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4.1 The topology of R2 induced by the Euclidean metric is called the usual topology on R2. Describe the
topology of R2 induced by the taxicab metric. What about the chessboard metric? What about the
British Rail metric?

Taxicab. The topology of R2 induced by the taxicab metric is the usual topology on R2. In
problem 2.5 you proved that the taxicab topology is a refinement of the usual topology, so
it suffices to prove that the usual topology is a refinement of the taxicab topology. To prove
this, it’s convenient to introduce a bit of notation: let Be

r(α) denote the Euclidean ball of
radius r around α, and Bt

r(α) the taxicab ball of radius r around α. I claim:

Lemma 1. For any r > 0, Be
r/10(α) ⊆ Bt

r(α).

Once we prove this, it’s not hard to show that the taxicab and usual metrics produce the
same topology. Indeed, if A is open with respect to the taxicab metric, then every point
α ∈ A is interior in A with respect to the taxicab metric, so there’s an open taxicab ball
around α that’s contained entirely in A. By the lemma, there’s an open euclidean ball strictly
inside the taxicab ball, which means that α ∈ int(A) with respect to the euclidean metric as
well.

Proof of Lemma. Suppose x ∈ Be
r/10(α). The Cauchy-Schwarz inequality (see document

posted on course website) implies

(
|x1 − α1|+ |x2 − α2|

)2 ≤ 2
(
|x1 − α1|2 + |x2 − α2|2

)
≤ r2

50
,

whence |x1 − α1|+ |x2 − α2| ≤ r. This is equivalent to x ∈ Bt
r(α).

Discussion.Visually, open balls with respect to the taxicab metric are diamonds; by appro-
priately rescaling these, we can make them fit inside any given euclidean ball, and also make
them large enough to contain any particular euclidean ball. The proof above simply formal-
izes this. Note that the choice of r

10 is lazy—it could be sharpened. That said, sharpening
this requires more thought and doesn’t change the conclusion, so why bother!

Chessboard. The topology of R2 induced by the chessboard metric is the usual topology
on R2. The argument is very similar to the above, except that the chessboard ball of radius
r (whose shape is a square) strictly contains the euclidean ball of radius r, which strictly
contains the chessboard ball of radius r
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British Rail metric. The topology of R2 induced by the British Rail metric is an odd
hybrid of the discrete and euclidean topologies: it is generated by the basis consisting of all
singletons other than {0}, and all euclidean open balls centered at 0. More explicitly, this
topology can be expressed in the form

T = {X ⊆ R2 : 0 ̸∈ X} ∪ {X ⊆ R2 : ∃δ > 0,Bδ(0) ∈ X}

where Bδ(p) denotes the euclidean open ball of radius δ around p and 0 denotes the origin.

To see this, observe that for any p ∈ R2, every other point is at least a distance |p| away
(since one must first travel to 0). It follows that if p ̸= 0, the open British Rail ball around

p of radius |p|
2 consists of only the point p. On the other hand, open balls around 0 in the

British Rail metric agree with euclidean open balls around 0.

4.2 Note that the basis we gave for Rusual (the collection of all bounded open intervals) has uncountably
many sets in it. Find a countable basis of Rusual.

I claim that
B := {(a, b) : a, b ∈ Q}

is a countable basis of Rusual. It’s clearly countable, so it suffices to show that any element
of the basis we gave in class is a union of elements of B. To see this, suppose (α, β) is an
arbitrary bounded open interval. Pick a sequence of rationals (an) such that an ≥ α for all n
and an → α; pick another sequence of rationals (bn) such that bn ≤ β for all n and bn → β.
Then (α, β) =

⋃
n≥1

(an, bn).

4.3 Suppose T is a topology on R2 that contains the set of points {(x, x) : x ∈ R}, and also contains the line
segments (x, x + 2) × {y} for each x, y ∈ R. (Here (x, x) denotes a point in the plane, while (x, x + 2)
denotes an open interval.)

(a) Is the interval ( 34 , 1)× {0} ∈ T ?

Yes: both (−1, 1)×{0} and (3/4, 11/4)×{0} are open, so their intersection must be as well.

(b) Is the interval (1, 4)× {0} ∈ T ?

Yes: both (1, 3)× {0} and (2, 4)× {0} are open, so their union must be as well.

(c) Does T contain an element consisting of countably infinitely many points?

Yes. Observe that for any n ∈ Z, the singleton {(n, n)} ∈ T , since it’s the intersection of the
open sets {(x, x) : x ∈ R} and (n− 1, n+ 1)× {n}. It follows that

⋃
n∈Z

(n, n) ∈ T .

4.4 Let · be a closure operator on X. Prove that A ⊆ B ⊆ X implies A ⊆ B . [You may not use
properties of closed sets for this problem, since we used this as a lemma in class to prove properties of
closed sets! ]

Observe that A ∪B \A = A ∪ (B \A) = B , whence A ⊆ B .

4.5 In class, Daniel made the very reasonable proposal that the closure of a singleton set (i.e. a set consisting
of a single element) should be itself. Sadly, topology cares little for our intuition.
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Construct an example of a topological space (X, T )—i.e. a space X with a topology T satisfying our
three conditions from class—in which 2 ≤ |X| < ∞, and {x} ≠ {x} for some x ∈ X. Can you construct
such an example in which X is infinite?

Take any set X containing at least two elements, and consider (X, Tindiscrete). Since the only
nonempty closed set is X, the closure of any singleton must be all of X.

Discussion.In the finite case, it’s possible to construct topologies by hand in which single-
tons aren’t closed. For example, let X = {a, b, c, d} and consider T = {∅, X, {c}, {d}, {c, d}};
this is easily verified to be a topology on X. The smallest closed set containing b is {a, b},
so {b} = {a, b}.

4.6 Prove that the intersection of any collection of topologies on X is a topology on X.

Let T :=
⋂
α
Tα be the intersection of a bunch of topologies onX. Clearly∅, X ∈ T , since they

are both elements of each Tα, so it suffices to show that T is closed under finite intersections
and arbitrary unions. But both of these hold in every Tα, so they are automatically inherited
in T .

4.7 Recall from class that given any closure operator · on X, we can define what it means for a set to be
closed: we say A ⊆ X is closed iff A = A . Let C denote the collection of all subsets of X that are closed
(with respect to a given closure operator). In class we proved that C must satisfy three properties:

(C-i) ∅, X ∈ C,
(C-ii) C is closed under finite unions, and

(C-iii) C is closed under arbitrary intersections.

[NB: the word closed in (ii) and (iii) is unrelated to the term closed set !]

(a) In class we asserted that the process can be run in reverse, as well: given a set C ⊆ P(X), we can
define a closure operator on X by setting the closure of S to be the smallest element of C containing
S. Prove that if C fails to satisfy any one of (C-i), (C-ii), or (C-iii), then the induced ‘closure’ can
fail to be a closure.

Let X := {1, 2, 3, 4}.

Consider C = {∅}. This violates only X ∈ C. However, it has {1} = ∅, violating a closure
property since {1} ̸⊆ {1}. Consider C = {X}. This violates only ∅ ∈ C. However, it has
∅ = X ̸= ∅, violating a closure property.

Next, consider C = {∅, {1}, {2}, X}. It violates only (C-ii), but fails one of the closure
properties:

{1} ∪ {2} = {1} ∪ {2} = {1, 2} ≠ X = {1} ∪ {2}.

Finally, consider C = {∅, {1, 2}, {1, 3}, X}. This violates only (C-iii), but fails a closure
property:

{1, 2} ∪ {1, 3} = {1, 2} ∪ {1, 3} = {1, 2, 3} ≠ X = {1, 2} ∪ {1, 3}.
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(b) Verify that if C does satisfy all of (C-i), (C-ii), and (C-iii), then the induced operator described
above is a closure.

We verify each property of closure:

� Since ∅ ∈ C, ∅ is defined as an intersection involving an empty set, hence is empty.

� For an arbitrary set A, its closure, defined as an intersection of sets in C, is itself in
C. Taking the closure of A again gives an intersection of sets involving A itself, which
returns A.

� For an arbitrary set A, its closure is an intersection of at least one set, since X ∈ C.
Since each set in the intersection is a superset of A, so is their intersection A.

� To show that A ∪B = A ∪B, we want⋂
X⊃(A∪B)

X∈C

X =
⋂

Y⊃A
Y ∈C

Y ∪
⋂

Z⊃B
Z∈C

Z.

Since every X also appears as one of the Y ’s, the intersection of Y ’s is an intersection

involving more sets than the intersection of X’s, which means
⋂

Y⊃A
Y ∈C

Y ⊆
⋂

X⊃(A∪B)
X∈C

X.

Applying the same logic to the Z’s gives A ∪B ⊇ A ∪B.

For the other direction, we will show that if a point x is not in A∪B, then x is not in

A ∪B. Suppose x is not in
⋂

Y⊃A
Y ∈C

Y ∪
⋂

Z⊃B
Z∈C

Z. This means x is in neither intersection,

which means there exists Y ′ ⊃ A,Z ′ ⊃ B, Y ′, Z ′ ∈ C both excluding x. Since C is
closed under finite unions, the set Y ′∪Z ′ is some X ′ in the intersection defining A ∪B,
which means x ̸∈ A ∪B as desired.

(c) Prove that if you start with a closure, generate C as described above, and then use C to induce a
closure, you end up with the same closure operator you started with.

Beginning with a closure · , we generate the set

C := {S : S ∈ P(X)},

and then make the function
f(A) =

⋂
A⊆S,S∈C

S.

To show f(A) = A, note that A ⊆ A, so A is an element of C containing A. We must now
prove that A is the smallest element of C containing A. Assume to the contrary that there
is some S ∈ C such that A ⊆ S and A ̸⊆ S. Let R := S\A. We now have

R ∪A = R ∪A.

As R ∪A = S ∈ C, the first closure is just itself. Thus

S = R ∪A.

However, A ̸⊆ S, a contradiction.
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(d) Prove that if you start with a set C satisfying properties (C-i), (C-ii), and (C-iii), induce a closure,
and then use that closure to induce a set of closed sets, this set is C.

Given C satisfying (i), (ii), (iii), define the closure A =
⋂

S⊃A
S∈C

S. We want to show A = A iff

A ∈ C. If A ∈ C, then A is in the intersection defining A; since every set in the intersection

contains A, the intersection equals A. For the other direction, suppose A = A =
⋂
S⊃A
S∈C

S.

Since A is expressible as an intersection of sets in C, A is in C by (iii).

(e) Deduce that there’s a bijection between the set of all possible closures on X and the set of all possible
topologies on X. (Your proof should be quite short.)

Since the set complement is its own inverse operator, the topologies on X are in bijection
with the collections of closed sets, i.e., the possibilities of C. Let f be the map from the
set of possible closures to the set of possible collections of closed sets, defined by inducing
closed sets from closure. Let g be the map from the set of possible collections of closed sets
to the set of possible closures defined by inducing closure from closed sets. By c), g ◦f is the
identity; in particular, f is injective. By d), f ◦g is the identity; in particular, f is surjective.
Thus f is a bijection between the collection of all possible collections of closed sets and the
set of all possible closures.

4.8 Given a set X and a closure operator · on X. One of the defining properties of closure is that it’s
idempotent : applying it repeatedly produces the same result as applying it once. In particular, starting
with a set A ⊆ X one can generate at most 2 distinct sets using the closure operator: A and A . The
purpose of this exercise is to explore the relationship between the closure and complement operators.

(a) Do the closure and complement operators commute? In other words, given A ⊆ X, does Ac = A
c
?

No. For example, in Rusual, {1}c = R ̸= R \ {1} = {1} c
.

(b) Define a new operator i : P(X) → P(X) by i(A) :=
(
Ac

)c
. Can you give an intuitive description

of this set? (Think in R2!)

i(A) is the interior of A. Here’s a picture:

A A A A

(c) Given A ⊆ X, prove that there are only finitely many different sets that can be generated from A
by applying complements and closures. Can you get an explicit upper bound on how many?

[Hint: Your upper bound shouldn’t depend on A or X! ]

Discussion. It’s tempting to assume that

i(A) = A .

This seems obvious, but it is false even in familiar topological spaces. For example, consider
any singleton set A ⊂ Rusual; the left hand side is ∅, while the right hand side is a singleton.
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We can create at most 14 sets using complements and closures, and the number 14 cannot
be decreased! This was originally published in 1922 by Kuratowski.

Let cS denote the complement of S, and kS denote the closure of S. Since kkS = kS and
ccS = S, every set that can be formed out of A using just closures and complements will be of
the form of strictly alternating applications of c and k. We will show that kckckckA = kckA,
which immediately implies that there are at most 14 sets we can generate:

A, kA, cA, ckA, kcA, ckcA, kckA, ckckA,

kckcA, ckckcA, kckckA, ckckckA, kckckcA, ckckckcA.

Remarkably, it is possible to choose A so that all 14 of the above are distinct sets; check out
this website.

First we show kckckckA ⊇ kckA. From part (b), ckcA = int(A), whence

ckc(kA) = int(kA) ⊆ kA.

Note that in Problem 4.4 we showed that if A ⊆ B then kA ⊆ kB. So,

k(ckc(kA)) ⊆ kkA = kA

⇒ c(k(ckc(kA))) ⊇ ckA

⇒ k(c(k(ckc(kA)))) ⊇ kckA by 4.4

Next we show kckckckA ⊆ kckA:

ckc(kckA) ⊆ kckA by part (b)

⇒ k(ckc(kckA)) ⊆ kkckA = kckA by 4.4

Whew!
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