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1) Give an e-§ proof that lim == = 1. (No algebra of limits allowed!
4 x 2
r—r

Given € > 0. Pick any x such that

() 0 < |x — 4] < min{e, 3}.

It follows that |z — 4| < 3, whence x > 1. In particular, | /z > 1 ‘ and ’ Vr+2>3 ‘ Thus

for any x satisfying (&), we have

JT -2

=al-l%

2-3

r—4 €
2\/5(\/5+2)’<<6'

(2) Give concrete examples to show that the following definitions of lim f(z) = L don’t agree with our
r—a

intuition about limits (i.e. are bad definitions).

(a) For all § > 0, there exists € > 0 such that if 0 < |z — a| < §, then |f(z) — L| <e.

Claim. According to this definition, we have lin%a: = 100.
T—r

Proof. Given 6 > 0, I claim € = d+100 does the trick. Indeed, for any x satisfying 0 < |z| < ¢
we have —6 — 100 < 2 — 100 < § — 100, whence |z — 100| < e. O

(b) For all € > 0, there exists 6 > 0 such that if |f(z) — L| <, then 0 < |z —a| <.
Claim. Let f be the constant function x — 5. According to this definition, hlrb f(z) #5.
z—

Proof. Suppose limo f(x) =5. Let e = 1; the definition furnishes a § > 0 such that
r—r

[f(z) =5 <1 = 0<]|z|<éd.

But z = 2§ doesn’t satisfy the latter condition, even though |f(2J) — 5| < 1. O

JP30.5 Prove that lim 2 = 1.
z—2 T

Given € > 0. I claim that ‘% — 1| < e for every x satisfying 0 < |z — 2| < min{e, 1}. Indeed,

pick any such z. Then |z — 2| < 1; in particular, . At the same time, we also know
|z — 2| < ¢, whence




JP30.8 Suppose ligl f(z) = L > 0. Prove that 36 > 0 such that if 0 < |z — a| < § then f(z) > 0.

Note that £/2 > 0. Thus, by definition, there exists ¢ > 0 such that

0<lo-d<i = [f@-L<5 = [@)-L>-35 = f@)>75>0

JP33.2 Let f be defined on [0, 1] by the formula

fz) =

1 if x is rational
0 otherwise.

Prove that f is continuous at no point in [0, 1].

It suffices to prove that lim f(x) doesn’t exist for any a € [0, 1]. To see this, pick an a € [0, 1],
r—a
and suppose lim f(z) = L. Then there would exist some ¢ > 0 such that
T—ra
1
z € (a—d,a)U(a,a+0) = \f(L)—L|<1—O

Since both @ and R\ Q are dense in R, we can find a rational ¢ and an irrational « such
that ¢, € (a — d,a) U (a,a + ¢). Plugging these into our implication above, we deduce

1 1
1-L<— d - L < —.
| | < 10 an |0 | < 10
Triangle inequality implies

1 1 1
L=l - L+ L <L-L|+|Lig+15= 5

a contradiction. Thus the limit cannot exist anywhere in the interval, whence f cannot be
continuous at any point in the interval.

JP33.3 Let f be defined on [0, 1] by the formula

x if x is rational
f(x) = .
0 otherwise.

Prove that f is continuous only at 0.

There are two things to prove: that f is continuous at 0, and that f is not continuous
anywhere else.

Claim. f is continuous at 0.
Proof. Given € > 0. For all x within e of 0—that is, all = € [0, €)—we have

f@%ﬁmﬂ—ﬂ@—{ging}<a =
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Claim. f isn’t continuous at any a # 0.

Proof. Suppose f is continuous at a # 0. Then a > 0, whence 3§ > 0 such that
re(a—da+d)Nn0l] = |f@)-fl@l<]

We consider two cases:

o If o € Q, pick an irrational x €

o If a ¢ Q, pick a rational z € (0.99a,a) N (a — d,a). Then

g>uwy4mn:x>0%w

Either way, we’ve reached a contradiction, whence f cannot be continuous at a. ]

JP33.4 Let f be defined on [0, 1] by the formula

if x = m/n is rational in reduced form

_
J(@) = 0 otherwise.

(By convention, we say the reduced form of 0 is %) Prove that f is continuous only at the irrational

points in [0, 1].

We have two things to prove: that f is continuous at irrationals, and that it’s discontinuous
at rationals. Intuitively, the latter holds because near any rational are a bunch of irrationals,
and the former holds because all the rationals extremely close to an irrational have very large
denominator. We make these arguments rigorous below.

Claim. [ is discontinuous at rationals.

Proof. Pick a € Q; say, a = m/n in reduced terms. If f were continuous at a, then there
would exist § > 0 such that

1
z€(@=da+d)n01] = [fl&)-fla)l<g
Pick any irrational x € (a — d,a + ¢) N[0, 1]. We have
> ()~ fla)| =
2n - n’
which is a contradiction. Thus f must be discontinuous at a. ]
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Claim. [ is continuous at irrationals.

Proof. Pick @ ¢ Q. Our goal is to prove that f is continuous at a. Given e > 0, pick
N € Zypos such that % < € (such an N exists by Archimedean property). Let

Qn:={qeQn[0,1]: In < N with n,nqg € Zpos}

denote the set of all fractions in the unit interval with denominator smaller than N. Since
@y is a finite set, the quantity

0:=min{|l¢g—«a|: ¢ € Qn}.

exists. Moreover, § > 0, since « is irrational. It follows that every rational number in the
open interval (oo — d, &« 4 0) has denominator larger than N. Thus for any z € (o — §, + )
we have

1/71, ifox=m/p

(@) = f(@)] = fla) = {O ifogQ }< Lce

We conclude that f is continuous at «. ]

JP33.5 Suppose that f is continuous at every point of [a,b] and f(z) = 0 if x is rational. Prove that f(z) =0
for every z in [a, b].

Pick any irrational o € [a,b]. Since f is continuous at «, for every e > 0 there exists § > 0
such that
re(a—d,a+d) = |f(x)—flo)|<e

Since Q is dense in R, for any § > 0 there exists a rational € (a — §,« + §). Combining
this with the above, we deduce that for any ¢ > 0 we have

[f(a)] <e

The only real number satisfying this for every e > 0 is 0, whence f(«) = 0. In other words,
f vanishes at all irrationals. Since it also vanishes at all rationals, we conclude that f(x) =0
everywhere.

(4) In class, Noam asked whether there exists an uncountable subset of R without accumulation points.

(a) Give an example of a countable subset of R with no accumulation points. (No proof necessary.)
[z |

(b) Give an example of a countable subset of R with no isolated points. (No proof necessary.)

© |

(¢) Suppose X C R such that every point in X is isolated. Prove that X must be countable.
[Hint: Construct an injection from X to Q.]

If X is finite, we're done, so we henceforth assume X is infinite. For every x € X, let
Ay =inf{lz —y|:y e X\ {a}};

this exists since the set is nonempty (X is infinite hence contains points other than x) and
is bounded below by 0.
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Observe that A, # 0 for any x € X, since the alternative would imply that = is an accumu-
lation point of X. Thus

1
0p := —A, > 0.
-

Lemma 1. Ifz,y € X and x # y, then (x — 6y, x + 65) N (y — 6y, y + 9,) = 2.

Since Q is dense in R, (z — 0., x + d,) must contain some rational number ¢,. We therefore
have a natural mapping f : X — Q defined by = — ¢,. Note that this is injective, by the
lemma. Since X injects into Q and Q is countable, we conclude that X must be countable.

Proof of Lemma. Suppose « € (z — 05,2 + 05) N (y — 0y, y + 6). Then

Ag+ Ay - 2|z — vy _

—y| < |- | <6y +6, =

|fL‘ _y‘v

a contradiction. O

(5) Suppose f :[0,1] — R is monotone increasing, i.e. that f(z) < f(y) whenever = < y.

(a)

Show that for any a € (0,1), lim f(z) and lim+ f(z) both exist.
Tr—a

Tr—a~

Pick a € (0,1), and set
L:=sup{f(z):0<z<a}.

A
I claim that lim f(x) = L. Given € > 0. There exists ¢ < a such that f(zg) > L — ¢, and

r—a—

for all x > xy we have f(x) > L — e by monotonicity of f. On the other hand, f(x) < L
for all x < a. Thus, we deduce that |f(x) — L| < € whenever 0 < |x —a| < a —z9. A
substantially similar argument implies the existence of the right-handed limit.

able.

Let D denote the set of all points in [0, 1] at which f is discontinuous. Prove that D is count
Given a € (0,1) at which f is discontinuous, we know from above that L, := lim f(z) and
T—ra—

Ry = lim+ f(z) both exist. Observe that L, < f(a) < R,; since f is discontinuous, we
r—a
must have L, # R,, whence
Lo < R,.

Thus we have a map f: D — P(R) defined f(a) := (L4, Ry). Moreover, f is injective, since
R, < L, whenever a < b. Since f(a) # @ and Q is dense in R, there exists some rational
Ga € (Lo, Ry). Mapping a — g, yields an injection of D into @, whence D must be countable.

(6) The goal of this problem is to explore how continuous functions affect topological properties of sets. (I
won’t define precisely what I mean by topological, but highly recommend taking a course on topology.)
Recall that if A is a subset of the domain of a function f, then f(A) := {f(z) : z € A}.

(a) If f is continuous on a bounded set B, must f(B) be bounded? Prove or give a counterexample.

No: consider f : (0,1) — R defined by = %

(b) If f is continuous on a closed interval C, must f(C) be a closed interval? Prove or give a counterex-

ample.

‘ This boils down to the Extreme Value Theorem, which we proved in class.




(7)

(8)

(c¢) If f is continuous on an open interval O, must f(QO) be an open interval? Prove or give a counterex-
ample.

‘No: consider the constant function f: (0,1) — R defined by f: 2z — 1.

Consider the following:

Claim. Given X CR, (¢,) C X a Cauchy sequence, and f : X — R a continuous function on X. Then
the sequence (f(cyn)) is Cauchy.

“Proof”. Given € > 0. Pick any a € X. Because f is continuous at a, there exists 6 > 0 such that
|t —al<d = |f(z)— f(a)] <e
Since (¢, ) is Cauchy, |cm — cp| < § for all large m,n. Thus |f(c,) — f(cm)| < € for all m,n large. O

Find a counterexample to the claim, and carefully identify the mistake in the alleged proof.

A counterexample is f : (0,1) — R defined by x % and ¢, = *

n’

The issue is that in our definition of continuity, § depends on € and on a.

The goal of this problem is to explore the Cantor set, a remarkable example of set that tests our intuition
about real analysis concepts. Let me first describe the Cantor set informally; a formal definition follows.
Start with the closed interval [0,1]. Remove the middle third of this interval, leaving [0,1/3] U [2/3,1].
Remove the middle thirds of each of these two intervals, leaving four closed intervals. Remove the middle
thirds of each of these four intervals, leaving eight closed intervals. The set C of all points that remain
after doing this “forever” is called the Cantor set.

To do this more formally, we begin with the open interval O; := (1/3,2/3). Next, for each n > 1 define

1 2 1

where - X :={az:2x € X} and §+Y :={f+y:y € Y}. Finally, set

C:=1[0,1]\ (G (’)n>.

It immediately follows that C is closed and bounded, hence that C is compact by the Heine-Borel theorem
(which you'll explore in your essay).

(a) Prove that there doesn’t exist any nonempty open interval that’s a subset of C. (A topologist would
say C has “empty interior”.)
Let

Crm = 1[0,1]\ ( U On):

n<m

by definition of the Cantor set, C,, 2 C for every N. Note that (by induction) C,, is the
disjoint union of 2™ closed intervals, each of length 1/37.

Pick any point = € int(C); by definition, there exists € > 0 such that B.(x) C C, whence

B.(z) CCp,

for every m. But for sufficiently large m we have 3]7 < €, 80 C,, cannot contain any interval

of length ¢! We conclude that the interior of C must be empty.




(b) Prove that C has no isolated points.

We continue using the notation C,, defined in the previous solution. Recall that C,, is the
disjoint union of 2™ closed intervals, each of length 1/3™; moreover, observe that the endpoint
of any one of these closed intervals must live in C. This implies that any point of C,, is within
a distance of 1/3 of some point of C. In particular, for any p € C and any m, we have that p
is within a distance of 3%” of some other point of C. Since == can be made arbitrarily small,

3771
p cannot be isolated.

(¢) The set U O,, is the union of disjoint open intervals. Prove that the sum of all the lengths of all
n=1
these intervals is 1. (In other words, C has zero length!)

Again we use the notation C,,. Since C,, is the disjoint union of 2" closed intervals, each
of length 1/3™, the total length of C,, is (2/3)™. Since C is contained in every C,,, its total
length must be smaller than (2/3)™ for every m, which shows that it must have length 0.

-1 .
L(Z)"™". Since

[ALTERNATIVE SOLUTION.| The total length of intervals composing O,, is 5(3

all the O,,’s are disjoint, the total length is > %(%)"_1 = 1i/§/3 =1.

n=1

(d) (Optional! and meta-analytic) Prove that « € C iff  has a ternary (i.e. base 3) expansion that
doesn’t use the digit 1 anywhere.

FIRST DESCRIPTION. The first set we remove, O, consists of all numbers with ternary
expansion of the form 0.1---. The next set, Oy, consists of remaining numbers whose
second ternary digit is a 1. Similarly, O,, consists of all numbers between 0 and 1 such that
the first n — 1 ternary digits are exclusively 0 and 2, and the n'" ternary digit is 1. It follows
that any « ¢ |J O, has a ternary expansion that uses only Os and 2s.
n>1

SECOND DESCRIPTION. Above we defined C,, to be the m'" stage of forming the Cantor set,
where we have created 2™ disjoint closed intervals each of length /3. Here we develop a
convenient nomenclature for the individual closed intervals composing C,,. We will write

C = L] I.
{=m-digit binary number
Thus

Ch=Iyul
Co = Ino U loy U Tio U Iy

For any closed interval I, let a(I) denote the left endpoint of I and S(I) denote the right
endpoint, i.e. I = [a(I),5(I)]. We will now define I, recursively, as follows.
continued on next page...




First, set Iy := [0,1/3] and I; := [2/3,1]. Next, given an (m — 1)-digit binary number ¢, we
will define Iy and Iy, in terms of the endpoints of the interval I,:

Lo = [a(Ie), o(Le) + 1/3™]

I o= [B(1e) = 1/3™, B(1e)]
A straightforward induction proves our assertion that C,, is the disjoint union of the closed
intervals I, over all m-digit binary numbers /.

Finally, observe that any = € C,, must live in an interval of the form I, 4,...q,, With each
d; =0 or 1. A final proof by induction shows that

T € lgidy-d <— = 0.e162- €y ... In ternary,

m

where e; := 2d;; in particular, the first m ternary digits of x must be 0 or 2. Since x € C
requires that = € C,, for every m, we deduce the claim.

(e) (Optional! and meta-analytic) Prove that C is uncountable. [Note that the set of all endpoints
of all the closed intervals in the construction of C is countable!]

It suffices to prove that [0,1] < C. Given = € [0,1], express it in binary; if there are two
options for how to do this, pick the option that doesn’t end with a tail of all 0’s. (For
example, we would express 1/2 in binary as 0.011111... rather than as 0.1.) Now multiply
each digit by 2 and interpret the string of digits as a ternary expansion. By the previous part,
the resulting number ¢(x) lives in the Cantor set. It’s easily verified that ¢ is an injection,
thus proving that ¢ : [0, 1] < C. It follows instantly that C must be uncountable.

(f) (Optional! and meta-analytic) Given sets A and B of real numbers, define their sum and
difference to be

A+B:={a+b:ac Abec B} A—B:={a—-b:a€ Abe B}

Prove that C +C =[0,2] and C — C = [-1,1].

Perhaps the easiest approach is to start by proving

(1) %C + %C =10,1].

The C containment is obvious. To prove the other direction, pick any = € [0,1] and write
its ternary expansion as
x = 0.a1a2a3 - - -

We can easily write z as a sum of two ternary numbers 0.b1b2bs - -+ and 0.cycocs - -+, all of
whose digits are 0 or 1: if ay, = 0, set by = ¢, = 0;if ap = 1, set by = 0 and ¢, = 1; if ap = 2,
set by, = ¢, = 1.

From (1), it’s immediate that C +C = [0,2]. To deduce the second claim, observe that

—C =C — 1, whence
C—C=C+C—1=[-1,1].

Challenge Define a function f : R — R that’s not continuous at any point but satisfies the conclusion of the
Intermediate Value Theorem.



