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(1) Give an ϵ-δ proof that lim
x→4

1√
x
= 1

2 . (No algebra of limits allowed!)

Given ϵ > 0. Pick any x such that

(♣) 0 < |x− 4| < min{ϵ, 3}.

It follows that |x − 4| < 3, whence x > 1. In particular,
√
x > 1 and

√
x+ 2 > 3 . Thus

for any x satisfying (♣), we have∣∣∣∣ 1√
x
− 1

2

∣∣∣∣ = ∣∣∣∣√x− 2

2
√
x

∣∣∣∣ = ∣∣∣∣ x− 4

2
√
x(
√
x+ 2)

∣∣∣∣ < ϵ

2 · 3
< ϵ.

(2) Give concrete examples to show that the following definitions of lim
x→a

f(x) = L don’t agree with our

intuition about limits (i.e. are bad definitions).

(a) For all δ > 0, there exists ϵ > 0 such that if 0 < |x− a| < δ, then |f(x)− L| < ϵ.

Claim. According to this definition, we have lim
x→0

x = 100.

Proof. Given δ > 0, I claim ϵ = δ+100 does the trick. Indeed, for any x satisfying 0 < |x| < δ
we have −δ − 100 < x− 100 < δ − 100, whence |x− 100| < ϵ.

(b) For all ϵ > 0, there exists δ > 0 such that if |f(x)− L| < ϵ, then 0 < |x− a| < δ.

Claim. Let f be the constant function x 7→ 5. According to this definition, lim
x→0

f(x) ̸= 5.

Proof. Suppose lim
x→0

f(x) = 5. Let ϵ = 1; the definition furnishes a δ > 0 such that

|f(x)− 5| < 1 =⇒ 0 < |x| < δ.

But x = 2δ doesn’t satisfy the latter condition, even though |f(2δ)− 5| < 1.

JP30.5 Prove that lim
x→2

2
x = 1.

Given ϵ > 0. I claim that
∣∣ 2
x − 1

∣∣ < ϵ for every x satisfying 0 < |x− 2| < min{ϵ, 1}. Indeed,
pick any such x. Then |x − 2| < 1; in particular, x > 1 . At the same time, we also know
|x− 2| < ϵ, whence ∣∣∣∣ 2x − 1

∣∣∣∣ = |2− x|
|x|

<
ϵ

|x|
< ϵ.



JP30.8 Suppose lim
x→a

f(x) = L > 0. Prove that ∃δ > 0 such that if 0 < |x− a| < δ then f(x) > 0.

Note that L/2 > 0. Thus, by definition, there exists δ > 0 such that

0 < |x−a| < δ =⇒ |f(x)−L| < L

2
=⇒ f(x)−L > −L

2
=⇒ f(x) >

L

2
> 0.

JP33.2 Let f be defined on [0, 1] by the formula

f(x) =

{
1 if x is rational

0 otherwise.

Prove that f is continuous at no point in [0, 1].

It suffices to prove that lim
x→a

f(x) doesn’t exist for any a ∈ [0, 1]. To see this, pick an a ∈ [0, 1],

and suppose lim
x→a

f(x) = L. Then there would exist some δ > 0 such that

x ∈ (a− δ, a) ∪ (a, a+ δ) =⇒ |f(x)− L| < 1

10
.

Since both Q and R \ Q are dense in R, we can find a rational q and an irrational α such
that q, α ∈ (a− δ, a) ∪ (a, a+ δ). Plugging these into our implication above, we deduce

|1− L| < 1

10
and |0− L| < 1

10
.

Triangle inequality implies

1 = |1− L+ L| ≤ |1− L|+ |L| 1
10

+
1

10
=

1

5
,

a contradiction. Thus the limit cannot exist anywhere in the interval, whence f cannot be
continuous at any point in the interval.

JP33.3 Let f be defined on [0, 1] by the formula

f(x) =

{
x if x is rational

0 otherwise.

Prove that f is continuous only at 0.

There are two things to prove: that f is continuous at 0, and that f is not continuous
anywhere else.

Claim. f is continuous at 0.

Proof. Given ϵ > 0. For all x within ϵ of 0—that is, all x ∈ [0, ϵ)—we have

|f(x)− f(0)| = f(x) =

{
x if x ∈ Q
0 if x /∈ Q

}
< ϵ.

continued on next page...
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Claim. f isn’t continuous at any a ̸= 0.

Proof. Suppose f is continuous at a ̸= 0. Then a > 0, whence ∃δ > 0 such that

x ∈ (a− δ, a+ δ) ∩ [0, 1] =⇒ |f(x)− f(a)| < a

2
.

We consider two cases:

� If a ∈ Q, pick an irrational x ∈ (a− δ, a+ δ) ∩ [0, 1]. Then

a

2
> |f(x)− f(a)| = a.

� If a /∈ Q, pick a rational x ∈ (0.99a, a) ∩ (a− δ, a). Then

a

2
> |f(x)− f(a)| = x > 0.99a.

Either way, we’ve reached a contradiction, whence f cannot be continuous at a.

JP33.4 Let f be defined on [0, 1] by the formula

f(x) =

{
1/n if x = m/n is rational in reduced form

0 otherwise.

(By convention, we say the reduced form of 0 is 0
1 .) Prove that f is continuous only at the irrational

points in [0, 1].

We have two things to prove: that f is continuous at irrationals, and that it’s discontinuous
at rationals. Intuitively, the latter holds because near any rational are a bunch of irrationals,
and the former holds because all the rationals extremely close to an irrational have very large
denominator. We make these arguments rigorous below.

Claim. f is discontinuous at rationals.

Proof. Pick a ∈ Q; say, a = m/n in reduced terms. If f were continuous at a, then there
would exist δ > 0 such that

x ∈ (a− δ, a+ δ) ∩ [0, 1] =⇒ |f(x)− f(a)| < 1

2n
.

Pick any irrational x ∈ (a− δ, a+ δ) ∩ [0, 1]. We have

1

2n
> |f(x)− f(a)| = 1

n
,

which is a contradiction. Thus f must be discontinuous at a.

continued on next page...
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Claim. f is continuous at irrationals.

Proof. Pick α /∈ Q. Our goal is to prove that f is continuous at α. Given ϵ > 0, pick
N ∈ Zpos such that 1

N < ϵ (such an N exists by Archimedean property). Let

QN := {q ∈ Q ∩ [0, 1] : ∃n ≤ N with n, nq ∈ Zpos}

denote the set of all fractions in the unit interval with denominator smaller than N . Since
QN is a finite set, the quantity

δ := min{|q − α| : q ∈ QN}.

exists. Moreover, δ > 0, since α is irrational. It follows that every rational number in the
open interval (α− δ, α+ δ) has denominator larger than N . Thus for any x ∈ (α− δ, α+ δ)
we have

|f(x)− f(α)| = f(x) =

{
0 if x /∈ Q
1/n if x = m/n

}
<

1

N
< ϵ.

We conclude that f is continuous at α.

JP33.5 Suppose that f is continuous at every point of [a, b] and f(x) = 0 if x is rational. Prove that f(x) = 0
for every x in [a, b].

Pick any irrational α ∈ [a, b]. Since f is continuous at α, for every ϵ > 0 there exists δ > 0
such that

x ∈ (α− δ, α+ δ) =⇒ |f(x)− f(α)| < ϵ.

Since Q is dense in R, for any δ > 0 there exists a rational x ∈ (α − δ, α + δ). Combining
this with the above, we deduce that for any ϵ > 0 we have

|f(α)| < ϵ.

The only real number satisfying this for every ϵ > 0 is 0, whence f(α) = 0. In other words,
f vanishes at all irrationals. Since it also vanishes at all rationals, we conclude that f(x) = 0
everywhere.

(4) In class, Noam asked whether there exists an uncountable subset of R without accumulation points.

(a) Give an example of a countable subset of R with no accumulation points. (No proof necessary.)

Z

(b) Give an example of a countable subset of R with no isolated points. (No proof necessary.)

Q

(c) Suppose X ⊆ R such that every point in X is isolated. Prove that X must be countable.

[Hint: Construct an injection from X to Q.]

If X is finite, we’re done, so we henceforth assume X is infinite. For every x ∈ X, let

∆x := inf
{
|x− y| : y ∈ X \ {x}

}
;

this exists since the set is nonempty (X is infinite hence contains points other than x) and
is bounded below by 0.

continued on next page...
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Observe that ∆x ̸= 0 for any x ∈ X, since the alternative would imply that x is an accumu-
lation point of X. Thus

δx :=
1

10
∆x > 0.

Lemma 1. If x, y ∈ X and x ̸= y, then (x− δx, x+ δx) ∩ (y − δy, y + δy) = ∅.

Since Q is dense in R, (x− δx, x+ δx) must contain some rational number qx. We therefore
have a natural mapping f : X → Q defined by x 7→ qx. Note that this is injective, by the
lemma. Since X injects into Q and Q is countable, we conclude that X must be countable.

Proof of Lemma. Suppose α ∈ (x− δx, x+ δx) ∩ (y − δy, y + δy). Then

|x− y| ≤ |x− α|+ |α− y| < δx + δy =
∆x +∆y

10
≤ 2|x− y|

10
< |x− y|,

a contradiction.

(5) Suppose f : [0, 1] → R is monotone increasing, i.e. that f(x) ≤ f(y) whenever x ≤ y.

(a) Show that for any a ∈ (0, 1), lim
x→a−

f(x) and lim
x→a+

f(x) both exist.

Pick a ∈ (0, 1), and set
L := sup {f(x) : 0 < x < a}︸ ︷︷ ︸

A

.

I claim that lim
x→a−

f(x) = L. Given ϵ > 0. There exists x0 < a such that f(x0) > L− ϵ, and

for all x ≥ x0 we have f(x) > L − ϵ by monotonicity of f . On the other hand, f(x) ≤ L
for all x < a. Thus, we deduce that |f(x) − L| < ϵ whenever 0 < |x − a| < a − x0. A
substantially similar argument implies the existence of the right-handed limit.

(b) Let D denote the set of all points in [0, 1] at which f is discontinuous. Prove that D is countable.

Given a ∈ (0, 1) at which f is discontinuous, we know from above that La := lim
x→a−

f(x) and

Ra := lim
x→a+

f(x) both exist. Observe that La ≤ f(a) ≤ Ra; since f is discontinuous, we

must have La ̸= Ra, whence
La < Ra.

Thus we have a map f : D → P(R) defined f(a) := (La, Ra). Moreover, f is injective, since
Ra < Lb whenever a < b. Since f(a) ̸= ∅ and Q is dense in R, there exists some rational
qa ∈ (La, Ra). Mapping a 7→ qa yields an injection of D into Q, whence D must be countable.

(6) The goal of this problem is to explore how continuous functions affect topological properties of sets. (I
won’t define precisely what I mean by topological, but highly recommend taking a course on topology.)
Recall that if A is a subset of the domain of a function f , then f(A) := {f(x) : x ∈ A}.

(a) If f is continuous on a bounded set B, must f(B) be bounded? Prove or give a counterexample.

No: consider f : (0, 1) → R defined by x 7→ 1
x .

(b) If f is continuous on a closed interval C, must f(C) be a closed interval? Prove or give a counterex-
ample.

This boils down to the Extreme Value Theorem, which we proved in class.
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(c) If f is continuous on an open interval O, must f(O) be an open interval? Prove or give a counterex-
ample.

No: consider the constant function f : (0, 1) → R defined by f : x 7→ 1.

(7) Consider the following:

Claim. Given X ⊆ R, (cn) ⊆ X a Cauchy sequence, and f : X → R a continuous function on X. Then
the sequence

(
f(cn)

)
is Cauchy.

“Proof”. Given ϵ > 0. Pick any a ∈ X. Because f is continuous at a, there exists δ > 0 such that

|x− a| < δ =⇒ |f(x)− f(a)| < ϵ.

Since (cn) is Cauchy, |cm − cn| < δ for all large m,n. Thus |f(cn)− f(cm)| < ϵ for all m,n large.

Find a counterexample to the claim, and carefully identify the mistake in the alleged proof.

A counterexample is f : (0, 1) → R defined by x 7→ 1
x and cn := 1

n .

The issue is that in our definition of continuity, δ depends on ϵ and on a.

(8) The goal of this problem is to explore the Cantor set, a remarkable example of set that tests our intuition
about real analysis concepts. Let me first describe the Cantor set informally; a formal definition follows.
Start with the closed interval [0, 1]. Remove the middle third of this interval, leaving [0, 1/3] ∪ [2/3, 1].
Remove the middle thirds of each of these two intervals, leaving four closed intervals. Remove the middle
thirds of each of these four intervals, leaving eight closed intervals. The set C of all points that remain
after doing this “forever” is called the Cantor set.

To do this more formally, we begin with the open interval O1 := (1/3, 2/3). Next, for each n ≥ 1 define

On+1 :=

(
1

3
· On

)
∪
(
2

3
+

1

3
· On

)
,

where α ·X := {αx : x ∈ X} and β + Y := {β + y : y ∈ Y }. Finally, set

C := [0, 1] \

( ∞⋃
n=1

On

)
.

It immediately follows that C is closed and bounded, hence that C is compact by the Heine-Borel theorem
(which you’ll explore in your essay).

(a) Prove that there doesn’t exist any nonempty open interval that’s a subset of C. (A topologist would
say C has “empty interior”.)

Let
Cm := [0, 1] \

( ⋃
n≤m

On

)
;

by definition of the Cantor set, Cm ⊇ C for every N . Note that (by induction) Cm is the
disjoint union of 2m closed intervals, each of length 1/3m.

Pick any point x ∈ int(C); by definition, there exists ϵ > 0 such that Bϵ(x) ⊆ C, whence

Bϵ(x) ⊆ Cm

for every m. But for sufficiently large m we have 1
3m < ϵ, so Cm cannot contain any interval

of length ϵ! We conclude that the interior of C must be empty.
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(b) Prove that C has no isolated points.

We continue using the notation Cm defined in the previous solution. Recall that Cm is the
disjoint union of 2m closed intervals, each of length 1/3m; moreover, observe that the endpoint
of any one of these closed intervals must live in C. This implies that any point of Cm is within
a distance of 1/3m of some point of C. In particular, for any p ∈ C and any m, we have that p
is within a distance of 1

3m of some other point of C. Since 1
3m can be made arbitrarily small,

p cannot be isolated.

(c) The set

∞⋃
n=1

On is the union of disjoint open intervals. Prove that the sum of all the lengths of all

these intervals is 1. (In other words, C has zero length!)

Again we use the notation Cm. Since Cm is the disjoint union of 2m closed intervals, each
of length 1/3m, the total length of Cm is (2/3)m. Since C is contained in every Cm, its total
length must be smaller than (2/3)m for every m, which shows that it must have length 0.

[Alternative solution.] The total length of intervals composing On is 1
3 (

2
3 )

n−1
. Since

all the On’s are disjoint, the total length is
∞∑

n=1

1
3 (

2
3 )

n−1
=

1/3
1−2/3 = 1.

(d) (Optional! and meta-analytic) Prove that x ∈ C iff x has a ternary (i.e. base 3) expansion that
doesn’t use the digit 1 anywhere.

First description. The first set we remove, O1, consists of all numbers with ternary
expansion of the form 0.1 · · · . The next set, O2, consists of remaining numbers whose
second ternary digit is a 1. Similarly, On consists of all numbers between 0 and 1 such that
the first n−1 ternary digits are exclusively 0 and 2, and the nth ternary digit is 1. It follows
that any x /∈

⋃
n≥1

On has a ternary expansion that uses only 0s and 2s.

Second description. Above we defined Cm to be the mth stage of forming the Cantor set,
where we have created 2m disjoint closed intervals each of length 1/3m. Here we develop a
convenient nomenclature for the individual closed intervals composing Cm. We will write

Cm =
⊔

ℓ=m-digit binary number

Iℓ.

Thus

C1 = I0 ⊔ I1

C2 = I00 ⊔ I01 ⊔ I10 ⊔ I11

...

For any closed interval I, let α(I) denote the left endpoint of I and β(I) denote the right
endpoint, i.e. I = [α(I), β(I)]. We will now define Iℓ recursively, as follows.

continued on next page...
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First, set I0 := [0, 1/3] and I1 := [2/3, 1]. Next, given an (m − 1)-digit binary number ℓ, we
will define Iℓ0 and Iℓ1 in terms of the endpoints of the interval Iℓ:

Iℓ0 := [α(Iℓ), α(Iℓ) + 1/3m]

Iℓ1 := [β(Iℓ)− 1/3m, β(Iℓ)]

A straightforward induction proves our assertion that Cm is the disjoint union of the closed
intervals Iℓ over all m-digit binary numbers ℓ.

Finally, observe that any x ∈ Cm must live in an interval of the form Id1d2···dm
with each

di = 0 or 1. A final proof by induction shows that

x ∈ Id1d2···dm
⇐⇒ x = 0.e1e2 · · · em . . . in ternary,

where ei := 2di; in particular, the first m ternary digits of x must be 0 or 2. Since x ∈ C
requires that x ∈ Cm for every m, we deduce the claim.

(e) (Optional! and meta-analytic) Prove that C is uncountable. [Note that the set of all endpoints
of all the closed intervals in the construction of C is countable! ]

It suffices to prove that [0, 1] ↪→ C. Given x ∈ [0, 1], express it in binary; if there are two
options for how to do this, pick the option that doesn’t end with a tail of all 0’s. (For
example, we would express 1/2 in binary as 0.011111 . . . rather than as 0.1.) Now multiply
each digit by 2 and interpret the string of digits as a ternary expansion. By the previous part,
the resulting number c(x) lives in the Cantor set. It’s easily verified that c is an injection,
thus proving that c : [0, 1] ↪→ C. It follows instantly that C must be uncountable.

(f) (Optional! and meta-analytic) Given sets A and B of real numbers, define their sum and
difference to be

A+ B := {a+ b : a ∈ A, b ∈ B} A − B := {a− b : a ∈ A, b ∈ B}.

Prove that C + C = [0, 2] and C − C = [−1, 1].

Perhaps the easiest approach is to start by proving

(1)
1

2
C +

1

2
C = [0, 1].

The ⊆ containment is obvious. To prove the other direction, pick any x ∈ [0, 1] and write
its ternary expansion as

x = 0.a1a2a3 · · ·

We can easily write x as a sum of two ternary numbers 0.b1b2b3 · · · and 0.c1c2c3 · · · , all of
whose digits are 0 or 1: if ak = 0, set bk = ck = 0; if ak = 1, set bk = 0 and ck = 1; if ak = 2,
set bk = ck = 1.

From (1), it’s immediate that C + C = [0, 2]. To deduce the second claim, observe that
−C = C − 1, whence

C − C = C + C − 1 = [−1, 1].

Challenge Define a function f : R → R that’s not continuous at any point but satisfies the conclusion of the
Intermediate Value Theorem.
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