP = (QP)^{-1}h(QP)$, whence $f \sim h$.

(b) \leq (less than or equal to)

This is *not* an equivalence relation. Although it is reflexive and transitive, it is not symmetric: $3 \le 5$ but $5 \le 3$.

(c) \approx (given two sets $A, B \subseteq \mathbb{Z}$ we write $A \approx B$ if and only if A and B differ by finitely many elements. For example, $\{0, 1, 2, 3, \ldots\} \approx \{1, 2, 3, \ldots\}$ since they differ by one element, while $\{1, 2, 3, 4, \ldots\} \not\approx \{2, 4, 6, \ldots\}$ since they differ by infinitely many elements.)

This is an equivalence relation, since it satisfies the three requisite properties. Prior to verifying these, we introduce a useful notation: let

$$A \setminus B := \{x \in A : x \notin B\}$$

so that $A \approx B$ iff both $A \setminus B$ and $B \setminus A$ are finite.

- $A \approx A$, since $A \setminus A$ is empty (hence finite).
- Suppose $A \approx B$, so that $A \setminus B$ and $B \setminus A$ are both finite. It immediately follows that $B \approx A$.
- Suppose $A \approx B$ and $B \approx C$. Then all of

$$A \setminus B$$
, $B \setminus A$, $B \setminus C$, and $C \setminus B$

are finite. I claim that $A \setminus C \subseteq (A \setminus B) \cup (B \setminus C)$. To see this, pick any $x \in A \setminus C$. If $x \in B$, then $x \in B \setminus C$. If $x \notin B$, then $x \in A \setminus B$. Since both $A \setminus B$ and $B \setminus C$ are finite, we conclude that $A \setminus C$ must be finite. In exactly the same way, we see that $C \setminus A$ must be finite. It follows that $A \approx C$.

- **6.2** Suppose f and g are nonsingular linear maps from $\mathbb{R}^2 \to \mathbb{R}^2$.
 - (a) Show by example that fg might not equal gf.

There are many examples. One simple one is $R_{\pi/2}\rho \neq \rho R_{\pi/2}$.

- (b) Prove that $fg \sim gf$ (matrix similarity).
- We have $fg = g^{-1}(gf)g$.

6.3 Suppose *P* is a nonsingular linear map, and that $f = P\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^{-1}$.

(a) Prove that λ_1 and λ_2 are eigenvalues of f.

Let
$$\vec{v}_1 := P(\vec{e}_1), \ \vec{v}_2 := P(\vec{e}_2)$$
. Then

$$f(\vec{v}) = P\begin{pmatrix}\lambda_1 & 0\\ 0 & \lambda_2\end{pmatrix} P^{-1}P(\vec{e}_1) = P\begin{pmatrix}\lambda_1 & 0\\ 0 & \lambda_2\end{pmatrix} (\vec{e}_1) = P(\lambda_1\vec{e}_1) = \lambda_1\vec{v}_1.$$
Thus λ_1 was an eigenvalue, and the corresponding eigenvector is $P(\vec{e}_1)$.

(b) Find (with proof) an eigenvector corresponding to λ_1 ?

We just did this above: it's $P(\vec{e}_1)$.

6.4 For each of the following linear functions, (i) determine all eigenvalues, (ii) for each eigenvalue, find a corresponding eigenvector of unit length, and (iii) if possible, write down a spectral decomposition of f.

(a)
$$f = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$$

(a) $\lambda_1 = 3, \lambda_2 = 2$
(b) $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \vec{v}_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
(c) $f = B \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} B^{-1}$ with $B = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{5}} \end{pmatrix}$.

(b)
$$g = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(a) $\lambda_1 = -1, \lambda_2 = 1$
(b) $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
(c) $f = B \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} B^{-1}$ with $B = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$.
(c) $h = \begin{pmatrix} 5 & 2 \\ -2 & 1 \end{pmatrix}$

(a)
$$\lambda = 3$$

(b) $\vec{v} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

(c) We have only one eigenvector, so the there is no spectral decomposition.

(d)
$$k = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

(a) $\lambda_1 = 3, \lambda_2 = 2$
(b) $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
(c) $f = I \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} I^{-1}$

(e) f^2 , where f is the function from part (a) of this question.

(a)
$$\lambda_1 = 9, \ \lambda_2 = 4$$

(b) $\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \vec{v}_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
(c) $f = B \begin{pmatrix} 9 & 0 \\ 0 & 4 \end{pmatrix} B^{-1}$ where $B = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{5}} \end{pmatrix}$.

6.5 Let f_n denote the nth Fibonacci number (with $f_1 = f_2 = 1$). (a) Determine $\lim_{n \to \infty} \frac{f_{n+1}}{f_n}$ [*Hint: How big is* $\frac{1-\sqrt{5}}{2}$?]

From class we know that $f_n = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2}$, where

$$\lambda_1 = \frac{1+\sqrt{5}}{2} \qquad \text{and} \qquad \lambda_2 = \frac{1-\sqrt{5}}{2}$$

It follows that

$$\frac{f_{n+1}}{f_n} = \frac{\lambda_1^{n+1} - \lambda_2^{n+1}}{\lambda_1^n - \lambda_2^n}$$

Note that $|\lambda_2| < 1$. Thus in the limit $\lambda_2^n \to 0$ as $n \to \infty$, whence

$$\lim_{n \to \infty} \frac{f_{n+1}}{f_n} = \lambda_1$$

(b) Evaluate $f_n^2 + f_{n+1}^2$ for n = 1, 2, 3, 4. Conjecture a formula.

2, 5, 13, 34. Conjecture: $f_n^2 + f_{n+1}^2 = f_{2n+1}$ for all $n \ge 1$.

(c) Prove your conjectured formula. [*Hint: consider* $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{2n}$]

Calculate $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{2n}$ in two different ways. On one hand, it's $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{2n} = \begin{pmatrix} f_{2n+1} & f_{2n} \\ f_{2n} & f_{2n-1} \end{pmatrix}$ On the other it's $\begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \end{pmatrix}^2 = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix}^2 = \begin{pmatrix} f_n^2 + f_{n+1}^2 & f_n(f_{n-1} + f_{n+1}) \\ f_n(f_{n-1} + f_{n+1}) & f_n^2 + f_{n-1}^2 \end{pmatrix}$ Comparing the top left entry in these proves the conjecture.

6.6 (Bonus) Prove that any positive integer can be written as the sum of distinct Fibonacci numbers, no two of which are consecutive. For example, $16 = f_4 + f_7$. (In fact, every positive integer has a unique representation in this form!)

Keep playing around with this when you have a chance!