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5.1 In Chapter 2 of Ivan’s notes (Bases of topologies), a basis on X is defined to be any set B ⊆ P(X)
satisfying two conditions:

� B covers X

� For any S, T ∈ B and any α ∈ S ∩ T , ∃A ∈ B such that α ∈ A ⊆ S ∩ T .

The first condition is identical to the definition we gave in class, but the second looks different. Prove
that this is equivalent to the definition we gave in class.

First, we show that our class’ definition implies Ivan’s. Fix any S, T ∈ B and any α ∈ S ∩T .
By our definition, S ∩ T is a union of basis elements, whence α must live in at least one of
these; call it A. Then α ∈ A ⊆ S ∩ T , as claimed.

Next we show that Ivan’s definition implies ours. Pick any two basis elements S, T ∈ B; we
wish to show that S∩T is a union of basis elements. From Ivan’s definition we know that for
any α ∈ S∩T there exists A ∈ B such that α ∈ A ⊆ S∩T . It follows that S ∩ T ⊆

⋃
A∈A A ,

where A is a collection of elements of B that are also subsets of S ∩ T . On the other hand,
pick any β ∈

⋃
A∈A A. Then β is an element of some A ∈ A, which implies that β ∈ S ∩ T .

It follows that
⋃

A∈A A ⊆ S ∩ T . Combining the two boxed expressions yields the claim.

5.2 Prove that the topology defined by Definition 2.6 in Chapter 2 of Ivan’s notes is the same as the topology
generated by B, as defined in our class.

First, recall our class’ definition:

T = {O ⊆ X : O =
⋃
α

Bα for some Bα ∈ B}.

And here’s Ivan’s definition:

T ′ = {O ⊆ X : ∀x ∈ O,∃B ∈ B with x ∈ B ⊆ O}.

We will prove equality of T ′ and T by showing containment in both directions.

(T ′ ⊆ T ) Pick some O ∈ T ′. Then we know that for all x ∈ O there exists Bx ∈ B such that
x ∈ Bx ⊆ O. It’s straightforward to check verify that O =

⋃
x∈O Bx. Since each Bx ∈ B, we

deduce O ∈ T .

(T ′ ⊇ T ) Pick some O ∈ T . We want to show that O ∈ T ′. Since O ∈ T ,O =
⋃
Bα. So

pick any x ∈ O, and we get that x ∈ Bα for some α. This implies O ∈ T ′, and we are done.



5.3 Prove that collection of all open balls in R2—i.e. all sets of the form Bδ(x), with respect to the Euclidean
metric—is a basis on R2, and that it generates the usual topology R2.

Let B denote the collection of all open balls in R2.

Claim. B is a basis on R2.

Proof. B clearly covers R2, since every point in R2 is the center of an open ball. Thus it
suffices to verify the second condition of being a basis. We use Ivan’s definition: we must
show that every point in the intersection of two balls must live inside some ball that’s entirely
contained in the intersection.

Given S, T ∈ B, pick x ∈ S ∩ T . Since x ∈ S and S is an open ball, there exists an open
ball Bδ1(x) with δ1 > 0 such that x ∈ Bδ1(x) ⊆ S. Similarly for T , there exists an open
ball Bδ2(x) with δ2 > 0 such that x ∈ Bδ2(x) ⊆ T . Then x ∈ Bmin(δ1,δ2)(x) ⊆ S ∩ T . We’ve
verified Ivan’s second condition, and have therefore shown that B is a basis on R2.

Claim. B generates the usual topology.

Proof. Note that any union of open balls is an element of the usual topology: every point in
this union is an interior point, since it lives in one of the open balls composing this union.
It thus suffices to prove that every element of the usual topology is generated by B.

Consider a set O in the usual topology in R2. Every x ∈ O is an interior point, meaning
there exists an open ball B such that x ∈ B ⊆ O. By Ivan’s definition, O is an element of
the topology generated by B.

5.4 All the parts of this question concern the Sorgenfrey line.

(a) Prove that the interval (0, 1) is open.

Observe that (0, 1) =
∞⋃

n=1
[1/n, 1) is a union of basis elements, hence is open.

(b) Is (0, 1] open?

No. In fact, I claim that any open set containing 1 must also contain some γ > 1.

Suppose O is some open set containing 1. Since we can write O as a union of basis elements,
1 must live in one of these basis elements [α, β), i.e. α ≤ 1 < β. But then 1+β

2 , which is
strictly larger than 1, lives in [α, β) ⊆ O as well.

(c) Prove that singletons are their own closures.

Proof 1. Pick any x ∈ R; I claim that {x} is closed. This is equivalent to showing that its
complement is open. We accomplish this by exhibiting it as a union of basis elements:

R \ {x} = (−∞, x) ∪ (x,∞) =

( ∞⋃
n=1

[x− n, x)

)
∪

( ∞⋃
n=1

[x+
1

n
, x+ n)

)
.

This proves that {x} is closed, hence is its own closure.

Proof 2. The argument given in part (a) applies to any open interval, and therefore implies
that the lower limit topology is a refinement of the usual topology. It follows that all sets
that are closed in the usual topology must also be closed in the lower limit topology; in
particular, singletons must be closed.
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(d) Prove that there does not exist a countable basis that generates the lower limit topology.

[Hint: In view of problem 4.2, make sure your proof doesn’t apply to Rusual.]

Suppose B is a basis of the lower limit topology.

Claim. For any x ∈ R, there exists y > x such that [x, y) ∈ B.
Of course, once we prove this we’re done, since there are uncountably many x ∈ R.

Proof of claim. Given any x ∈ R, we know [x, x + 1) is open. Since this is expressible as
a union of elements of B, there must exist an element of B that contains x. However, that
element cannot contain anything strictly smaller than x.

5.5 Let B be the set of bi-infinite arithmetic progressions consisting of integers, and let T denote the topology
on Z generated by B. (This is the Furstenberg topology on Z that we used to prove the infinitude of primes.)

(a) Prove that B is a basis on Z.
We have B = {aZ + b : a, b ∈ Z, a ̸= 0}. In particular, Z ∈ B, so B covers Z. Next, given
any two elements of B, say B1 := a1Z+ b1 and B2 := a2Z+ b2, pick any n ∈ B1 ∩B2. Since
n ∈ a1a2Z+ n ⊆ B1 ∩B2, Ivan’s second condition implies B is a basis.

(b) Let an := 2n3n−15n−2 · · · p2n−1pn, where pk denotes the kth prime number; the sequence an begins
2, 12, 360, 75600, . . . Does this sequence converge in Z under the Furstenberg topology? If not, prove
it; if so, find all values it converges to, and prove that your list is exhaustive.

Claim. an → 0. Moreover, an doesn’t converge to anything else.

Proof. Pick any open set O containing 0. Since O is a union of basis elements, there must
be a bi-infinite arithmetic progression dZ+ k such that 0 ∈ dZ+ k ⊆ O. It instantly follows
that d | k, whence dZ + k = dZ. Now observe that for all large n we have d | an. But this
means an ∈ dZ for all large n, whence an ∈ O for all large n. This proves that an → 0.

Next, pick any ℓ ̸= 0. We wish to show that an doesn’t converge to ℓ. Consider the set
B := −1 + (ℓ + 1)Z. This is open (it’s an element of the basis) and it contains ℓ. Observe
that the an /∈ B for all large n, since an ≡ 0 (mod ℓ+ 1) for all large n while all the elements
of B are ≡ −1 (mod ℓ+ 1).

5.6 In class, I asserted without proof that a space is T1 iff singletons are closed. In fact, more is true! Given
a topological space (X, T ), prove that

(X, T ) is T1 ⇐⇒ {x} is closed ∀x ∈ X ⇐⇒ all finite sets are closed ⇐⇒ ∀A ⊆ X,A =
⋂

O s.t.
A⊆O∈T

O

Proposition 1. X is T1 iff every singleton is closed.

Proof. (⇒) Suppose X is T1. Pick any p ∈ X. For every x ∈ X \ {p}, there exists an open
set Ox that contains x but not p. This implies X \ {p} =

⋃
x ̸=p Ox, whence X \ {p} is a

union of open sets. We deduce that X \ {p} is open, so the singleton {p} is closed.

(⇐) Given points α ̸= β in X. By hypothesis both {α} and {β} are closed, whence {α}c
and {β}c are both open; moreover, each of these opens contains one point but not the other.
Since α, β were arbitrary, we deduce X is a T1 space.

continued on next page...
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Proposition 2. All singleton sets are closed iff all finite sets are closed.

Proof. This is immediate, since finite unions of closed sets are closed.

Proposition 3. X is T1 iff every set is equal to the intersection of all opens containing it.

Proof. (⇒) Given A ⊆ X. For any x ∈ Ac and any a ∈ A there exists an open set Oa with
a ∈ Oa and x /∈ Oa. It follows that Ux :=

⋃
a∈A

Oa is an open set containing all of A and not

containing x. This implies that A =
⋂

x∈Ac

Ux, so A is the intersection of a bunch of open sets

containing it; adding more sets to the intersection won’t change this, so A is the intersection
of all open sets containing it.

(⇐) Suppose X is not T1. Then there exist distinct points α, β ∈ X such that every open
set containing α also contains β. But then the singleton set {α} isn’t the intersection of all
open sets containing it, since this intersection also contains β!

5.7 All parts of this question concern Rcofinite.

(a) Let an := 1 for all n. What’s lim
n→∞

an?

From the definition of convergence, it’s clear that an → 1. The question therefore becomes:
given α ̸= 1, is it possible that an → α? Suppose it does. Given an open set O ∋ α, define
U = O \ {1}. Note that U is also open and contains α, but doesn’t contain any of the an; it
follows that an does not converge to α. Therefore, an converges to 1.

(b) Let bn := (−1)n for all n. What’s lim
n→∞

bn?

bn cannot converge to any β ̸= ±1, since the open set {±1}c contains β but not any of the
bn. bn cannot converge to 1 because −1 /∈ {−1}c, and the analogous argument applies for
−1. Therefore, bn diverges.

(c) Let cn := 1 + 2 + 3 + · · ·+ n. Prove that cn → − 1
12 .

Pick any open set O ∋ − 1
12 . Observe that all the cn are distinct, so O must contain all

but finitely many of them; in particular, it must contain a tail of the sequence. The claim
follows.

(d) Can you give a simple and complete description of convergence in Rcofinite?

If (an) is eventually constant, then it converges to exactly one value. If no tail of (an) is
constant, but the set {an : n ≥ 1} is finite, then (an) diverges. If the set {an : n ≥ 1} is
infinite, then (an) converges to every real number.
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