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Problem Set 6 – KEY

6.1 Recall (from Lecture 21) the notion of an equivalence relation. Decide whether each of the following
binary relations is an equivalence relation. If it is, prove it. If not, give an example of how it fails.

(a) ∼ (matrix similarity)

This is an equivalence relation, because it satisfies all three of the defining properties:

• Reflexivity. f = I−1gI, where I is the identity matrix

(
1 0
0 1

)
, whence f ∼ f .

• Symmetry. Suppose f ∼ g. Then ∃P such that f = P−1gP . But this implies that

g = PfP−1 = (P−1)−1fP−1 whence g ∼ f .

• Transitivity. Suppose f ∼ g and g ∼ h. Then ∃P,Q such that f = P−1gP and

g = Q−1hQ. It follows that f = P−1Q−1hQP = (QP )−1h(QP ), whence f ∼ h.

(b) ≤ (less than or equal to)

This is not an equivalence relation. Although it is reflexive and transitive, it is not symmetric:
3 ≤ 5 but 5 6≤ 3.

(c) ≈ (given two sets A,B ⊆ Z we write A ≈ B if and only if A and B differ by finitely many elements. For
example, {0, 1, 2, 3, . . .} ≈ {1, 2, 3, . . .} since they differ by one element, while {1, 2, 3, 4, . . .} 6≈ {2, 4, 6, . . .}
since they differ by infinitely many elements.)

This is an equivalence relation, since it satisfies the three requisite properties. Prior to
verifying these, we introduce a useful notation: let

A \B := {x ∈ A : x 6∈ B}

so that A ≈ B iff both A \B and B \A are finite.

• A ≈ A, since A \A is empty (hence finite).

• Suppose A ≈ B, so that A \ B and B \ A are both finite. It immediately follows that
B ≈ A.

• Suppose A ≈ B and B ≈ C. Then all of

A \B, B \A, B \ C, and C \B

are finite. I claim that A \ C ⊆ (A \ B) ∪ (B \ C). To see this, pick any x ∈ A \ C.
If x ∈ B, then x ∈ B \ C. If x 6∈ B, then x ∈ A \ B. Since both A \ B and B \ C
are finite, we conclude that A \C must be finite. In exactly the same way, we see that
C \A must be finite. It follows that A ≈ C.



6.2 Suppose f and g are nonsingular linear maps from R2 → R2.

(a) Show by example that fg might not equal gf .

There are many examples. One simple one is Rπ/2ρ 6= ρRπ/2.

(b) Prove that fg ∼ gf (matrix similarity).

We have fg = g−1(gf)g.

6.3 Suppose P is a nonsingular linear map, and that f = P

(
λ1 0
0 λ2

)
P−1.

(a) Prove that λ1 and λ2 are eigenvalues of f .

Let ~v1 := P (~e1), ~v2 := P (~e2). Then

f(~v) = P

(
λ1 0
0 λ2

)
P−1P (~e1) = P

(
λ1 0
0 λ2

)
(~e1) = P (λ1~e1) = λ1~v1.

Thus λ1 was an eigenvalue, and the corresponding eigenvector is P (~e1).

(b) Find (with proof) an eigenvector corresponding to λ1?

We just did this above: it’s P (~e1).

6.4 For each of the following linear functions, (i) determine all eigenvalues, (ii) for each eigenvalue, find a
corresponding eigenvector of unit length, and (iii) if possible, write down a spectral decomposition of f .

(a) f =

(
4 −1
2 1

)
(a) λ1 = 3, λ2 = 2

(b) ~v1 = 1√
2

(
1
1

)
, ~v2 = 1√

5

(
1
2

)

(c) f = B

(
3 0
0 2

)
B−1 with B =

(
1√
2

1√
5

1√
2

2√
5

)
.

(b) g =

(
0 1
1 0

)
(a) λ1 = −1, λ2 = 1

(b) ~v1 = 1√
2

(
−1
1

)
, ~v2 = 1√

2

(
1
1

)

(c) f = B

(
−1 0
0 1

)
B−1 with B =

(
−1 1
1 1

)
.

(c) h =

(
5 2
−2 1

)
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(a) λ = 3

(b) ~v = 1√
2

(
−1
1

)
(c) We have only one eigenvector, so the there is no spectral decomposition.

(d) k =

(
3 0
0 2

)
(a) λ1 = 3, λ2 = 2

(b) ~v1 =

(
1
0

)
, ~v2 =

(
0
1

)

(c) f = I

(
3 0
0 2

)
I−1

(e) f2, where f is the function from part (a) of this question.

(a) λ1 = 9, λ2 = 4

(b) ~v1 = 1√
2

(
1
1

)
, ~v2 = 1√

5

(
1
2

)

(c) f = B

(
9 0
0 4

)
B−1 where B =

(
1√
2

1√
5

1√
2

2√
5

)
.

6.5 Let fn denote the nth Fibonacci number (with f1 = f2 = 1).

(a) Determine lim
n→∞

fn+1

fn
[Hint: How big is 1−

√
5

2 ? ]

From class we know that fn =
λn
1−λ

n
2

λ1−λ2
, where

λ1 =
1 +
√

5

2
and λ2 =

1−
√

5

2

It follows that
fn+1

fn
=
λn+1
1 − λn+1

2

λn1 − λn2
Note that |λ2| < 1. Thus in the limit λn2 → 0 as n→∞, whence

lim
n→∞

fn+1

fn
= λ1.

(b) Evaluate f2n + f2n+1 for n = 1, 2, 3, 4. Conjecture a formula.

2, 5, 13, 34. Conjecture: f2n + f2n+1 = f2n+1 for all n ≥ 1.
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(c) Prove your conjectured formula. [Hint: consider

(
1 1
1 0

)2n

]

Calculate

(
1 1
1 0

)2n

in two different ways. On one hand, it’s

(
1 1
1 0

)2n

=

(
f2n+1 f2n
f2n f2n−1

)
On the other it’s((

1 1
1 0

)n)2

=

(
fn+1 fn
fn fn−1

)2

=

(
f2n + f2n+1 fn(fn−1 + fn+1)

fn(fn−1 + fn+1) f2n + f2n−1

)
Comparing the top left entry in these proves the conjecture.

6.6 (Bonus) Prove that any positive integer can be written as the sum of distinct Fibonacci numbers, no
two of which are consecutive. For example, 16 = f4 + f7. (In fact, every positive integer has a unique
representation in this form!)

Keep playing around with this when you have a chance!
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