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6.1 In class we proved that if a topological space is Hausdorff, then every convergent sequence has a unique
limit. The goal of this exercise is to show that the converse of this fails to hold.

(a) Prove that in (R, Tcocountable), every convergent sequence has a unique limit.

Lemma 1. The only convergent sequences in this space are eventually constant.

Proof. Suppose (an) is a convergent sequence, say, an → L. Consider the set

(R \ {an : n ≥ 1}) ∪ {L}.

This is an open set containing L, so it must contain a tail of the sequence (an). This is only
possible if an = L for all large n.

It therefore remains to prove that an eventually constant sequence has a unique limit. Sup-
pose an = L for all large n, and pick α ̸= L. Then the open set R \ {L} contains α, but
doesn’t contain the tail of (an). It follows that (an) doesn’t converge to α.

(b) Prove that (R, Tcocountable) isn’t Hausdorff.

I claim any two nonempty open sets intersect. To see this, say A and B are both nonempty
and open; by definition, Ac and Bc are both countable. Then (A∩B)c = Ac∪Bc is countable,
hence A ∩B must be uncountable (in particular, nonempty!).

6.2 Given a topology T on R. Does there exist an open map f : (R, T ) → (R, T ) that’s not continuous?

Yes, there are many such! Here’s one nice example. Let

T := {∅, {0}, {1}, {0, 1},R};

this is easily verified to be a topology. Consider the function

δ0(x) :=

{
1 x = 0

0 otherwise.

Clearly δ0(∅) = ∅, δ0(0) = 1, δ0(1) = 0, and δ0(R) = {0, 1}, so δ0 is an open map. However,
δ−1
0 (0) = R \ {1} is not in T . Thus, δ0 is open but not continuous.

6.3 Let T13 denote the particular point topology (with respect to 13) on R. What can you say about
continuous functions (R, T13) → Rusual? Try to give as simple a description of all such functions as
possible (with proofs, of course!).

The only continuous functions from (R, T13) → Rusual are constant functions. To see this,
observe that for any nonconstant function f , ∃p ∈ f(R) with 13 /∈ f−1(p). Let B be an open
ball around p small enough that it doesn’t contain f(13). Then f−1(B) isn’t open, hence f
isn’t continuous.



6.4 Recall from class that given a topological space (X, T ), any subset A ⊆ X inherits a natural topology,
called the subspace topology on A:

Tsubspace := {O ∩A : O ∈ T }.

Show that the subspace topology A inherits from X is the coarsest topology on A such that i is continuous
on A, where i : A → X is defined i(x) := x.

Let T ′ be a topology on A such that i is continuous on A. Observe that i−1(O) = O∩A for
any O ∈ T , whence O ∩A ∈ T ′. It follows that Tsubspace ⊆ T ′.

Discussion. The map i given above is continuous on (A, Tdiscrete) and is not continuous on
(A, Tindiscrete). Thus, if we start with the discrete topology on A and coarsen it, at some
point the map i will cease to be continuous. This problem shows that the subspace topology
is the last topology with respect to which i is continuous.

6.5 Given two continuous functions f, g : X → Y where X is a topological space and Y is a Hausdorff space.

(a) Suppose A ⊆ X and f(a) = g(a) for all a ∈ A. Prove that f(x) = g(x) for all x ∈ A .

Suppose f(x) ̸= g(x) for some x ∈ A. Since the codomain is Hausdorff, we can find disjoint
open sets Of ,Og containing f(x), g(x) respectively. Both f−1(Of ) and g−1(Og) are open
sets containing x by continuity of f and g, which implies their intersection U is also an open
set containing x. Since x ∈ A, U must also contain an a ∈ A. This implies

a ∈ f−1(Of ) ∩ g−1(Og),

whence f(a) ∈ Of and g(a) ∈ Og. But f(a) = g(a), contradicting the disjointness of Of and
Og.

(b) Prove that the set {x ∈ X : f(x) = g(x)} is closed.

Let A be the set in question. By (a) we have A ⊂ A, whence A must be closed.

6.6 Prove that the Sorgenfrey line is a Hausdorff space.

Given α ̸= β; WLOG, say α < β. Then [α, β) is an open set containing α, [β, β + 1) is an
open set containing β, and these two sets have empty intersection.

6.7 Prove that Zfurstenberg is a Hausdorff space.

Given m ̸= n. Pick any d > |m − n|, and consider the two open sets m + dZ and n + dZ.
It’s clear that these contain m and n, respectively. I claim they are also disjoint. Pick
x ∈ (m+dZ)∩ (n+dZ). Then x = m+dk = n+dℓ for some integers k ̸= ℓ. But this implies

|m− n| = d|ℓ− k| > |m− n|,

a contradiction.
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6.8 Consider R2 with respect to the Zariski topology. Prove that any two nonempty open sets intersect. (In
particular, this space isn’t Hausdorff!)

I claim that any two nonempty basis elements intersect. This implies that any pair of
nonempty open sets intersect.

Recall that in the Zariski topology, a basis element is the support of a polynomial f ∈ R[x, y].
(In other words: given any f(x, y) that’s a finite sum of terms of the form cxmyn with c ∈ R
and m,n non-negative integers, we can form the set Bf := {(x, y) ∈ R2 : f(x, y) ̸= 0}.
The collection of all such sets Bf forms a basis of the Zariski topology.) Observe that the
identically zero polynomial f ≡ 0 corresponds to the basis element ∅. Thus our goal is to
prove that if both f and g have non-empty support, then there exists a point in R2 where
neither f nor g vanishes. In other words:

Proposition 1. If f, g ∈ R[x, y] and fg ≡ 0, then either f ≡ 0 or g ≡ 0.

This looks like an obvious statement, but it’s a bit tricky to prove. One approach is to use
the Fundamental Theorem of Algebra: there exists a line in the plane with only finitely many
zeros of f and g, which means that there are tons of points on that line at which both f and
g are nonzero. To prove the Proposition without relying on the Fundamental Theorem of
Algebra, we have to work a bit harder, however. We warm up with an easier version of the
proposition that holds for polynomials in a single variable:

Lemma 2. If f, g ∈ R[x] and fg ≡ 0, then either f ≡ 0 or g ≡ 0.

Proof. Given f ∈ R[x], either |f(x)| → ∞ as x → ∞ or f is constant. Thus if fg ≡ 0,
then both f and g must be constant. This immediately implies that one of f or g must be
identically zero.

We now adapt this argument to prove our Proposition.

Proof of Proposition. Given any polynomial f ∈ R[x, y], write it in the form

f(x, y) = f0(x) + f1(x)y + · · ·+ fm(x)ym

where fk ∈ R[x] for all k and fm ̸≡ 0. Similarly, write

g(x, y) = g0(x) + g1(x)y + · · ·+ gn(x)y
n

where gk ∈ R[x] for all k and gn ̸≡ 0. Then fg(x, y) = f0(x)g0(x) + · · ·+ fmgn(x)y
m+n. By

our Lemma, fmgn ̸≡ 0, so either there exists a ∈ R such that |fg(a, y)| → ∞ as y → ∞ or
fg(x, y) = f0(x)g0(x). It follows that

fg ≡ 0 =⇒ fg ∈ R[x].

Thus we may apply our Lemma to fg, which concludes the proof.

Discussion. We say a commutative ring has zero divisors if there exist ring elements
f, g ̸= 0 such that fg = 0. For example, the ring R has no zero divisors, while the ring Z/4Z
does (since 2 × 2 ≡ 0). In our proof above we showed that R[x] has no zero divisors; this
crucially relied on knowing that R has no zero divisors. Then we proved that R[x, y] has no
zero divisors, by viewing the ring in the form (R[x])[y] and using the non-existence of zero
divisors in R[x]. It turns out these two steps are really the same step: if R is a commutative
ring with no zero divisors, then R[x] is a commutative ring with no zero divisors.
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6.9 In class we saw an example of an open map that wasn’t a closed map (the projection map from R2
usual

onto Rusual). Can you find an example of a closed map that isn’t an open map?

There are many examples. Perhaps the easiest is a constant map Rusual → Rusual that sends
x 7→ 0, say. This is clearly a closed map, since the image of any set is closed. It’s also not
an open map, since the image of any set is not open.

6.10 (Challenge problem, optional!) Construct an open map f : Rusual → Rusual that’s not continuous at any
point of R.

I leave this to you to think about!
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