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Abstract. We present three results of number theory that all have classical roots, but also
modern aspects. We show how to (1) systematically count the rational numbers by iterating
a simple function, (2) find a representation of any prime congruent to 1 modulo 4 as a sum
of two squares by using simple properties of involutions and pairs of involutions, and (3) find
counterexamples to Euler’s conjecture that a fourth power can never be the sum of three fourth
powers by using properties of quadratic polynomials with rational coefficients.

This paper consists of three parts—of varying authorship, style, and length—having
in common only that each of them relates to the talks on number theory given by
the third-named author at the Bremen Summer School in 2011, that each describes a
new aspect of a classical topic of number theory, and that each of them, we hope, will
entertain and edify the reader. The first section, called “Counting the Rationals,” had its
origin in a very small part of the Bremen talks in which the speaker briefly described a
beautiful construction that he had once been shown (but whose provenance or inventor
he did not even know), that permitted a systematic walk through the positive rationals,
starting at 0 and at each step following the simple and systematic rule

x 7→ 1

2bxc + 1− x
(bxc = integer part of x)

to get to the next number. This inspired the first-named author, who at 13 was the
youngest participant in the Summer School, to write an extensive essay working out a
detailed proof and various further properties of this surprising construction. This essay
was submitted to the German competition “Jugend Forscht,” where it won the first
prize at the Junior Level, and the first section of the current paper is a reworking of
it by the first two authors. The second section, written by the second two authors, is
an interlude on involutions and their use in number theory, suggested by an observed
similarity between a much earlier article by one of us (giving a super-short, though
far from transparent, proof of Fermat’s famous theorem that every prime of the form
4k + 1 is a sum of two square numbers) and the argument used in the first section
on counting rationals. Finally, the third (and longest) section, subtitled “A Cautionary
Tale” because it includes not just one, but two salutary lessons for aspiring number-
theorists, was written by the third author alone some 25 years ago, but not published at
the time. It tells the story of a very famous wrong conjecture in number theory made by
the great Euler himself in 1769 and of its very-very-nearly-simultaneous disproof by
two people, working independently of one another, some 220 years later. Apart from
also having been presented at the Bremen lectures, this third section has little to do
with the others beyond the fact that Euler’s conjecture was an attempted generalization
of Fermat’s Last Theorem, which itself grew out of Fermat’s study of sums of two
squares. But, as we have said, the only true common theme of the three parts of the
paper is that each presents a piece of number theory that we hope the reader will find
accessible, instructive, and enjoyable.
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PART I. COUNTING THE RATIONALS.

1. INTRODUCTION. The goal here is to breathe new life into the following hoary
theorem.

Theorem 1. The rational numbers are countable.

In other words, there is a bijection from the natural numbers to the rationals. This
result, originally proved by Cantor in 1873, is of course very well known. The standard
proof involves representing the rational number p/q (with p ∈ Z, q ∈ N) by the point
(p, q) in the upper half plane, then finding a zig-zag path through all points in the half
plane with integer coordinates, forgetting all those where p and q are not coprime, and
listing all remaining integer points (p, q) in the order visited.

This of course yields a bijection, but it is not very explicit: How can a path through
the half plane be described explicitly most easily, and how often do we visit non-
coprime fractions that should be ignored? What is the rational number immediately
after, or before, a given number? Finally, what is the 25th rational number in this
bijection, or which natural number does the fraction 5/17 correspond to?

We will now describe a different bijection between natural and rational numbers
that seems much “nicer.” Even though it has old roots, it was discovered relatively
recently, and it is also known and documented in the literature, most prominently in [1].
However, it does not seem to be as well known among mathematicians as it deserves
to be; at the Bremen summer school, when this bijection was presented, it was known
to very few people and raised significant interest.

One version of our main result can be stated as follows. It was discovered only a
few years ago by Moshe Newman, solving a problem posed by Donald Knuth [4] that
was based on a paper by Neil Calkin and Herbert Wilf [2].

Theorem 2. The map

S(x) = 1

2bxc − x + 1
(1)

has the property that among the sequence S(0), S(S(0)), S(S(S(0))), . . . every positive
rational number appears once and only once.

Therefore, if we write Sn(x) for the nth iterate of S, then we obtain an explicit
bijection F : N→ Q+ by F(n) = Sn(0). (We use the convention N = {1, 2, 3, . . .}.)
We will try to explain that this bijection can be found in a rather natural way and show
some of its many beautiful properties.

Note. The sequence through the (positive) rationals is implicit in the work of Stern
in 1858 [6], but this was before Cantor’s work, so at the time nobody had thought of
the concept of countability of the rationals. See also [5].

2. THE EUCLID TREE. Our first step is to arrange the coprime pairs (p, q) ∈ N×
N in the form of a simple dyadic tree, so that this tree will represent all numbers
p/q ∈ Q+ exactly once.

Given a pair (p, q) ∈ N× N, the way to find out whether it is coprime is to apply
Euclid’s algorithm:

• if p = q , then the pair is coprime if p = q = 1 and not if p = q > 1;
• if p 6= q , then replace (p, q) by (p, q − p) if p < q , or by (p − q, q) if p > q ,

and repeat the procedure.
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In other words, we keep subtracting the smaller from the larger number until both are
equal, and once that is the case, then the resulting number is the greatest common
divisor of the original numerator and denominator.

Turning this around, each pair (p, q) has exactly two predecessors (p, p + q) and
(p + q, q) under the Euclidean algorithm, and if we start with the pair (1, 1) and write
the two predecessors under each point, with the smaller one on the left, we obtain an
infinite tree that contains exactly those points (p, q) with coprime p, q , and each of
these pairs appears exactly once (because the tree encodes the unique path from (p, q)
to (1, 1) under the Euclidean algorithm).

Since we know that all points (p, q) have coprime p and q , we can represent them
as x = p/q . This means the tree is generated by starting with a “root” x = 1 and then
applying the rule

x = p/q

x/(x + 1) = p/(p + q) x + 1 = (p + q)/q

A0 A1
(2)

recursively to each vertex. This generates a tree that we will call the Euclid tree and
that contains all positive rationals exactly once; its first few lines are shown in the
figure below. (This tree goes back essentially to the work of Stern in 1858 [6] and
was publicized more recently by Calkin and Wilf in [2]; it is sometimes called the
Calkin-Wilf-tree.)
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1/3

1/4

1/5

1/6

5/4

4/3

4/7 7/3

3/2

3/5

3/8 8/5

5/2

5/7

5/12

7/2

2/1

2/3

2/5

2/7 7/5

5/3

5/8 8/3

3/1

3/4

3/7 7/4

4/1

4/5 5/1

6/1. . . . . .

Observe that for any number x = p/q, the rightmost (and largest) daughter after n
generations is (p + nq)/q = x + n, and quite symmetrically the leftmost (and small-
est) daughter is p/(np + q) = x/(nx + 1).

3. A SEQUENCE THROUGH THE POSITIVE RATIONALS. In order to find a
sequence that visits all rationals exactly once, we can simply march through the Euclid
tree “breadth first,” i.e., line by line, so we get the sequence

n 1 2 3 4 5 6 7 8 9 10 11 · · ·
F(n) 1 1

2 2 1
3

3
2

2
3 3 1

4
4
3

3
5

5
2 · · ·

(3)
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This solves the first problem in the original approach: We have a natural way of
marching through the positive rationals, and we don’t have to worry about duplicates
and omitting those that are not in lowest terms.

It turns out that our second goal, specifying this sequence explicitly, is just as easy:
There is a simple way to go from any rational number in the sequence to the next.

To see this, consider any vertex x in the Euclid tree with its two daughter vertices
x/(x + 1) and x + 1, so if we set y = x/(x + 1) as the left daughter, then the right
daughter is x + 1 = 1/(1− y); this gives a simple formula to go from one rational to
the next in our sequence, provided the initial number is a “left daughter.” Note that in
this case we have 0 ≤ y < 1 and hence byc = 0, so the successor 1/(1 − y) of y is
indeed given by (1).

Now suppose we are at some right daughter y and want to find the successor in the
sequence (i.e., the rational number to the right of it in the tree). This depends on how
many generations ago the two fractions have a common parent; let k be this number
of generations. (For instance, the fraction 7/3 and its successor 3/8 have k = 3.)
Let x = p/q be the common parent k generations ago. The number y is generated
from p/q by taking the “left daughter” p/(p + q), followed by taking (k − 1) “right
daughter steps,” so

y = p + (k − 1)(p + q)

p + q
= k − 1+ p

p + q
. (4)

Similarly, the successor to y is constructed from p/q by taking one right daughter
step, then k − 1 left daughter steps. This is the number

z = p + q

q + (k − 1)(p + q)
= 1

q
p+q + (k − 1)

. (5)

But how can we go from y to z? Observe that k − 1 = byc and

p

p + q
= y − byc.

So we simply have

z = 1

1− (y − byc)+ byc =
1

2byc − y + 1
= S(y). (6)

(We observe that the case we considered first, when y = x/(x + 1) and z = x + 1
were the left and right daughters of the same parent, is just the special case k = 1 of
this argument.)

All this works within each line of the tree; we still have to consider the case that y
is the last number within one line, so y = n is an integer. The successor of n should be
1/(n + 1), and luckily this is just what our formula (1) produces.

Miracle or not: This concludes the proof of Theorem 2.

4. FINDING THE POSITION OF A GIVEN FRACTION. We promised a simple
algorithm to tell at which position in our sequence a given positive rational num-
ber is, and vice versa. We had defined a bijection F : N→ Q+ by setting F(n) =
Sn(0), where S is the “successor function” defined by (1). Denote the inverse of F by
N : Q+→ N, giving the position in the sequence for any positive rational. Since every
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vertex in the Euclid tree has two daughter vertices, the positions in the sequence are as
follows:

x

x/(x + 1) x + 1

A0 A1

N

2N 2N + 1

B0 B1

where in the diagram on the right-hand side we indicated at which position in the
sequence the numbers on the left are. If a vertex in the tree has a rational number x
that is at position N in the sequence, then its left daughter vertex has value A0(x) =
x/(x + 1) < 1 and position B0(N ) = 2N , while the right daughter vertex has value
A1(x) = x + 1 > 1 and position B1(N ) = 2N + 1.

This leads to the recursive formula

N (x) =


1 if x = 1,
2N (x/(1− x)) if x < 1,
2N (x − 1)+ 1 if x > 1.

Note that as this definition is applied recursively, the successive arguments of N per-
form the Euclidean algorithm of the pair (x, 1) (or of (p, q) when x = p/q). Given an
x ∈ Q+, the Euclidean algorithm allows us to express it as x = Air . . . Ai1(1), where
r is the number of steps that need to be performed—or equivalently, that x is in line
r + 1 of the tree (counting so that 1/1 is in line 1). The position N (x) then satisfies

N (x) = N (Air . . . Ai1(1))

= Bir . . . Bi1(1)

= 2r + 2r−1i1 + 2r−2i2 + · · · + ir

= (1, i1, . . . , ir )2 (7)

so we immediately get the binary decomposition of N .
We illustrate this by a simple example, say p/q = 5/12. By running the Euclidean

algorithm, we obtain

(5, 12) 7→ (5, 7) 7→ (5, 2) 7→ (3, 2) 7→ (1, 2) 7→ (1, 1).

Since this ends in (1, 1), we have verified that indeed 5 and 12 are coprime. We know
further that 5/12 is in line r = 6 of the tree, and hence between positions 2r−1 = 32
and 2r − 1 = 63. In binary, we are between positions 1000002 and 1111112. In each of
the five steps of the Euclidean algorithm, we had to subtract from either the numerator
or denominator. This means in the tree that we had to choose either the left or the right
branch, and as this chooses the left or right half of the remaining tree below the current
node, this specifies one binary digit of N (keep in mind that the Euclidean algorithm
traverses the tree from x up to 1, so the binary digits of N are produced in reverse
order). In our case, the order of branches from the top down to 5/12 is LRRLL, so
N (5/12) = 1011002 = 44, as the reader can verify by looking at the beginning of the
Euclid tree as given in §2.

The converse is equally straightforward: To find F(44), we write 44 = 101 1002,
and then F(44) = A0(A0(A1(A1(A0(1))))) = 5/12.
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This method is very efficient and works well even in much less trivial cases, es-
pecially if we speed up the Euclidean algorithm by subtracting the smaller number
from the larger one as often as possible. For instance, for the fraction 332/147, this
accelerated algorithm looks like

(332, 147)
A−2

17−→ (38, 147)
A−3

07−→ (38, 33)
A−1

17−→ (5, 33)

A−6
07−→ (5, 3)

A−1
17−→ (2, 3)

A−1
07−→ (2, 1)

A−1
17−→ (1, 1)

(Remark: this is nothing other than the continued fraction expansion

2+ 1/(3+ 1/(1+ 1/(6+ 1/(1+ 1/(1+ 1/(1+ 1))))))

of 332/147), so

N

(
332

147

)
= B2

1 B3
0 B1 B6

0 B1 B0 B1(1) = 11010000001000112 = 53283.

Note that, despite the somewhat mysterious appearance of the formula in (1), our
sequence of rational numbers is actually completely determined by the Euclidean algo-
rithm, specifying the position of p/q by a binary coding of the steps in this algorithm,
so it is in fact a very natural sequence.1 It is surprising that it was discovered only quite
recently. This shows that even today and even at an elementary level, mathematics still
provides room for interesting discoveries!

5. FURTHER PROPERTIES OF OUR TREE AND SEQUENCE. The Euclid
tree and our iteration sequence have many further interesting properties. We already
noted that, essentially by construction, the r th line of the tree consists of those numbers
that take r − 1 steps in the Euclidean algorithm to land at (1, 1). A similar observa-
tion is that, when writing any fraction p/q (as always in lowest terms) as a continued
fraction

p

q
= a0 + 1

a1 +
1

a2 + . . . +
1

ak

,

then a0 + a1 + · · · + ak equals the number of the line, so all fractions in a given line
have the same sum of their continued fraction entries.

So we understand which rational numbers are in which lines; but how are these
numbers ordered within the line? Here is the answer.

Theorem 3. The 2r−1 numbers in line r in the Euclid tree are ordered as follows:
Label these 2r−1 numbers x0, . . . , x2r−1−1 and for k ∈ {0, . . . , 2r−1 − 1} denote by
ϕ(k) ∈ {0, . . . , 2r−1 − 1} the position of xk when these numbers are reordered by in-
creasing size. Then the binary representation of ϕ(k) equals that of k in reverse order
of binary digits (as binary numbers with r places).

1We did have one choice: The order of the two lower vertices in (2) (or equivalently whether to traverse
the lines of the Euclid tree left to right or right to left). The other choice would lead to a different sequence of
fractions with successor function: x 7→ 2b1/xc − 1/x + 1.
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For example, the number 3/8 is in line 4 and it has position 4 = 01002 from the left
(starting the count at 0), so ordered by size it should have position 00102 = 2 (starting
at 0 again): Indeed, the smallest numbers in this line are 1/5, 2/7, 3/8, 3/7 . . . .

To see that this is true, observe that the left daughter in the tree of p/q is
p/(p + q) < 1, while the right daughter is (p + q)/q > 1. All even numbered el-
ements of our sequence are thus smaller than all odd numbered ones: The least
significant bit in the position within any line is the most significant bit when ordering
by size. Similarly, among the odd elements in the sequence (those with last position
bit 1), the elements are greater than 2 if and only if the last two bits are 11 (so we have
a right daughter of a right daughter), and they are less than 2 if the last two bits are 01
(for a right daughter of a left daughter). Similar arguments hold for all bit sequences,
and this proves our observation.

The Euclid tree is constructed in a symmetric way: Reflecting it horizontally (inter-
changing left and right) interchanges the number p/q with q/p. This gives a simple
way to find the predecessor P(x) of any rational number x = p/q in our sequence:
Reflect horizontally, find the successor, and reflect back. In other words, the predeces-
sor of x is P(x) = 1/S(1/x). There is an exception if a line break gets in the way: The
first number in line n is 1/n, and its predecessor is simply n − 1. This can be verified
easily.

It is not hard to give an explicit formula for the inverse P of S. If y = S(x) =
1

2bxc−x+1 , then 1/y − 1 = 2bxc − x , and from this it is easy to check that x = −1/y −
1+ 2d1/ye. (This agrees with our previous formula P(y) = 1/S(1/y) if we observe
that the exceptional case occurs when 1/y is an integer, so that d1/ye = b1/yc.) We
can also write the formula for P as

P(y) = −1/y − 1− 2b−1/yc. (8)

We will discuss where this comes from in Part II.
This backwards iteration can be applied beyond the fraction 1/1 that we initially

started with. We obtain

· · · 7→ 2
P7→ 1/2

P7→ 1
P7→ 0

P7→ ∞ P7→ −1
P7→ −2

P7→ −1/2 7→ · · · .

The backwards iteration naturally runs through 0, then∞, and then visits all negative
rationals in a similar order as the positive ones: If x /∈ Z, then it is easily checked
that S(−x) = −S(x), so every line of our “positive” tree becomes a line in the “neg-
ative” tree that is traversed in the same order. However, while S(n) = 1/n for in-
tegers n > 0, we have S(−n) = −1/(n − 1), so when S has traversed a line in the
“negative” Euclid tree, it jumps to the previous line, until it eventually comes to

−1/2
S7→ −2

S7→ −1
S7→ ∞ S7→ 0

S7→ 1 7→ · · · and then traverses the “positive” tree
as described above. Together, this provides a simple and natural bijection between Q
and Z r {0}, or between Q ∪ {∞} and Z. In a more erudite language, we can say that
the maps S and P = S−1 define an action of the group Z on the set P1(Q) = Q ∪ {∞}
and that this action is simply transitive, i.e., is free and has only one orbit.

Among the many interesting properties of the tree and the sequence, let us mention
one more.

Theorem 4. Any two successive fractions pk/qk and pk+1/qk+1 have the property that
pk+1 = qk .
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Proof. This follows immediately from equations (4) and (5) (observing that the in-
ductive hypothesis that p and q are coprime implies that both fractions are already in
lowest terms).

Therefore, our sequence of fractions is already determined by the sequence (qk) of
denominators. That sequence has in fact been known for a long time under the name
of Stern’s diatomic sequence, and it has various nice properties. Our denominators are
defined so that they satisfy the simple recursive relation q2k = qk + qk−1 (left daugh-
ters) and q2k+1 = qk (right daughters), together with the initial conditions q1 = 1 and
q0 = 1; these define the sequence qk completely.

The sequence (qk) can be interpreted as the number of different representations of
k as sums of powers of two, subject to the condition that each power of two be used
at most twice (if we are allowed to use each power of two only once, we get the usual
binary decomposition of k, and this is unique). For instance, 5 = 4+ 1 = 2+ 2+ 1
has two representations, while 6 = 4 + 2 = 4 + 1 + 1 = 2 + 2 + 1 + 1 has three,
and 7 = 4+ 2+ 1 has a unique such decomposition. Thus q5 = 2, q6 = 3, and q7 =
1. This is also seen easily: Any such representation of an odd number 2k + 1 must
involve a single term 1 and all other summands must be even, whence q2k+1 = qk . Any
representation of 2k either has no 1 term or two 1 terms. Striking the last binary zero
in the remaining terms, we obtain a representation of k or of k − 1, respectively. This
shows indeed q2k = qk + qk−1 as required.

Our sequence of denominators 1, 2, 1, 3, 2, 3, 1, 4, . . . represents the Euclid tree,
and thus our sequence of fractions completely. In particular, each pair (p, q) of co-
prime positive numbers must appear exactly once in this sequence as subsequent en-
tries.

Many more interesting properties can be discovered in this context, and we invite
the readers to explore these!

PART II. AN INTERLUDE ON INVOLUTIONS.

6. INVOLUTIONS AND FERMAT’S THEOREM ON SUMS OF 2 SQUARES.
In this section, we will recall an argument given by one of us many years ago in
which a simple property of involutions was used to give a very short, albeit not very
transparent, proof of Fermat’s famous theorem on sums of two squares.

Theorem 5. Every prime p ≡ 1 (mod 4) is the sum of two squares.

We then show how an idea about pairs of involutions can be used to make this proof
effective and somewhat more comprehensible.

We begin by reviewing some basic notions and terminology. An involution on a
set X is a bijection from X to itself that is equal to its own inverse. Thus an involution α
sends each point P of X to a point Q = α(P) also belonging to X in such a way that
applying α to Q brings one back to the starting point P . Of course, it may happen
that Q = P . In this case, we call P a fixed point of α. The set of all fixed points
of α is denoted by Fix(α). If this set is empty, the involution α is said to be free. As
an example, the action of α on X r Fix(α), the complement of its fixed-point set, is
always free.

Since a set X with a free involution gets partitioned up into disjoint pairs of points
(P, α(P) = Q 6= P), it is clear that if X is finite then it must necessarily have an
even cardinality. Combining this general observation with the previous remark about
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X r Fix(α), we see that the cardinality of the fixed point set of any involution on a
finite set X has the same parity as the cardinality of X itself: They are both odd or
both even. In particular, this parity is independent of the involution, so that (denoting
cardinality by “#”) we have the following useful principle.

Principle 1. If α and β are two involutions on the same finite set, then

#Fix(α) ≡ #Fix(β) (mod 2). (9)

As a special case, since 1 is odd and 0 isn’t, we have the following.

Principle 2. If α and β are involutions on the same finite set, and if α has exactly one
fixed point, then β has at least one fixed point.

In [7], Principle 2 was used to give an ultra-short (“one-sentence”) proof of Fer-
mat’s famous theorem that any prime number of the form p = 4k + 1 is a sum of two
integral squares. This proof, which was a stripped-down-to-the-bare-essentials version
of previous much longer proofs by Liouville and Heath-Brown, went as follows. Take
X to be the (clearly finite) set

X = X (p) = {(a, b, c) ∈ N3 | p = a2 + 4bc}, (10)

and define the first involution α on X by the rather complicated formula2

α : (a, b, c) 7→


(a + 2c, c, b − a − c) if a < b − c,
(2b − a, b, a − b + c) if b − c < a < 2b,
(a − 2b, a − b + c, b) if a > 2b,

(11)

and define the second involution β by the much simpler formula

β : (a, b, c) 7→ (a, c, b). (12)

Then α is easily seen to have the unique fixed point3 (1, 1, k), and the fixed point
of β whose existence is ensured by Principle 2 is our desired solution of the equation
p = a2 + 4b2.

However, this proof, though leaving little to be desired in terms of brevity, has
two defects. First of all, the definition (11) is complicated and unmotivated. We can
do nothing about this. (As mentioned, the proof was constructed by taking earlier
and more natural constructions by Liouville and Heath-Brown and then artificially
removing and inserting extra bits of sets to get down to a final formula that could be
presented in one sentence.) But apart from this, the proof is, on the face of it, totally
non-effective: One knows that the involution β must have a fixed-point, but apparently
has no idea where. (Indeed, fixed-point theorems, of which there are many in topology
and in functional analysis, are the standard example of intrinsically non-constructive
proofs in mathematics.) But actually—as both the author and several readers of [7]
noticed after its publication—this is not the case. Principle 2 can be refined to give an
algorithmic way to obtain a fixed-point of β from the fixed-point of α, and applying

2Of course, one has to check that α is always defined, maps X to itself, and is its own inverse, but each
of these verifications is straightforward. (For the last, one notices that the first and third cases in (11) are
interchanged, and the second case preserved, when one iterates α.) A more detailed exposition than the one
given here can be found in [1].

3It is only here that we use that p ≡ 1 (mod 4); if p were congruent to −1 modulo 4, then the argument
would break down, and indeed it is easy to see that in that case p is not a sum of two squares.
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this refined principle to the special situation of the involutions (11) and (12) gives an
entirely effective, although not very efficient, way to find the decomposition of a prime
number p = 4k + 1 into two squares.4 We discuss this in the next section.

7. PAIRS OF INVOLUTIONS. Suppose we are given any two involutions α and β
on a finite or infinite set X , and a fixed point of one of them. What can we then do?
In the game of bridge there is a useful (and, by the way, completely mathematical)
principle called the “principle of restricted choice” that can be very helpful when one is
faced with making a delicate decision. Here we are in the even more fortunate situation
of having no choice at all. Since all that has been given to us is a pair of involutions
and a fixed point P of, say, α, all that we can really do is to look at the point P and
try applying the involutions. And applying α is pointless, since it merely leaves us
at our starting point, so actually the only thing we can do is apply β. This gives a
new point, say Q, and again we have no choice at all on how to proceed: This time
applying β is pointless, since it would just bring us back to P again, and we have no
other involutions to apply except α, so we apply α to Q to get a third point R. To this
point, we can only apply β again, and so forth. If the set X is infinite, this process
may perfectly well continue forever—we will see an example of this below—but if
it is finite then “something must give”: If we number our sequence (P, Q, R, . . .)
more intelligently as (P0, P1, P2, . . .), then the finiteness of X implies that for some
n the successor of Pn must for the first time be a point that is already on the list.
That successor cannot be P0 (unless n = 0 and the initial point P happened to be a
fixed point of β as well as of α), because then Pn would coincide with P1 and its
successor would not be the first occurrence of a repetition, and it cannot be Pm for
any m strictly between 0 and n, since then Pm would have three distinct images Pm−1,
Pm+1 and Pn under only two involutions, so it must be Pn itself. In other words, we
must eventually get to a point Pn that is distinct from P0 = P (unless P was a fixed
point of both α and β) and that is itself a fixed point of either α or β, depending on
which involution was used to get us from Pn−1 to Pn (or equivalently, whether n is
even or odd).

To state the conclusion we have reached more formally, let us denote by F the
disjoint union of Fix(α) and Fix(β) (as opposed to their union as subsets of X ; this
means that any points of X that happen to be fixed points of both α and β will be
counted twice in F ). Then we have constructed a free involution on F , namely, the
map ρ that assigns to the initial fixed point P = P0 the final point Pn of the chain
of successive images of P under alternating applications of the involutions α and β.
(It is an involution because if we start with Pn , then we simply go down the same
chain backwards and end up at P0. It is free because even in the limiting case when our
initial point P = P0 happened to be a fixed point of both involutions, so that n = 0 and
Pn = P0, the points P0 and Pn coincide as elements of X but are counted as distinct
elements of F , the first belonging to Fix(α) and the second to Fix(β).) Summarizing,
we have proved the following.

4The difference between “effective” and “efficient” can be illustrated clearly by contrasting the method
explained in §7 with another method to solve the same problem. Choose a “random” number n (mod p) and
raise n to the kth power mod p (this can be done very quickly by a small number of multiplications mod p by
writing k in binary). Half the time this will equal±1 (mod p), but half the time it will give a solution i of i2 ≡
−1 (mod p). Then if we apply the Euclidean algorithm to get a sequence of numbers p, i, j, . . . , x, y, . . . , 1, 0,
with x and y being the first two numbers less than

√
p, one can show that x2 + y2 = p. This is extremely

efficient, typically taking time of the order of log p, rather than
√

p like the method we describe, but it is not
effective because the step “choose a random number” cannot be implemented by an algorithm that guarantees
success in a short time.
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Principle 3. Let α and β be two arbitrary involutions on a finite set X . Then there is a
canonically defined free involution ρ on the disjoint union of the fixed-point sets of α
and β.

Notice that this principle refines Principle 1, because if a finite set admits a free
involution, then its cardinality has to be even, and the cardinality of F is the sum
of the cardinalities of Fix(α) and Fix(β). And it also leads to an effective version
of Principle 2, because if α has a unique fixed point P , then ρ(P) is necessarily a
fixed point of the other involution β. In particular, we now have an effective version
of Fermat’s two-squares theorem, by taking X , α and β as in (10), (11), and (12) and
applying ρ to the fixed point (1, 1, k) of α to obtain a fixed point of β. As an example,
consider the prime p = 73 = 4k + 1 with k = 18. The successive images of the fixed
point (1, 1, 18) of α under successive applications of the involutions β and α are

(1, 1, 18)
β7→ (1, 18, 1)

α7→ (3, 1, 16)
β7→ (3, 16, 1)

α7→ (5, 1, 12)
β7→ (5, 12, 1)

α7→ (7, 1, 6)
β7→ (7, 6, 1)

α7→ (5, 6, 2)
β7→ (5, 2, 6)

α7→ (1, 9, 2)
β7→ (1, 2, 9)

α7→ (3, 2, 8)
β7→ (3, 8, 2)

α7→ (7, 2, 3)
β7→ (7, 3, 2)

α7→ (1, 6, 3)
β7→ (1, 3, 6)

α7→ (5, 3, 4)
β7→ (5, 4, 3)

α7→ (3, 4, 4),

landing at a fixed point of β as promised and giving the desired decomposition 73 =
32 + 4 · 42 = 32 + 82.

Let us look at this argument and this example a little more closely. The reasoning
we used to prove Principle 3 actually gives a complete description of the set of orbits
of a finite set X under the action of the group of permutations of X generated by two
involutions α and β: These orbits are either paths connecting two fixed points P and
ρ(P) of the two involutions α or β (including the degenerate case when P = ρ(P) is a
fixed point of both involutions and the “path” reduces to a single point), or else cycles
of even length in which pairs of adjacent elements are interchanged alternately by α
and by β. In the numerical example for p = 73 just given, the 21 elements of X (p)
form a single orbit, which is a path going from the unique fixed point (1, 1, 18) of α to
the unique fixed point (3, 4, 4) of β. The same thing happens for all primes p = 4k + 1
less than 229, but for this prime we find two orbits, a path of length 15 connecting the
unique fixed point (1, 1, 57) of α to the unique fixed point (15, 1, 1) of β and a cycle of
length 14 whose elements are related alternately by α and β. Without going into further
detail, we mention that this is connected with—indeed, equivalent to—the fact that the
quadratic number field Q(

√
229) has class number bigger than one, i.e., that unique

prime factorization fails to hold in this field.5 A famous conjecture due to Henri Cohen
and Hendrik Lenstra says that this property holds for only about 11% of all primes of
the form p = 4k + 1, which means that almost 90% of the time our algorithm for
decomposing p into squares is maximally inefficient, forcing us to look at every single
element of X before finding the one that we care about!

Finally, we note that our arguments apply equally well to the case of infinite sets X
and give a complete description of the possible shapes of all orbits of X under the
group generated by two arbitrary involutions α and β. These orbits are either paths

5In general, the class number h of Q(√p) is an odd integer and the set X (p) will decompose into one path
joining the unique fixed points of α and β and (h − 1)/2 cycles of even length.
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of finite length joining a fixed point P of one of the involutions to another such fixed
point ρ(P) (which may coincide with P if P was a fixed point of both involutions),
or else cycles of even finite length as before, or else semi-infinite paths that start at a
fixed point of α or β and then continue infinitely in one direction by applying the two
involutions in alternation, or else doubly infinite paths in which all points are obtained
from any initial point by applying the two involutions in alternation.6

A nice example of this is provided by the construction that was described in the
section on “counting rationals”. Here we take for X the set Q ∪ {∞} and for α and β
the two maps from X to itself defined by

α(x) = −1

x
, β(x) = x − 2bxc − 1 (13)

(with the obvious interpretations α(0) = ∞, α(∞) = 0, β(∞) = ∞). It is clear that α
is an involution without any fixed point. The map β is also an involution (because
if x ∈ Q has integer part n, then β(x) = x − 2n − 1 has integer part −n − 1, so
β(β(x)) = x − 2n − 1− 2(−n − 1)− 1 = x), and has no fixed points except∞ (be-
cause if x ∈ Q, then x and β(x) differ by an odd integer). The map S defined in (1)
is just the composite α ◦ β of these two involutions. This makes it evident that S is a
bijection, with inverse given by P = S−1 = (α ◦ β)−1 = β−1 ◦ α−1 = β ◦ α, explain-
ing formula (8). The set F = Fix(α) ∪̇ Fix(β) in this case consists of a single point
{∞} = Fix(β) (here F need not have even cardinality because X is not finite!), and
the entire analysis given in Part I can be summarized as saying that the set Q ∪ {∞}
consists of a single orbit under the action of the group generated by α and β, this orbit
being a semi-infinite line starting at∞ and proceeding by applying the two involutions
alternatingly, as illustrated by the following picture.

. . . − 1
2 −2 −1 ∞ 0 1 1

2 2 . . .

β β β β β

α
α α α

(Note that while the straight line shows a bi-infinite orbit, the common orbit of α and
β is semi-infinite starting at∞.)

PART III. ON EULER’S CONJECTURE: A CAUTIONARY TALE

8. AN ILL-FATED CONJECTURE. . . In this last part of the paper (written, as
already mentioned, by the third author alone some 25 years ago, and hence told in the
first person), I will tell the story of the equation

z4 = x4 + y4 + w4 (14)

6The reader may recognize a certain similarity to the proof of the famous Schröder-Bernstein theorem,
stating that if any two sets A, B have an injection α : A → B and an injection β : B → A, then there is a
bijection from A to B: This theorem is proved by considering iterated preimages of α and β and partitioning

A
·∪ B into orbits.
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and of my own encounter with it. This is a very famous Diophantine equation, because
it was the subject of a conjecture of Euler’s that survived for nearly a quarter of a
millennium before finally being disproved. The story has both amusing and instructive
aspects.

The origin of equation (14) is as follows. Euler knew of Fermat’s famous “last
theorem” asserting that no nth power of a positive integer is the sum of two nth powers
of integers if n > 2, and had himself given a proof (although opinions differ today
whether it was complete) of the correctness of this assertion for n = 3. Trying to “go
Fermat one better,” he conjectured that in fact an nth power can never be decomposed
into the sum of fewer than n nth powers, i.e., that the equation

xn
1 = xn

2 + · · · + xn
n (15)

has no non-trivial solutions in non-negative integers. This conjecture remained open
until 1967, when Lander and Parkin found the counterexample

1445 = 275 + 845 + 1105 + 1335 (= 61 917 364 224)

for n = 5 by a direct computer search (that can now be performed on a desktop com-
puter in under 3 minutes). However, the seemingly simpler case of 4th powers still
remained open for many years.

Actually, Euler’s conjecture was not a very smart one (as the Japanese say, “even
monkeys fall from trees!”), because a very simple probabilistic argument shows that it
is likely to be false for every value of n. This argument goes as follows. Consider all
n-tuples (x1, . . . , xn) of positive integers for which x1 has exactly k decimal digits and
each other xi is less than x1. The number of such n-tuples is of the order of 10nk (more
precisely, it is between c1 · 10nk and c2 · 10nk for some constants c2 > c1 > 0), and for
each n-tuple the difference xn

1 − xn
2 − · · · xn

n lies in the interval [−(n − 1)10kn, 10kn],
whose length is also of the order of 10nk , so unless something funny is going on,
the expected number of n-tuples for which this difference is zero should be a positive
number p depending on n but not on k. (Think of throwing 1 million marbles at random
into 5 million holes; then the average number landing in each box box is 1/5, and the
expected number landing in any given box is the same number.) Letting k go to infinity,
we see that the number of expected solutions of (15) should be infinite, but the set of
these solutions should be very sparse, with the number of solutions having ≤ K digits
growing only like some positive (and possibly quite small) multiple of K as K →∞.
And this means two things: First, that we should not conjecture that (15) is insoluble,
and second, that (if we have the good fortune to live in the pre-computer age) we
should not attempt to find counterexamples by hand! This leads us to formulate the
following.

First moral. If you are a number theorist, even a very great one, then you shouldn’t
make conjectures unless you not only have numerical evidence, but have thought about
the heuristic aspects of your assertion!

9. . . . AND AN ILL-FATED COUNTEREXAMPLE. My own contact with equa-
tion (14) was as follows. During the winter semester of 1986, when I was visiting the
MSRI in Berkeley, I gave a semi-popular talk on Diophantine equations. After the talk,
a man called de Vogelaere came up to me to ask whether I knew of or had ever thought
about this equation and to explain to me the approach that he had been pursuing. Of
course I knew the problem (it is discussed in the famous Introduction to the Theory
of Numbers by Hardy and Wright, which I had received as a teenager and read until
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my copy of it was falling apart), but I had never worked on it myself, and was very
intrigued by the method he showed me.

De Vogelaere’s basic idea was to simplify the problem by looking first at the easier
equation

z4 = x4 + y4 + t2, (16)

i.e., to replace the final fourth power in (14) by a “mere” square, to try to find as many
solutions of this new equation as possible, and then to investigate the conditions mak-
ing it possible or likely for t itself to be a square w2, thus solving the original problem.
A parametric solution (i.e., an infinite family of solutions given by polynomials)

(x2 + x + 1)4 = x4 + (x + 1)4 + (x4 + 2x3 + 3x2 + 2x)2 (17)

of (16) had already been given by Escott in 1895, as de Vogelaere told me. It is more
convenient to write this solution in homogeneous form as z = u2 + uv + v2, x = uv,
y = uv + v2 and t = u4 + 2u3v + 3u2v2 + 2uv3, or in an abbreviated notation as
z = [1, 1, 1], x = [0, 1, 0], y = [0, 1, 1], t = [1, 2, 3, 2, 0], and we will do this from
now on. This particular solution of (16) can never lead to a solution of the original
equation (14), because the Diophantine equation w2 = x4 + 2x3 + 3x2 + 2x has no
non-trivial rational solutions,7 but de Vogelaere had found a lot of other parametric
solutions of (16) of the same general type, the simplest two being

z = [9, 3, 3], x = [8, 1, 1], y = [4,−1, 2], t = [47, 74, 49, 22, 8] (18)

and (omitting t from now on, since it can be deduced from the others)

z = [33, 3, 3], x = [17, 11,−2], y = [8, 17, 1], (19)

and one of the most complicated being

z = [2 577 229 375, −1 371, 3 525],
x = [2 232 368 805, 1 861 583, −2 980],
y = [968 648 234, 4 964 967, −1 400]. (20)

Each of these solutions also had a “companion” with the same z and x but different y
and t , e.g., y = [7, 5, 2], t = [8,−10, 31, 10, 8] for (18) or y = [32,−1,−2] for (19).

De Vogelaere’s question was whether his approach could be systematized and
whether it could potentially ever lead to a solution of the original equation (14).
Specifically, one would like to:

(i) show that there are infinitely many parametric solutions of (16) of Escott–de
Vogelaere type;

(ii) find necessary constraints on the coefficients of the parametric solutions in
order that the quartic polynomial t (u, v) has a chance to take on a square value;
and then

7Proof (for experts): Write the equation as η2 = (ξ + 1)(2ξ2 + ξ + 1) with η = w/x2 and ξ = 1/x ,
defining an elliptic curve E over Q. The point P = (0, 1) has order 4, and any solution has ξ + 1 = � or
ξ + 1 = 2 · �, so has the form either 2Q or 2Q + P for some Q ∈ E(Q). This proves that E(Q)/2E(Q)
injects into Z/2Z and hence that rank(E) = 0 and E(Q) ∼= Z/4Z.
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(iii) sieve out the parametric solutions that fail to satisfy these conditions and test
one or several of the surviving ones numerically to see if it yields a solution
of (14).

During the next three or four months, I came back to these questions several times
and was able to do parts (i) and (ii). The method and results are described below. At
the end of my Berkeley stay, I went for a very memorable two-month visit to Moscow,
where I continued to think about the problem and succeeded in doing part (iii) as well,
finding (again, as described below) that the first two parametric solutions of (16) that
had a chance of yielding square values of t had t-polynomials given by

t1(u, v) = [184 · 2332, 320 922 · 233, 130 661 741, 320 922 · 313, 184 · 3132],
t2(u, v) = [3 697 · 1372, 2 372 652 · 137, 573 811 862, 2 372 652 · 193, 3 697 · 1932].

It remained only to try some small integral values of u and v to see if either of these,
or any of the further parametrizations on my list of possible candidates, ever gave
rise to a square. But of course no computers were available to visitors in the Soviet
Union at that time, and this was before the days when people had personal computers
that they took with them on trips, so that all I had at my disposal was a Hewlett-
Packard electronic calculator. It was programmable in BASIC, so I could write the
simple loop to compute t1(u, v) for integers u and v going up to 100 in absolute value,
but unfortunately the calculator could not display integers of more than 13 digits, and
this bound was exceeded for u and v in the range in question. Of course I could have
looked for pairs (u, v) with

√
t1(u, v) very near an integer, and then checked these

cases by calculating modulo some moderate-sized integers or simply by multiplying
everything out by hand, but I had no reason to think that there was any hurry or any
reason to take so much trouble. Unfortunately, I was wrong: When I returned to Bonn
at the end of my Moscow stay, I was met by my friend and collaborator Dick Gross,
who told me excitedly that a famous question of Diophantine Analysis posed by Euler
had just been solved by the very young mathematician Noam Elkies. I immediately
went to the computer of our institute (a very primitive one indeed, but still a lot better
than a pocket calculator!) to type in and run my own program, and within seconds
discovered that t1(61, 5) was equal to 15 365 6392, leading to the explicit solution

20 615 6734 = 18 796 7604 + 2 682 4404 + 15 365 6394 (21)

of (14), so that I too had solved Euler’s problem. But it was too late: On a problem
that had been open for well over two centuries, I had been scooped by just a few days.
Needless to say, I immediately went out and bought a portable computer (a Toshiba)
that thenceforth accompanied me everywhere. So we can formulate the following.

Second moral. If you are a number theorist, then buy a laptop, learn how to use it, and
never leave home without it!

My solution and Elkies’s were quite similar in essence, although rather different in
presentation, and the numerical solution (21) also happened to be the same as the first
solution produced by his method (even though a brute force computation by multiple
computers running in parallel that was performed shortly afterwards revealed that it is
in fact the second smallest integer solution, the smallest being 422 4814 = 414 5604 +
95 8004 + 217 5194), so that in the end I did not publish my solution at that time. But
since the method is quite pretty and reasonably elementary, and aroused interest in
Bremen, I decided to include it, very belatedly, in the present paper.
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10. QUADRICS TANGENT TO THE FERMAT QUARTIC. The key observation
is that any three expressions x , y, z given as homogeneous quadratic polynomials
in two variables u and v automatically satisfy a homogeneous quadratic equation
Q(x, y, z) = 0. (Proof : Each of the six expressions x2, y2, z2, xy, xz, and yz is a
linear combination of the five monomials u4, u3v, u2v2, uv3, and v4, so there must
be a linear relation between them.) The converse is true over C but not over Q: If
Q is a homogeneous quadratic polynomial with rational coefficients, the solutions of
Q(x, y, z) = 0 can be given parametrically by three binary quadratic forms with ra-
tional coefficients if and only if there is at least one rational solution.8

In particular, each of the Escott–de Vogelaere parametric solutions of (16) corre-
sponds to a quadratic relation, these relations for the four parametrizations (17), (18),
(19), and (20) being

x2 + y2 − xy + xz − yz = 0, (22)

5x2 + 5y2 + xy + 4z2 − 7xz − 7yz = 0,

13x2 + 13y2 − 17xy − 4z2 + 7xz − 7yz = 0, and

4 261 205 (x2 + y2 − xy)− 1 763 124 (xy + z2)

+ 152 303(yz − xz) = 0,

respectively. Since these quadrics solve (16), they have the magic property

Q(x, y, z) = 0 =⇒ z4 − x4 − y4 is a square. (23)

This suggests breaking up our problem into three sub-problems.

1. What is the general form of the quadric Q satisfying (23)?

2. Of these, which have a rational solution (and hence lead to a parametric solution
of (16) à la Escott or de Vogelaere)? Are there infinitely many?

3. Among the parametric solutions obtained, are there any for which t could be a
square? Are there criteria to eliminate the others?

We discuss the first of these questions now, and the two others in §11 and §12.
Write F for the expression

F(x, y, z) = z4 − x4 − y4 (24)

so that F = 0 is the equation of the Fermat quartic curve in P2. Then equation (23)
simply says that F is a square modulo Q, i.e.,

F(x, y, z) = R(x, y, z)2 − Q(x, y, z)S(x, y, z) (25)

for some polynomials R(x, y, z) and S(x, y, z), which by considerations of degree are
seen to also be quadratic forms in x , y, z. In particular, for the Escott solution (17),
with Q = Q0 as in (22), this is given by

8This principle—that a quadratic equation with rational coefficients having one rational solution then has
infinitely many (and can be described parametrically) goes back all the way to Diophantus. To prove this, let
P be the given point with rational coordinates on the quadric (= set of solutions of the quadratic equation);
then any line through P given by an equation with rational coefficients intersects the quadric in a second point
with rational coordinates.

258 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 120

This content downloaded  on Tue, 19 Feb 2013 03:53:57 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Q0(x, y, z) = x2 + y2 − xy + xz − yz,

R0(x, y, z) = z2 − (x − y)2, (26)

S0(x, y, z) = 2(x2 + y2 − xy − xz + yz).

But the expression R2 − QS is (up to a factor 1/4) just the discriminant of the
quadratic form Qξ 2 + 2Rξη + Sη2, and it is well known that this discriminant is
invariant under the action of SL2(Q), i.e., under linear transformations of the form
(ξη) 7→ (ξη)M where M = ( α βγ δ

)
is a 2× 2 matrix with determinant αδ − βγ = 1.

Hence, we can get infinitely many new solutions of (25) by applying arbitrary matrices(
α β
γ δ

) ∈ SL2(Q)

to the special solution (26). These take the form

Q(x, y, z) = α2 Q0 + 2αβR0 + β2S0,

R(x, y, z) = αγ Q0 + (αδ + βγ )R0 + βδS0, (27)

S(x, y, z) = γ 2 Q0 + 2γ δR0 + δ2S0.

For the moment we are interested only in the formula for Q. We have proved the
following.

Proposition 6. Let A, B,C ∈ Q be given by

A = α2 − 2αβ + 2β2, B = 2αβ, and C = α2 − 2β2 (28)

for two rational numbers α, β. Then the quadric

Q A,B,C(x, y, z) = A(x2 − xy + y2)+ B(xy + z2)+ C(xz − yz) (29)

satisfies (23).

At this point the reader who is getting fatigued can—and is urged to—skip straight
to Section 13, since Proposition 6 is the essence of the construction and the remain-
ing arguments below, whose proofs will be given in a very abbreviated form, merely
describe some refinements.

We observe first that the numbers A, B,C given by (28) satisfy

A2 + 2AB − B2 − C2 = 0, (30)

and conversely, all solutions of (30) are given (up to a constant multiple which is of no
interest to us) by (28), so we could equally have formulated Proposition 6 by saying
that, for any triple (A, B,C) satisfying (30), the quadric (29) has the property (23).
We now show that we are not losing anything this way: Through any rational solution
of (16) at least one of the quadrics Q(A,B,C) passes.

Proposition 7. Any solution (z, x, y, t) = (ζ, ξ, η, τ ) of (16) satisfies Q(A,B,C)(ξ, η,

ζ ) = 0 for some rational A, B,C satisfying equation (30).
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Proof. Take

A = (ξ 2 + ζ 2)(η2 + ζ 2),

B = −ξη(ξ 2 + η2 + ζ 2 − ξη)− τζ(ξ − η), and (31)

C = −ζ(ξ − η)(ξ 2 + η2 + ζ 2)+ τ(ξη + ζ 2).

Check that Q(A,B,C)(ξ, η, ζ ) = 0 and that (30) holds.

Since this proof is a little abrupt, we explain where equations (31) came from. Solv-
ing the desired equation Q(A,B,C)(ξ, η, ζ ) = 0 (with Q(A,B,C) defined as in (29)) for C
gives

C = A(ξ 2 − ξη + η2)+ B(ξη + ζ 2)

(η − ξ)ζ . (32)

Substituting this equation into (30) gives a quadratic equation for the ratio A : B. The
condition that this equation have a rational solution is that its discriminant is a square.
By direct calculation, we find that the discriminant in question is (up to the square of
a rational function of ξ , η, ζ ) equal to the Fermat quartic F = ζ 4 − η4 − ξ 4. By as-
sumption, this is a square, so the quadratic equation has a rational solution. Computing
this solution A : B by the high school formula and substituting for C from (32) gives
equations (31).

Note for experts: We observe that property (23) has a geometrical interpretation as
saying that the quadric Q = 0 in P2 (a genus 0 curve) and the Fermat quartic F = 0 in
P2 (a genus 3 curve) are tangent (more precisely: have even intersection multiplicity)
at all points of intersection, i.e., they are tangent at 4 points (some of which may
coincide). Let P̃2 be the double cover of P2 branched along F = 0 (i.e., the surface
given by equation (16)) and Q̃ the inverse image of Q in P̃2. If Q and F were in
general position, they would have 8 transverse intersection points and Q̃ would be a
double cover of P1 branched at 8 points (genus 3). The fact that Q and F are in fact
tangent at four points says that Q̃ is an unramified cover of Q, i.e., consists of two
curves of genus 0; so if Q has a rational point, then so does each component of Q̃, and
this is the reason that we have a parametric solution of (16) over Q.

11. EXISTENCE OF A RATIONAL POINT ON Q = 0. We now turn to the sec-
ond question in §10, viz., the question when one of the quadrics (29) has a rational
zero. We will give a necessary and sufficient condition for this and show that this
condition is fulfilled infinitely often. We may assume that A, B,C are given by (28),
since—as remarked before—any triple satisfying (30) looks like this up to a rational
multiple.

Proposition 8. Let α, β ∈ Q and Q = Q A,B,C be the quadratic form defined in Propo-
sition 6. Then Q(x, y, z) = 0 has a non-trivial rational solution if and only if each of
the two numbers A + B = α2 + 2β2 and A − B = α2 − 4αβ + 2β2 is a sum of two
(rational) squares.

Proof. A famous theorem of Minkowski says that a quadratic equation Q = 0 with
rational coefficients has a rational solution if and only if it has a real solution and a p-
adic solution (or equivalently, a solution modulo pn for all n) for all primes p. A result
of Hilbert implies that it suffices to check only odd p. The discriminant of Q (given by
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equations (28) and (29) with α and β chosen integral and coprime) is (up to sign and
a power of 2) equal to AB(A − B)(A + B), so we only have to worry about primes
dividing this. One easily checks that if p is an odd prime dividing AB (i.e., α ≡ 0 or
β ≡ 0 or α ≡ (1+ i)β (mod p) with i2 ≡ −1), then Q = 0 has a p-adic solution. If
p divides A + B = α2 + 2β2 to an odd power, then Q ≡ �− 2 ·�, so Q = 0 has a
solution in the field Qp of p-adic numbers if and only if 2 has a square root in this field,
i.e., if p ≡ ±1 (mod 8). But since p|(α2 + 2β2) also implies p ≡ 1 or 3 (mod 8),
this congruence is equivalent to p ≡ 1 (mod 8), and also to p ≡ 1 (mod 4). Hence,
we need that α2 + 2β2 is a square or twice a square times a product of primes ≡ 1
(mod 4), i.e., is a sum of two squares. Similarly, if podd||(A− B) = (α − 2β)2 − 2β2,
then Q = � + 2 · �, so Q = 0 has a solution in Qp ⇐⇒ p ≡ 1 or 3 (mod 8)⇐⇒
(since p ≡ ±1 (mod 8) anyway) p ≡ 1 (mod 4). Also at the infinite place we find
that α2 − 4αβ + 2β2 must be positive if Q is to be indefinite. Hence α2 − 4αβ + 2β2

is again (a square or twice a square times) a product of primes ≡ 1 (mod 4), i.e., it is
a sum of two squares. This proves the proposition.

In Table 1 we tabulate all α and β satisfying

α, β ∈ Z, α > 0, α odd, β even, (α, β) = 1 (33)

and the criterion of Proposition 8 and with α2 + 2β2 ≤ 200. For each α, β we
give the numbers A, B,C defined by (28) and a non-trivial solution (ξ, η, ζ ) of
Q(A,B,C)(ξ, η, ζ ) = 0 as promised by the proposition. Note that (33) involves no loss
of generality: We can clearly assume that α and β are coprime integers with α > 0
(since multiplying α and β by a rational number has no effect), and then we can
assume α is odd because if α is even (and hence β odd) then replacing α, β by β, 1

2α

gives a new solution (it replaces A, B,C by 1
2 A, 1

2 B, − 1
2 C) with α odd; and once α is

odd, β is automatically even since otherwise α2 + 2β2 ≡ 3 (mod 4) is not a sum of
two squares.

Table 1. The first quadrics (29) having a rational zero (ξ, η, ζ )

α β A B C ξ η ζ

* 1 0 1 0 1 0 0 1
1 2 5 4 −7 2 −1 3
1 −2 13 −4 −7 2 −1 3
1 6 61 12 −71 22 6 59
1 −6 85 −12 −71 6 −2 7
3 −2 29 −12 1 6 3 7
3 −4 65 −24 −23 2 1 −3
3 8 89 48 −119 12 −3 13
3 −8 185 −48 −119 14 10 −27

* 5 −8 233 −80 −103 20 5 21
* 7 −4 137 −56 17 38 2 63

7 −6 205 −84 −23 −30 3 55
9 2 53 36 73 −6 2 7
9 −4 185 −72 49 12 4 −13

11 −6 325 −132 49 1056 924 1237

Proposition 9. There are infinitely many ratios α : β ∈ Q such that the quadric de-
fined in Proposition 6 has a rational point.
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Proof. We use the proof of Proposition 7. Take one of the parametric families of so-
lutions of (16), say Escott’s solution (17). It gives infinitely many rational solutions
(ξ, η, ζ, τ ). For each of these, equations (31) give two quadrics of the form (29) pass-
ing through (ξ, η, ζ ) (since we can take τ or−τ as the square root of ζ 4 − ξ 4 − η4).
One of these is the quadric we started with, but the other is new, so we get infinitely
many quadrics of the required form having at least one rational point. This proves the
proposition.

We get an actual formula by applying the above procedure to Escott’s solution (17);
this gives, after some calculation,

A = [1, 4, 12, 22, 31, 30, 20, 8, 2],
B = [0, 0,−2,−6,−12,−14,−10,−4, 0], (34)

C = [−1,−4,−10,−16,−15,−8, 2, 4, 2],
(the notation is as before, so these are homogeneous polynomials of degree 8, A =
u8 + 4u7v + · · · + 2v8, etc.). This can be checked by brute force to satisfy (30) and
the condition Q(A,B,C)(uv, uv + v2, u2 + uv + v2) = 0, and it fulfills the criterion of
Proposition 8 because

A + B = [1, 1, 1]4 + [0, 1]8, A − B = [1, 2, 5, 4, 1]2 + [0, 0, 0, 2, 1]2.

12. ELIMINATING UNPRODUCTIVE PARAMETRIC SOLUTIONS. We now
study the quadrics Q given by (28) and (29) with (α, β) satisfying the condition of
Proposition 8. The first 15 pairs are given in Table 1. Assume we have found a solution
of Q(ξ, η, ζ ) = 0 (e.g., by trial and error; explicit solutions are given in Table 1 for
each pair listed there). Then the parametric family à la Escott–de Vogelaere can be
given by

x = [Aξ,C(η − ξ)− 2Bζ, (B − A)η],
y = [Aη,−C(η − ξ)+ 2Bζ, (B − A)ξ ], and (35)

z = [Aζ, (B − 3A)(η − ξ)+ 2Cζ, (A − B)ζ ].
(To obtain these formulas, make the values corresponding to v = 0 and u = 0 pro-
portional to the known solutions (ξ, η, ζ ) and (η, ξ,−ζ ), and then solve for the mid-
dle coefficients; we suppress the details.) The corresponding value of the polynomial
t = t (u, v) is

t = [A2λ, Aµ, ν, (A − B)µ, (A − B)2λ], (36)

where

λ = ζ 2 − (ξ − λ)2 + 2B

A + B − C
(ξ 2 − ξη + η2 + ξζ − ηζ )

= A − B

C
(ξ 2 − ξη + η2)− A + B

C
(ξη + ζ 2), (37)

µ = 2(B + A)(ξ 2 + ξη + η2)+ 2(B − 2A)ζ 2, and

ν = C(A − B)(ξ 2 + η2)+ 2C(A + B)ξη + 2C(2B − 3A)ζ 2

− 4(2A2 − 2AB + B2)ζ(ξ − η). (38)
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(This can be obtained from t = R in (27), with x, y, z substituted from (35) and γ, δ
most conveniently chosen to be 0, α−1.)

We are interested in those values of α : β for which (36) can be a square or the
negative of a square. Here we have the following criterion, analogous to Proposition 8.

Proposition 10. In order for the family of solutions associated to (α, β) to have an
element with t = ±�, it is necessary that A = α2 − 2αβ + 2β2 and A + 2B = α2 +
2αβ + 2β2 (as well as A + B = α2 + 2β2 and A − B = α2 − 4αβ + 2β2) contain no
odd prime 6≡ 1 (mod 8) to an odd power.

Proof. This is similar to Proposition 8, so we only sketch it. If p is an odd prime
dividing α2 − 2αβ + 2β2 to an odd power, then α/β = 1+ i with i2 ≡ −1 (mod p)
(so p must be ≡ 1 (mod 4)). Then the Q and R of (27) are given by

Q ≡ (2+ 2i)(ξ 2 − ξη + η2)+ (2i − 2)(ξζ − ηζ ),
R ≡ i(ξ 2 − ξη + η2)+ (ζ 2 + ξη)+ (1+ i)(ξζ − ηζ ),

and therefore

Q − 2R ≡ −2i(ξ − η − iζ )2.

Hence a solution of Q = 0, R = � is possible only if i is a square (mod p), i.e., if
p ≡ 1 (mod 8). Similar arguments apply for p | α2 + 2αβ + 2β2.

13. SEARCHING FOR SOLUTIONS OF z4 = w4 + x4 + y4. Of the 15 pairs in
Table 1 satisfying the criteria of Proposition 8, only the three marked with an asterisk
satisfy the extra criteria of Proposition 10. The first of these corresponds to the Escott
parametrization (17), which we have already seen does not lead to a solution of (14).
Substituting from (35)–(37), we find that the parametric solutions of (16) correspond-
ing to the other two pairs are (x1, y1, z1) and (x2, y2, z2) with

x1 = [20 · 233, 4 905,−5 · 313], x2 = [38 · 137, 6 444,−2 · 193],
y1 = [5 · 233, −4 905, −20 · 313], y2 = [2 · 137, −6 444, −38 · 193],
z1 = [21 · 233, 7 359, 21 · 313], z2 = [63 · 137, 18 954, 63 · 193],

and with the t-polynomials t j = t j (u, v) already given in §9. As already mentioned
there, a direct search yields the solution t1(61, 5) = 15 365 6392, leading to the solu-
tion (21) of Euler’s equation (14),9 while the equations t2(u, v) = ±w2 have no solu-
tions with 0 < max(|u|, |v|) ≤ 500. Extending Table 1 to the larger search limit α2 +
2β2 ≤ 1000 (rather than ≤ 200) gives six further pairs (α, β) = (1,−20), (5, 12),
(9,−20), (15,−8), (25, 4) and (27,−8) satisfying the criteria of both Proposition 8
and Proposition 10. (This shows the usefulness of these criteria, which get us down
to only 9 candidates out of 451 pairs (α, β) in this search range satisfying (33).) The
third of these gives the parametric solution

9This will then lead to infinitely many further solutions of (14), since the point (61/5, 15365639/25) on the
elliptic curve Y 2 = t1(X, 1) has infinite order and hence gives infinitely many further solutions by repeatedly
applying the well-known duplication process of Diophantus and Fermat.
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x3 = [395, 1599, 160],
y3 = [580, 809,−711],
z3 = [1 029, 249, 889],
t3 = [−991 784,−30 058,−538 587, 1 513 022, 606 960],

of (16). The polynomial t3(u, v) has the square value t3(13, 15) = 217 5192, leading
to the minimal solution of (14) that was already given in §9.
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