MAT 302: LECTURE SUMMARY

Recall from last lecture that we were trying to prove that ¢(n) is a multiplicative function, i.e. that
w(mn) = ¢(m)p(n) whenever (m,n) = 1. We had realized that this would follow from finding a
bijection between Z,.  and Z, x Z. . Following a suggestion of Kiavash, we set out to prove that
the map

K L, — L XL
a—> (a (mod m), a (mod n))

is a bijection. We proved that it was injective last time, so it remained only to show surjectivity. In
other words, given any (a,b) € Z* x 7, we wish to find an x € Z  such that x(z) = (a,b).
Actually, we don’t even need to find this x explicitly: we just need to show that such an z exists.

Let’s translate this into a more concrete question. We are looking for an = € Z) such that

(D r =a (modm) and

x = b (mod n)

The trick is to realize that for any number of the form zo = ( )m + (  )n, reducing (mod m) or
(mod n) kills one of the two terms. In our case, a good choice is
o =bm tm+an'n

where m~! denotes the inverse of m (mod n) in the group Z*, and similarly for n~!. It is easily
checked that z, simultaneously satisfies both congruences (1). This is promising, but we’re not
quite done yet: we need a solution in Z ., whereas z is some random integer we’ve constructed.
This is easy to fix, however. First, since adding any multiple of mn to x( yields another solution
to (1), we see that z = x, (mod mn) is a solution in Z,,,,. Moreover, since (g, mn) = 1 (why
is this?), our lemma from last time implies that x € Z, . This completes the proof that x is a
surjective map, and therefore, that it is bijective. It follows that ¢(mn) = ¢(m)e(n) whenever
(m,n) = 1. (Where in the proof did we use that m and n are relatively prime?)

QED

Having proved that ¢(n) is multiplicative, we generated some other examples of multiplicative
functions. A simple example is the identity map I(n) = n. Actually, this function is not just
multiplicative, but is also completely multiplicative: I(mn) = I(m)I(n) for any m and n, inde-
pendent of whether or not they are relatively prime to each other. Other examples of completely
multiplicative functions we discussed were 1(n) = 1, f(n) = n?,

1 if n =1 (mod 4)
x(n) =< -1 ifn = —1 (mod 4)
0 if n is even.
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We also saw that we could ‘force’ complete multiplicativity by defining a function appropriately:
we defined a function A by setting A\(1) = 1, A\(p) = —1 for every prime p, and extending A to all
integers by setting A(mn) = A(m)A(n) for every m and n. For example,

A(12) = A(2 % 2 x 3) = A2)A2)A(3) = —1.

Thus, A(n) is completely multiplicative by definition. Finally, we talked a bit about a related
function, p(n), defined by p(1) = 1, u(n) = A(n) whenever n = pyp, - - - py, for some collection
of distinct primes p;, and 0 otherwise. For example, ;(6) = A\(6) = 1, while (12) = 0 (since 12
cannot be written as the product of distinct prime factors). In your problem set, you will explore
the multiplicativity of (n).

We ended the lecture with a brief discussion of a familiar and important result about factorization
of integers into primes:

Theorem 1 (Fundamental Theorem of Arithmetic, informal version). Any positive integer can be
factored in a unique way as a product of prime numbers.

There are several issues with this statement. First, what does ‘unique’ mean? For example, 6 =
2 x 3 = 3 x 2. Second, how does the theorem apply to the positive integer 1? It is standard
to not consider 1 as a prime, in which case it is not clear how to write it as a product of primes,
uniquely or otherwise. If we instead decide to call 1 a prime, then uniqueness begins to fail even
more dramatically than above: 6 = 2 x 1 x 3 x 1 would be considered a ‘new’ factorization of 6.
(Actually this is one of the reasons why mathematicians don’t consider 1 to be prime.)

These difficulties force us to state the fundamental theorem in an uglier (but more precise) way.

Theorem 2 (Fundamental Theorem of Arithmetic, precise version). Given any positive integer n,
there exists a unique sequence ns, nz, s, Ny, N1, . .. € N such that

n= H p"r
p
where the product runs over all primes p.

For example, we have the following factorizations:

1=2035°7911°. ..

3=203'507"11°. ..

6=2"3"57"11°- ..

9=20325"7"11°- ..

18=2'357"11°. ..

This notation is obviously somewhat redundant, but has the advantages of being precise and quite
useful. We ended the class by exploring this notation.

Proposition 3. d | n if and only if d, < n,, for every prime p.
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Proposition 4.

(a’ b) _ Hpmin{ap,bp}
p

(Can you prove these propositions?)

Theorem 5. Suppose (m,n) = 1 and d | mn. Then (d,m) x (d,n) = d.

Proof. First, by Proposition 4, we have

(d7 m) X (d7 TL) — Hpmin{dp,mp}—&-min{dp,np}‘
p

Proposition 3 tells us that d, < m,, +n, for each p. Since (m,n) = 1, we see (from the uniqueness
part of the Fundamental Theorem and Proposition 4) that for each p, either m,, or n,, must be 0.
Suppose m,, = 0 for some particular prime p. Then d, < n,, whence

min{d,, m,} + min{d,, n,} = d,.

The same holds true if instead n, = 0. Since either m,, or n, must be zero for every prime p, we

conclude that
(d,m) x (d,n) = dep =d
p



