Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

MATH 350 : REAL ANALYSIS

Solution Set 11

(1) Give an ϵ - δ proof that $\lim_{x \to 4} \frac{1}{\sqrt{x}} = \frac{1}{2}$. (No algebra of limits allowed!)

Given $\epsilon > 0$. Pick any x such that

$$(\clubsuit) \qquad \qquad 0 < |x-4| < \min\{\epsilon, 3\}.$$

It follows that |x - 4| < 3, whence x > 1. In particular, $\sqrt{x} > 1$ and $\sqrt{x} + 2 > 3$. Thus for any x satisfying (\clubsuit), we have

$$\left|\frac{1}{\sqrt{x}} - \frac{1}{2}\right| = \left|\frac{\sqrt{x} - 2}{2\sqrt{x}}\right| = \left|\frac{x - 4}{2\sqrt{x}(\sqrt{x} + 2)}\right| < \frac{\epsilon}{2 \cdot 3} < \epsilon.$$

- (2) Give concrete examples to show that the following definitions of $\lim_{x \to a} f(x) = L$ don't agree with our intuition about limits (i.e. are bad definitions).
 - (a) For all δ > 0, there exists ε > 0 such that if 0 < |x a| < δ, then |f(x) L| < ε.
 Claim. According to this definition, we have lim x = 100.
 Proof. Given δ > 0, I claim ε = δ+100 does the trick. Indeed, for any x satisfying 0 < |x| < δ we have -δ 100 < x 100 < δ 100, whence |x 100| < ε.

(b) For all ε > 0, there exists δ > 0 such that if |f(x) - L| < ε, then 0 < |x - a| < δ.
Claim. Let f be the constant function x → 5. According to this definition, lim_{x→0} f(x) ≠ 5.
Proof. Suppose lim_{x→0} f(x) = 5. Let ε = 1; the definition furnishes a δ > 0 such that
|f(x) - 5| < 1 ⇒ 0 < |x| < δ.
But x = 2δ doesn't satisfy the latter condition, even though |f(2δ) - 5| < 1.

JP30.5 Prove that $\lim_{x \to 2} \frac{2}{x} = 1$.

Given $\epsilon > 0$. I claim that $\left|\frac{2}{x} - 1\right| < \epsilon$ for every x satisfying $0 < |x - 2| < \min\{\epsilon, 1\}$. Indeed, pick any such x. Then |x - 2| < 1; in particular, $\boxed{x > 1}$. At the same time, we also know $|x - 2| < \epsilon$, whence $\left|\frac{2}{x} - 1\right| = \frac{|2 - x|}{|x|} < \frac{\epsilon}{|x|} < \epsilon$.

JP30.8 Suppose $\lim_{x \to a} f(x) = L > 0$. Prove that $\exists \delta > 0$ such that if $0 < |x - a| < \delta$ then f(x) > 0.

Note that
$$L/2 > 0$$
. Thus, by definition, there exists $\delta > 0$ such that
 $0 < |x-a| < \delta \implies |f(x)-L| < \frac{L}{2} \implies f(x)-L > -\frac{L}{2} \implies f(x) > \frac{L}{2} > 0.$

JP33.2 Let f be defined on [0, 1] by the formula

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is continuous at no point in [0, 1].

It suffices to prove that $\lim_{x \to a} f(x)$ doesn't exist for any $a \in [0, 1]$. To see this, pick an $a \in [0, 1]$, and suppose $\lim_{x \to a} f(x) = L$. Then there would exist some $\delta > 0$ such that

$$x \in (a - \delta, a) \cup (a, a + \delta) \implies |f(x) - L| < \frac{1}{10}.$$

Since both \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are dense in \mathbb{R} , we can find a rational q and an irrational α such that $q, \alpha \in (a - \delta, a) \cup (a, a + \delta)$. Plugging these into our implication above, we deduce

$$|1 - L| < \frac{1}{10}$$
 and $|0 - L| < \frac{1}{10}$

Triangle inequality implies

$$1 = |1 - L + L| \le |1 - L| + |L| \frac{1}{10} + \frac{1}{10} = \frac{1}{5}$$

a contradiction. Thus the limit cannot exist anywhere in the interval, whence f cannot be continuous at any point in the interval.

JP33.3 Let f be defined on [0, 1] by the formula

$$f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is continuous only at 0.

There are two things to prove: that f is continuous at 0, and that f is not continuous anywhere else.

Claim. f is continuous at θ .

Proof. Given $\epsilon > 0$. For all x within ϵ of 0—that is, all $x \in [0, \epsilon)$ —we have

$$|f(x) - f(0)| = f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases} < \epsilon.$$

continued on next page...

Claim. f isn't continuous at any $a \neq 0$.

Proof. Suppose f is continuous at $a \neq 0$. Then a > 0, whence $\exists \delta > 0$ such that

$$x \in (a - \delta, a + \delta) \cap [0, 1] \implies |f(x) - f(a)| < \frac{a}{2}.$$

We consider two cases:

• If $a \in \mathbb{Q}$, pick an irrational $x \in (a - \delta, a + \delta) \cap [0, 1]$. Then

$$\frac{a}{2} > |f(x) - f(a)| = a.$$

• If $a \notin \mathbb{Q}$, pick a rational $x \in (0.99a, a) \cap (a - \delta, a)$. Then

$$\frac{a}{2} > |f(x) - f(a)| = x > 0.99a$$

Either way, we've reached a contradiction, whence f cannot be continuous at a.

JP33.4 Let f be defined on [0, 1] by the formula

$$f(x) = \begin{cases} 1/n & \text{if } x = m/n \text{ is rational in reduced form} \\ 0 & \text{otherwise.} \end{cases}$$

(By convention, we say the reduced form of 0 is $\frac{0}{1}$.) Prove that f is continuous only at the irrational points in [0, 1].

We have two things to prove: that f is continuous at irrationals, and that it's discontinuous at rationals. Intuitively, the latter holds because near any rational are a bunch of irrationals, and the former holds because all the rationals extremely close to an irrational have very large denominator. We make these arguments rigorous below.

Claim. f is discontinuous at rationals.

Proof. Pick $a \in \mathbb{Q}$; say, a = m/n in reduced terms. If f were continuous at a, then there would exist $\delta > 0$ such that

$$x \in (a - \delta, a + \delta) \cap [0, 1] \implies |f(x) - f(a)| < \frac{1}{2n}.$$

Pick any irrational $x \in (a - \delta, a + \delta) \cap [0, 1]$. We have

$$\frac{1}{2n} > |f(x) - f(a)| = \frac{1}{n},$$

which is a contradiction. Thus f must be discontinuous at a.

continued on next page...

Claim. f is continuous at irrationals.

Proof. Pick $\alpha \notin \mathbb{Q}$. Our goal is to prove that f is continuous at α . Given $\epsilon > 0$, pick $N \in \mathbb{Z}_{pos}$ such that $\frac{1}{N} < \epsilon$ (such an N exists by Archimedean property). Let

 $Q_N := \{ q \in \mathbb{Q} \cap [0, 1] : \exists n \le N \text{ with } n, nq \in \mathbb{Z}_{\text{pos}} \}$

denote the set of all fractions in the unit interval with denominator smaller than N. Since Q_N is a finite set, the quantity

$$\delta := \min\{|q - \alpha| : q \in Q_N\}.$$

exists. Moreover, $\delta > 0$, since α is irrational. It follows that every rational number in the open interval $(\alpha - \delta, \alpha + \delta)$ has denominator larger than N. Thus for any $x \in (\alpha - \delta, \alpha + \delta)$ we have

$$|f(x) - f(\alpha)| = f(x) = \begin{cases} 0 & \text{if } x \notin \mathbb{Q} \\ 1/n & \text{if } x = m/n \end{cases} < \frac{1}{N} < \epsilon.$$

We conclude that f is continuous at α .

JP33.5 Suppose that f is continuous at every point of [a, b] and f(x) = 0 if x is rational. Prove that f(x) = 0 for every x in [a, b].

Pick any irrational $\alpha \in [a, b]$. Since f is continuous at α , for every $\epsilon > 0$ there exists $\delta > 0$ such that

 $x \in (\alpha - \delta, \alpha + \delta) \implies |f(x) - f(\alpha)| < \epsilon.$

Since \mathbb{Q} is dense in \mathbb{R} , for any $\delta > 0$ there exists a rational $x \in (\alpha - \delta, \alpha + \delta)$. Combining this with the above, we deduce that for any $\epsilon > 0$ we have

 $|f(\alpha)| < \epsilon.$

The only real number satisfying this for every $\epsilon > 0$ is 0, whence $f(\alpha) = 0$. In other words, f vanishes at all irrationals. Since it also vanishes at all rationals, we conclude that f(x) = 0 everywhere.

- (4) In class, Noam asked whether there exists an uncountable subset of \mathbb{R} without accumulation points.
 - (a) Give an example of a countable subset of \mathbb{R} with no accumulation points. (No proof necessary.) \mathbb{Z}
 - (b) Give an example of a countable subset of \mathbb{R} with no isolated points. (No proof necessary.) \mathbb{Q}
 - (c) Suppose $X \subseteq \mathbb{R}$ such that every point in X is isolated. Prove that X must be countable. [*Hint: Construct an injection from* X to \mathbb{Q} .]

If X is finite, we're done, so we henceforth assume X is infinite. For every $x \in X$, let

$$\Delta_x := \inf \left\{ |x - y| : y \in X \setminus \{x\} \right\}$$

this exists since the set is nonempty (X is infinite hence contains points other than x) and is bounded below by 0.

continued on next page...

Observe that $\Delta_x \neq 0$ for any $x \in X$, since the alternative would imply that x is an accumulation point of X. Thus

$$\delta_x := \frac{1}{10} \Delta_x > 0.$$

Lemma 1. If $x, y \in X$ and $x \neq y$, then $(x - \delta_x, x + \delta_x) \cap (y - \delta_y, y + \delta_y) = \emptyset$.

Since \mathbb{Q} is dense in \mathbb{R} , $(x - \delta_x, x + \delta_x)$ must contain some rational number q_x . We therefore have a natural mapping $f : X \to \mathbb{Q}$ defined by $x \mapsto q_x$. Note that this is injective, by the lemma. Since X injects into \mathbb{Q} and \mathbb{Q} is countable, we conclude that X must be countable. *Proof of Lemma.* Suppose $\alpha \in (x - \delta_x, x + \delta_x) \cap (y - \delta_y, y + \delta_y)$. Then $|x - y| \le |x - \alpha| + |\alpha - y| < \delta_x + \delta_y = \frac{\Delta_x + \Delta_y}{10} \le \frac{2|x - y|}{10} < |x - y|,$

a contradiction.

- (5) Suppose $f: [0,1] \to \mathbb{R}$ is monotone increasing, i.e. that $f(x) \leq f(y)$ whenever $x \leq y$.
 - (a) Show that for any $a \in (0,1)$, $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ both exist.

Pick $a \in (0, 1)$, and set $L := \sup \underbrace{\{f(x) : 0 < x < a\}}_{\mathcal{A}}.$ I claim that $\lim_{x \to a^-} f(x) = L$. Given $\epsilon > 0$. There exists $x_0 < a$ such that $f(x_0) > L - \epsilon$, and for all $x \ge x_0$ we have $f(x) > L - \epsilon$ by monotonicity of f. On the other hand, $f(x) \le L$ for all x < a. Thus, we deduce that $|f(x) - L| < \epsilon$ whenever $0 < |x - a| < a - x_0$. A substantially similar argument implies the existence of the right-handed limit.

(b) Let \mathcal{D} denote the set of all points in [0,1] at which f is discontinuous. Prove that \mathcal{D} is countable. Given $a \in (0,1)$ at which f is discontinuous, we know from above that $L_a := \lim_{x \to a^-} f(x)$ and $R_a := \lim_{x \to a^+} f(x)$ both exist. Observe that $L_a \leq f(a) \leq R_a$; since f is discontinuous, we must have $L_a \neq R_a$, whence $L_a < R_a$.

Thus we have a map $f: \mathcal{D} \to \mathcal{P}(\mathbb{R})$ defined $f(a) := (L_a, R_a)$. Moreover, f is injective, since $R_a < L_b$ whenever a < b. Since $f(a) \neq \emptyset$ and \mathbb{Q} is dense in \mathbb{R} , there exists some rational $q_a \in (L_a, R_a)$. Mapping $a \mapsto q_a$ yields an injection of \mathcal{D} into \mathbb{Q} , whence \mathcal{D} must be countable.

- (6) The goal of this problem is to explore how continuous functions affect topological properties of sets. (I won't define precisely what I mean by *topological*, but highly recommend taking a course on topology.) Recall that if \mathcal{A} is a subset of the domain of a function f, then $f(\mathcal{A}) := \{f(x) : x \in \mathcal{A}\}$.
 - (a) If f is continuous on a bounded set \mathcal{B} , must $f(\mathcal{B})$ be bounded? Prove or give a counterexample. No: consider $f:(0,1) \to \mathbb{R}$ defined by $x \mapsto \frac{1}{x}$.
 - (b) If f is continuous on a closed interval C, must f(C) be a closed interval? Prove or give a counterexample.

This boils down to the Extreme Value Theorem, which we proved in class.

(c) If f is continuous on an open interval \mathcal{O} , must $f(\mathcal{O})$ be an open interval? Prove or give a counterexample.

No: consider the constant function $f:(0,1) \to \mathbb{R}$ defined by $f: x \mapsto 1$.

(7) Consider the following:

Claim. Given $X \subseteq \mathbb{R}$, $(c_n) \subseteq X$ a Cauchy sequence, and $f : X \to \mathbb{R}$ a continuous function on X. Then the sequence $(f(c_n))$ is Cauchy.

"Proof". Given $\epsilon > 0$. Pick any $a \in X$. Because f is continuous at a, there exists $\delta > 0$ such that

 $|x-a| < \delta \implies |f(x) - f(a)| < \epsilon.$

Since (c_n) is Cauchy, $|c_m - c_n| < \delta$ for all large m, n. Thus $|f(c_n) - f(c_m)| < \epsilon$ for all m, n large. \Box

Find a counterexample to the claim, and carefully identify the mistake in the alleged proof.

A counterexample is $f: (0,1) \to \mathbb{R}$ defined by $x \mapsto \frac{1}{x}$ and $c_n := \frac{1}{x}$.

The issue is that in our definition of continuity, δ depends on ϵ and on a.

(8) The goal of this problem is to explore the *Cantor set*, a remarkable example of set that tests our intuition about real analysis concepts. Let me first describe the Cantor set informally; a formal definition follows. Start with the closed interval [0, 1]. Remove the middle third of this interval, leaving $[0, 1/3] \cup [2/3, 1]$. Remove the middle thirds of each of these two intervals, leaving four closed intervals. Remove the middle thirds of each of these four intervals, leaving eight closed intervals. The set C of all points that remain after doing this "forever" is called the Cantor set.

To do this more formally, we begin with the open interval $\mathcal{O}_1 := (1/3, 2/3)$. Next, for each $n \geq 1$ define

$$\mathcal{O}_{n+1} := \left(\frac{1}{3} \cdot \mathcal{O}_n\right) \cup \left(\frac{2}{3} + \frac{1}{3} \cdot \mathcal{O}_n\right),$$

where $\alpha \cdot X := \{\alpha x : x \in X\}$ and $\beta + Y := \{\beta + y : y \in Y\}$. Finally, set

$$\mathcal{C} := [0,1] \setminus \left(\bigcup_{n=1}^{\infty} \mathcal{O}_n \right).$$

It immediately follows that C is closed and bounded, hence that C is *compact* by the Heine-Borel theorem (which you'll explore in your essay).

(a) Prove that there doesn't exist any nonempty open interval that's a subset of C. (A topologist would say C has "empty interior".)

Let

$$\mathcal{C}_m := [0,1] \setminus \big(\bigcup_{n \le m} \mathcal{O}_n\big);$$

by definition of the Cantor set, $C_m \supseteq C$ for every N. Note that (by induction) C_m is the disjoint union of 2^m closed intervals, each of length $1/3^m$.

Pick any point $x \in int(\mathcal{C})$; by definition, there exists $\epsilon > 0$ such that $\mathcal{B}_{\epsilon}(x) \subseteq \mathcal{C}$, whence

 $\mathcal{B}_{\epsilon}(x) \subseteq \mathcal{C}_m$

for every *m*. But for sufficiently large *m* we have $\frac{1}{3^m} < \epsilon$, so \mathcal{C}_m cannot contain any interval of length ϵ ! We conclude that the interior of \mathcal{C} must be empty.

(b) Prove that \mathcal{C} has no isolated points.

We continue using the notation \mathcal{C}_m defined in the previous solution. Recall that \mathcal{C}_m is the disjoint union of 2^m closed intervals, each of length $1/3^m$; moreover, observe that the endpoint of any one of these closed intervals must live in \mathcal{C} . This implies that any point of \mathcal{C}_m is within a distance of $1/3^m$ of some point of \mathcal{C} . In particular, for any $p \in \mathcal{C}$ and any m, we have that p is within a distance of $\frac{1}{3^m}$ of some other point of \mathcal{C} . Since $\frac{1}{3^m}$ can be made arbitrarily small, p cannot be isolated.

(c) The set $\bigcup_{n=1}^{\infty} \mathcal{O}_n$ is the union of disjoint open intervals. Prove that the sum of all the lengths of all

these intervals is 1. (In other words, C has zero length!)

Again we use the notation C_m . Since C_m is the disjoint union of 2^m closed intervals, each of length $1/3^m$, the total length of C_m is $(2/3)^m$. Since C is contained in every C_m , its total length must be smaller than $(2/3)^m$ for every m, which shows that it must have length 0. [ALTERNATIVE SOLUTION.] The total length of intervals composing \mathcal{O}_n is $\frac{1}{3}(\frac{2}{3})^{n-1}$. Since

all the \mathcal{O}_n 's are disjoint, the total length is $\sum_{n=1}^{\infty} \frac{1}{3} (\frac{2}{3})^{n-1} = \frac{1/3}{1-2/3} = 1.$

(d) (**Optional! and meta-analytic**) Prove that $x \in C$ iff x has a ternary (i.e. base 3) expansion that doesn't use the digit 1 anywhere.

FIRST DESCRIPTION. The first set we remove, \mathcal{O}_1 , consists of all numbers with ternary expansion of the form $0.1\cdots$. The next set, \mathcal{O}_2 , consists of remaining numbers whose second ternary digit is a 1. Similarly, \mathcal{O}_n consists of all numbers between 0 and 1 such that the first n-1 ternary digits are exclusively 0 and 2, and the n^{th} ternary digit is 1. It follows that any $x \notin \bigcup_{n \ge 1} \mathcal{O}_n$ has a ternary expansion that uses only 0s and 2s.

SECOND DESCRIPTION. Above we defined C_m to be the m^{th} stage of forming the Cantor set, where we have created 2^m disjoint closed intervals each of length $1/3^m$. Here we develop a convenient nomenclature for the individual closed intervals composing C_m . We will write

$$\mathcal{C}_m = \bigsqcup_{\ell = m \text{-digit binary number}} I_\ell.$$

Thus

$$\begin{aligned} \mathcal{C}_1 &= I_0 \sqcup I_1 \\ \mathcal{C}_2 &= I_{00} \sqcup I_{01} \sqcup I_{10} \sqcup I_{11} \\ \vdots \end{aligned}$$

For any closed interval I, let $\alpha(I)$ denote the left endpoint of I and $\beta(I)$ denote the right endpoint, i.e. $I = [\alpha(I), \beta(I)]$. We will now define I_{ℓ} recursively, as follows. *continued on next page...* First, set $I_0 := [0, 1/3]$ and $I_1 := [2/3, 1]$. Next, given an (m-1)-digit binary number ℓ , we will define $I_{\ell 0}$ and $I_{\ell 1}$ in terms of the endpoints of the interval I_{ℓ} :

$$I_{\ell 0} := [\alpha(I_{\ell}), \alpha(I_{\ell}) + \frac{1}{3^{m}}]$$
$$I_{\ell 1} := [\beta(I_{\ell}) - \frac{1}{3^{m}}, \beta(I_{\ell})]$$

A straightforward induction proves our assertion that C_m is the disjoint union of the closed intervals I_{ℓ} over all *m*-digit binary numbers ℓ .

Finally, observe that any $x \in C_m$ must live in an interval of the form $I_{d_1d_2\cdots d_m}$ with each $d_i = 0$ or 1. A final proof by induction shows that

 $x \in I_{d_1 d_2 \cdots d_m} \qquad \Longleftrightarrow \qquad x = 0.e_1 e_2 \cdots e_m \dots \text{ in ternary,}$

where $e_i := 2d_i$; in particular, the first *m* ternary digits of *x* must be 0 or 2. Since $x \in C$ requires that $x \in C_m$ for every *m*, we deduce the claim.

(e) (**Optional! and meta-analytic**) Prove that C is uncountable. [Note that the set of all endpoints of all the closed intervals in the construction of C is countable!]

It suffices to prove that $[0,1] \hookrightarrow C$. Given $x \in [0,1]$, express it in binary; if there are two options for how to do this, pick the option that doesn't end with a tail of all 0's. (For example, we would express 1/2 in binary as 0.011111... rather than as 0.1.) Now multiply each digit by 2 and interpret the string of digits as a ternary expansion. By the previous part, the resulting number c(x) lives in the Cantor set. It's easily verified that c is an injection, thus proving that $c: [0,1] \hookrightarrow C$. It follows instantly that C must be uncountable.

(f) (**Optional! and meta-analytic**) Given sets \mathcal{A} and \mathcal{B} of real numbers, define their sum and difference to be

 $\mathcal{A} + \mathcal{B} := \{a + b : a \in \mathcal{A}, b \in \mathcal{B}\} \qquad \qquad \mathcal{A} - \mathcal{B} := \{a - b : a \in \mathcal{A}, b \in \mathcal{B}\}.$

Prove that C + C = [0, 2] and C - C = [-1, 1].

Perhaps the easiest approach is to start by proving

(1)
$$\frac{1}{2}C + \frac{1}{2}C = [0,1].$$

The \subseteq containment is obvious. To prove the other direction, pick any $x \in [0, 1]$ and write its ternary expansion as

 $x = 0.a_1a_2a_3\cdots$

We can easily write x as a sum of two ternary numbers $0.b_1b_2b_3\cdots$ and $0.c_1c_2c_3\cdots$, all of whose digits are 0 or 1: if $a_k = 0$, set $b_k = c_k = 0$; if $a_k = 1$, set $b_k = 0$ and $c_k = 1$; if $a_k = 2$, set $b_k = c_k = 1$.

From (1), it's immediate that C + C = [0, 2]. To deduce the second claim, observe that -C = C - 1, whence

 $\mathcal{C}-\mathcal{C}=\mathcal{C}+\mathcal{C}-1=[-1,1].$

Challenge Define a function $f : \mathbb{R} \to \mathbb{R}$ that's not continuous at any point but satisfies the conclusion of the Intermediate Value Theorem.