
MAT 302: LECTURE SUMMARY

Recall from last lecture that we were trying to prove that ϕ(n) is a multiplicative function, i.e. that
ϕ(mn) = ϕ(m)ϕ(n) whenever (m,n) = 1. We had realized that this would follow from finding a
bijection between Z×mn and Z×m × Z×n . Following a suggestion of Kiavash, we set out to prove that
the map

κ : Z×mn −→ Z×m × Z×n
a 7−→

(
a (mod m), a (mod n)

)
is a bijection. We proved that it was injective last time, so it remained only to show surjectivity. In
other words, given any (a, b) ∈ Z×m × Z×n , we wish to find an x ∈ Z×mn such that κ(x) = (a, b).
Actually, we don’t even need to find this x explicitly: we just need to show that such an x exists.

Let’s translate this into a more concrete question. We are looking for an x ∈ Z×mn such that

x ≡ a (mod m) and(1)
x ≡ b (mod n)

The trick is to realize that for any number of the form x0 = ( )m+ ( )n, reducing (mod m) or
(mod n) kills one of the two terms. In our case, a good choice is

x0 = bm−1m+ an−1n

where m−1 denotes the inverse of m (mod n) in the group Z×n , and similarly for n−1. It is easily
checked that x0 simultaneously satisfies both congruences (1). This is promising, but we’re not
quite done yet: we need a solution in Z×mn, whereas x0 is some random integer we’ve constructed.
This is easy to fix, however. First, since adding any multiple of mn to x0 yields another solution
to (1), we see that x = x0 (mod mn) is a solution in Zmn. Moreover, since (x0,mn) = 1 (why
is this?), our lemma from last time implies that x ∈ Z×mn. This completes the proof that κ is a
surjective map, and therefore, that it is bijective. It follows that ϕ(mn) = ϕ(m)ϕ(n) whenever
(m,n) = 1. (Where in the proof did we use that m and n are relatively prime?)
QED

Having proved that ϕ(n) is multiplicative, we generated some other examples of multiplicative
functions. A simple example is the identity map I(n) = n. Actually, this function is not just
multiplicative, but is also completely multiplicative: I(mn) = I(m)I(n) for any m and n, inde-
pendent of whether or not they are relatively prime to each other. Other examples of completely
multiplicative functions we discussed were 1(n) = 1, f(n) = n2,

χ(n) =


1 if n ≡ 1 (mod 4)
−1 if n ≡ −1 (mod 4)
0 if n is even.
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We also saw that we could ‘force’ complete multiplicativity by defining a function appropriately:
we defined a function λ by setting λ(1) = 1, λ(p) = −1 for every prime p, and extending λ to all
integers by setting λ(mn) = λ(m)λ(n) for every m and n. For example,

λ(12) = λ(2× 2× 3) = λ(2)λ(2)λ(3) = −1.

Thus, λ(n) is completely multiplicative by definition. Finally, we talked a bit about a related
function, µ(n), defined by µ(1) = 1, µ(n) = λ(n) whenever n = p1p2 · · · pk for some collection
of distinct primes pi, and 0 otherwise. For example, µ(6) = λ(6) = 1, while µ(12) = 0 (since 12
cannot be written as the product of distinct prime factors). In your problem set, you will explore
the multiplicativity of µ(n).

We ended the lecture with a brief discussion of a familiar and important result about factorization
of integers into primes:

Theorem 1 (Fundamental Theorem of Arithmetic, informal version). Any positive integer can be
factored in a unique way as a product of prime numbers.

There are several issues with this statement. First, what does ‘unique’ mean? For example, 6 =
2 × 3 = 3 × 2. Second, how does the theorem apply to the positive integer 1? It is standard
to not consider 1 as a prime, in which case it is not clear how to write it as a product of primes,
uniquely or otherwise. If we instead decide to call 1 a prime, then uniqueness begins to fail even
more dramatically than above: 6 = 2× 1× 3× 1 would be considered a ‘new’ factorization of 6.
(Actually this is one of the reasons why mathematicians don’t consider 1 to be prime.)

These difficulties force us to state the fundamental theorem in an uglier (but more precise) way.

Theorem 2 (Fundamental Theorem of Arithmetic, precise version). Given any positive integer n,
there exists a unique sequence n2, n3, n5, n7, n11, . . . ∈ N such that

n =
∏
p

pnp

where the product runs over all primes p.

For example, we have the following factorizations:

1 = 20 30 50 70 110 · · ·
3 = 20 31 50 70 110 · · ·
6 = 21 31 50 70 110 · · ·
9 = 20 32 50 70 110 · · ·
18 = 21 32 50 70 110 · · ·

This notation is obviously somewhat redundant, but has the advantages of being precise and quite
useful. We ended the class by exploring this notation.

Proposition 3. d | n if and only if dp ≤ np for every prime p.
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Proposition 4.
(a, b) =

∏
p

pmin{ap,bp}

(Can you prove these propositions?)

Theorem 5. Suppose (m,n) = 1 and d | mn. Then (d,m)× (d, n) = d.

Proof. First, by Proposition 4, we have

(d,m)× (d, n) =
∏
p

pmin{dp,mp}+min{dp,np}.

Proposition 3 tells us that dp ≤ mp+np for each p. Since (m,n) = 1, we see (from the uniqueness
part of the Fundamental Theorem and Proposition 4) that for each p, either mp or np must be 0.
Suppose mp = 0 for some particular prime p. Then dp ≤ np, whence

min{dp,mp}+min{dp, np} = dp.

The same holds true if instead np = 0. Since either mp or np must be zero for every prime p, we
conclude that

(d,m)× (d, n) =
∏
p

pdp = d

�
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