MAT 302: LECTURE SUMMARY

We began with the following fundamental concept:

Definition (Subgroup). A subset H of a group G is called a subgroup of G, denoted $H \leq G$, if it is a group under the binary operation of G.

We came up with several examples of subgroups of \mathbb{Q}^{\times} :

(1) Q_{>0} = {α ∈ Q : α > 0} under multiplication.
(2) Q[×]
(3) {1} (the 'trivial subgroup')
(4) {±1}
(5) {..., α⁻², α⁻¹, 1, α, α², ...} where α is any nonzero rational number

We noted in passing that examples (3) and (4) above were the only finite subgroups of \mathbb{Q}^{\times} .

We next came up with examples of subgroups of \mathbb{Z} (under addition):

(1) $\{0\}$ (the trivial subgroup)

- (2) Z
- (3) the set of all even numbers, which we denoted by $2\mathbb{Z}$
- (4) the set of all multiples of 3, which we denoted by $3\mathbb{Z}$

In other words, all the subgroups of \mathbb{Z} we came up with were of the form $n\mathbb{Z}$, for some $n \in \mathbb{N} = \{0, 1, 2, ...\}$. The natural question is, are there any others? After taking some time to explore this issue, we proved the following:

Theorem 1. $H \leq \mathbb{Z}$ if and only if $H = n\mathbb{Z}$ for some $n \in \mathbb{N}$.

Proof. (\Leftarrow) This is an exercise.

 (\Longrightarrow) We are given $H \leq \mathbb{Z}$. If $H = \{0\}$, we're done. So, we might as well assume that H contains a nonzero element. This implies that H contains at least one positive element. (Why?) Among all positive elements in H, let n be the smallest one. We claim that $H = n\mathbb{Z}$.

Step 1: $n\mathbb{Z} \subseteq H$

H is a group under addition, which means that it contains both n and -n. (Why?) Also *H* is closed under addition (because it is a group!) from which the claim follows. (Make sure you can explain why.)

Date: February 1st, 2011.

Pick any $h \in H$, and suppose $h \notin n\mathbb{Z}$ (in other words, h isn't a multiple of n). This would mean that h is strictly between two consecutive multiples of n, say, qn < h < (q+1)n, which is the same as saying 0 < h - qn < n. But now we have arrived at a contradiction: on one hand, $h - qn \in H$ (why?), but on the other hand, it is positive and smaller than n. (Why is this a problem?) Therefore, every $h \in H$ is also in $n\mathbb{Z}$.

This concludes the proof.