
MAT 302: LECTURE SUMMARY

Both Alice and Bob have to compute large exponentials to implement RSA: Alice, Xe (mod N ),
and Bob, Y d (mod N ). For Bob, in particular, this is a pressing problem, since d is an enormous
(say, 100-digit-long) number, so that no computer can evaluate Y d. However, we’re not interested
in Y d, but rather, only in Y d (mod N ). So, rather than computing Y d and then reducing (mod N ),
we build the reductions into the exponentiation. For example, to evaluate 250 (mod 27), we start
with 2 and multiply it by 2, then multiply the result by 2, etc. At each stage, if the answer is larger
than 27 we reduce (mod 27). We have:

2→ 4→ 8→ 16→ 5→ 10→ 20→ 13→ · · ·

Thus, after around 50 steps,∗ we will arrive at the value of 250 (mod 27). More generally, if we
apply the same approach to computing Y d (mod N ) it will take O(d) steps. This is totally imprac-
tical, since d is enormous – no computer could perform a task requiring d steps. Thus, if RSA is to
work, we need a shortcut, a more efficient way to compute large exponentials modulo N .

There were several suggestions. Lance observed that 25 ≡ 5 (mod 27), whence 250 ≡ 510 (mod 27).
Since 52 ≡ −2 (mod 27), we have

250 ≡ 510 ≡ (−2)5 ≡ −25 ≡ −5 ≡ 22 (mod 27).

Kiavash took this idea further by noting that 2ϕ(27) ≡ 1 (mod 27), whence 254 ≡ 1 (mod 27). This
implies that 250 ≡ 2−4 (mod 27). It is easily seen that 4−1 ≡ 7 (mod 27), which shows once more
that 250 ≡ 22 (mod 27). Both these ideas are good ones, if somewhat ad hoc, and will certainly
save some time.

A third idea, suggested by Serge, is known as the Square-and-Multiply algorithm, and is an extreme
shortcut. To illustrate the idea before describing it in general, consider once again the problem
of computing 250 (mod 27). Start with 2, and square it repeatedly (reducing module 27 when
appropriate) to create the following list of numbers:

2→ 22 → 24 → 28 → 216 → 232

How does this help? Easy: 250 = 232 × 216 × 22, all three of which we computed above. More
generally, to compute Y d, start with Y , and square repeatedly to obtain the following list:

Y → Y 2 → Y 4 → Y 8 → Y 8 → · · · → Y 2k

where 2k is the largest power of 2 such that 2k ≤ d. We will show below that Y d can then be
expressed as the product of distinct elements from this list. Before doing so, we explored how
efficient this algorithm is.

Date: March 10th, 2011.
∗I use the word ‘step’ rather loosely throughout to mean a single, simple computation. More formally, one should

think of addition or multiplication of one 1 digit number by another as a basic step.
1



The number of steps to compute the list is O(k) (I’m counting each squaring as one step, and if
you’re reducing modulo N , that’s an extra step). How big is k? Well, by definition, 2k was the
largest power of 2 which was ≤ d, i.e. 2k ≤ d < 2k+1. Taking logarithms yields

k ≤ log2 d < k + 1.

But this is exactly the same as saying that k = [log2 d] (make sure you understand why). Thus,
the number of steps in the Square-and-Multiply algorithm is O([log2 d]) = O(log2 d) = O(log d).
This is pretty terrific compared to our original approach, which took O(d) steps. For example, if d
is a 100-digit number, then the original algorithm takes a ridiculously huge (undoable) number of
steps, whereas Square-and-Multiply takes on the order of 100 steps, which is extremely doable.

OK, so Square-and-Multiply is super fast, but how do we know that it will always work? Sure, we
happened to be able to write 250 = 232×216×22, but how do you know that it’s always possible to
write Y d as the product of a bunch of distinct numbers of the form Y 2`? This is the same as asking
whether d can be written as the sum of a bunch of distinct powers of 2. (Note that if we remove
the word distinct, this becomes trivial: just write d as the sum of a bunch of 1’s!) Inspired by ideas
of Scott and Kiavash, we proved the following:

Proposition 1. Any positive integer n can be written as the sum of distinct powers of 2.

Proof. We proceed by induction. Base case: the proposition clearly holds for n = 1 and n = 2.

Suppose the claim holds for every positive integer < n. We show that it must hold for n as well,
thus completing the proof. There are two cases:

(1) n is even

Then n = 2k for some integer k. Since k < n, we can write k as the sum of distinct
powers of 2. But then n = 2k is also the sum of distinct powers of 2!

(2) n is odd

Then n = 2k + 1 for some integer k. Once again, since k < n, induction tells us
that k can be written as the sum of distinct powers of 2. It follows that n = 2k + 1
can be, as well.

�

We finished off the class by trying to formalize the notion of an easy or a hard problem. One exam-
ple of an easy problem is adding two D-digit numbers together; this takes O(D) steps. Another is
multiplying two D-digit numbers together; this takes O(D2) steps. Note that both these examples
have very few steps involved: if the numbers we’re adding (or multiplying) are 100 digits long,
then we only need about 100 (or 10,000) steps, easily handled by a computer. By contrast, I’ve
kept referring to factoring as a hard problem. Why is this? Suppose we wish to factor an RSA
number N = PQ, where P and Q are (secret) primes. How could we do this? Note that one of P
or Q must be less than

√
N , so it suffices to test whether N is divisible by every odd number up

to
√
N . This approach takes O(

√
N) steps, which seems pretty good – just like the easy problems

2



above, the number of steps is a power of the size of the input. Actually, this is deceptive, as is
easily seen by imagining that N is huge – say, 200 digits long – and observing that the algorithm
requires a vast (and totally unrealistic) number of steps. To put this algorithm on the same footing
as those for addition and multiplication, we calculated the number of steps in terms of the number
of digits of N . Say N is D digits long. Then N = O(eD) – why is this? – whence the number of
steps required to factor N = PQ is O(eD/2). We will return to this topic next lecture.

3


