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ABSTRACT. A quick proof of the existence and uniqueness of the floor function.

1. INTRODUCING AND MOTIVATING THE FLOOR FUNCTION

In class, we stated the following result:

Proposition 1.1. Given x ∈ R, ∃!N ∈ Z and ∃!α ∈ [0, 1) such that x = N + α.

Remark. We call N the floor of x, denoted ⌊x⌋, and α the fractional part of x, denoted ⟨x⟩. Intuitively, ⌊x⌋ is
the largest integer ≤ x. For example:

⌊10⌋ = 10 ⟨10⟩ = 0

⌊π⌋ = 3 ⟨π⟩ = 0.1415926 . . .

⌊−π⌋ = −4 ⟨−π⟩ = 0.8584 . . .

The floor function appears throughout mathematics, and even though conceptually it is rather simple, there are
numerous open problems involving them. For example:

Conjecture 1.2 (Akiyama-Brunotte-Pethő-Steiner, 2006). Suppose (an) is a sequence of integers satisfying the
recurrence an+1 = −⌊λan⌋ − an−1. Then the sequence (an) is periodic, for any λ ∈ [−2, 2].

This is known to hold for λ = 0,±1, and the golden ratio 1+
√
5

2
, but all other choices of λ seem to still be open!

Another place the floor function appears is in the study of generalized polynomials, i.e. any function built out
of polynomials, addition, multiplication, and floor functions. Generalized polynomials play an important role
in dynamical systems, number theory, and arithmetic combinatorics, and their behavior is significantly more
complicated than that of ordinary polynomials. For example, pick any irrational α ∈ (0, 1) and any β ∈ R, and
set f(x) := αx+ β. It can be proved that the generalized polynomial sequence

an := ⌊f(n+ 1)⌋ − ⌊f(n)⌋
(called a Sturmian sequence) only outputs 0 and 1; moreover, the proportion of the time it outputs 1 is precisely
α. With more care, it’s sometimes possible to specify which outputs are 0 and which are 1; for example, in 2023
Byszewski and Konieczny proved that if A is any subset of the Fibonacci numbers, then there exists a gener-
alized polynomial the outputs 1 at any input from A and outputs 0 otherwise. By contrast, in 2022 Konieczny
proved that there does not exist any generalized polynomial that does this for A being the set of all powers of
2. Broadly, though, generalized polynomials remain poorly understood. For example, here’s a question (posed
by Konieczny in his paper Generalised polynomials and integer powers) that remains unanswered:

Question. Does there exist a generalized polynomial sequence an ∈ Z that contains an infinite geometric
progression but whose image has density 0?

The fractional part function arises in many contexts as well. For example, Euler discovered that

lim
N→∞

(
N∑

n=1

1

n
− logN

)
= 1−

∫ ∞

1

⟨t⟩
t2

dt.

Not much is known about the integral on the right hand side. For example, it is widely conjectured (but still
unknown) whether or not it’s an irrational number.



2. PROOF OF PROPOSITION 1.1

Having motivated Proposition 1.1, we now prove it. There were several nice approaches proposed in class.
Divij suggested looking at the interval (x − 1, x] and letting N be the unique integer in this interval. But how
do we know that such an integer exists and is unique? Indeed, this is the heart of what we’re trying to prove,
so this approach is begging the question! Lily suggested instead that we take N := sup{n ∈ Z : n ≤ x}.
The issue with this is a notorious pitfall: the supremum of a set might not live in the set. In other words, if we
define N this way, we’d have to come up with a separate argument that N is an integer. Instead, we will follow
a suggestion from William, who used the well-ordering of Zpos to construct N .

Proof. We will only prove the claim for x ≥ 1, leaving the deduction of the full theorem as an exercise. Fix
x ≥ 1, and consider the set

A := {n ∈ Zpos : n > x}.
In class we proved:

Lemma 2.1. A ≠ ∅.

Since Zpos is well-ordered, A must have a least element, say m. Define

N := m− 1 and α := x−N.

Here’s an illustration:

α

xm− 2 N m m+ 1 m+ 2

We claim that
(i) N ∈ Zpos

(ii) N ≤ x
(iii) α ∈ [0, 1)

PROOF OF (i). This almost follows from the following result (proved in Chapter 6 in our textbook):

Lemma 2.2. If m ∈ Zpos,m− 1 ∈ Zpos ∪ {0}.

To prove (i), it therefore suffices to show N ̸= 0. By construction, m > x, and by hypothesis, x ≥ 1. It follows
that m > 1, whence N = m− 1 > 0 so N ̸= 0. Lemma 2.2 implies N ∈ Zpos.

PROOF OF (ii). Since N ∈ Zpos and N = m− 1 < m, we deduce N /∈ A. This instantly implies N ≤ x.

PROOF OF (iii). By (ii), α = x−N ≥ 0. On the other hand,

α = x−N = x−m︸ ︷︷ ︸
<0

+1 < 1.

Putting everything together, we’ve proved the existence of N and α as in the statement of Proposition 1.1. It
remains only to prove uniqueness.

Suppose x = N +α = M + β, where M,N ∈ Zpos and α, β ∈ [0, 1). Without loss of generality (WLOG), say
M ≥ N . Then

M −N = α− β < 1.

Once again invoking Lemma 2.2, we see that M − N ∈ Zpos ∪ {0}. Since 1 is the least positive integer, we
deduce M −N /∈ Zpos, whence M −N = 0. This in turn implies α − β = 0. We’ve proved that M = N and
α = β, which implies uniqueness! □
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