Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

MATH 374 : TOPOLOGY

Solution Set 6

- **6.1** In class we proved that if a topological space is Hausdorff, then every convergent sequence has a unique limit. The goal of this exercise is to show that the converse of this fails to hold.
 - (a) Prove that in $(\mathbb{R}, \mathcal{T}_{cocountable})$, every convergent sequence has a unique limit.

Lemma 1. The only convergent sequences in this space are eventually constant.

Proof. Suppose (a_n) is a convergent sequence, say, $a_n \to L$. Consider the set

 $(\mathbb{R} \setminus \{a_n : n \ge 1\}) \cup \{L\}.$

This is an open set containing L, so it must contain a tail of the sequence (a_n) . This is only possible if $a_n = L$ for all large n.

It therefore remains to prove that an eventually constant sequence has a unique limit. Suppose $a_n = L$ for all large n, and pick $\alpha \neq L$. Then the open set $\mathbb{R} \setminus \{L\}$ contains α , but doesn't contain the tail of (a_n) . It follows that (a_n) doesn't converge to α .

(b) Prove that $(\mathbb{R}, \mathcal{T}_{cocountable})$ isn't Hausdorff.

I claim any two nonempty open sets intersect. To see this, say A and B are both nonempty and open; by definition, A^c and B^c are both countable. Then $(A \cap B)^c = A^c \cup B^c$ is countable, hence $A \cap B$ must be uncountable (in particular, nonempty!).

6.2 Given a topology \mathcal{T} on \mathbb{R} . Does there exist an open map $f:(\mathbb{R},\mathcal{T})\to(\mathbb{R},\mathcal{T})$ that's not continuous?

Yes, there are many such! Here's one nice example. Let

$$\mathcal{T} := \{ \emptyset, \{0\}, \{1\}, \{0, 1\}, \mathbb{R} \};\$$

this is easily verified to be a topology. Consider the function

$$\delta_0(x) := \begin{cases} 1 & x = 0\\ 0 & \text{otherwise.} \end{cases}$$

Clearly $\delta_0(\emptyset) = \emptyset$, $\delta_0(0) = 1$, $\delta_0(1) = 0$, and $\delta_0(\mathbb{R}) = \{0, 1\}$, so δ_0 is an open map. However, $\delta_0^{-1}(0) = \mathbb{R} \setminus \{1\}$ is not in \mathcal{T} . Thus, δ_0 is open but not continuous.

6.3 Let \mathcal{T}_{13} denote the particular point topology (with respect to 13) on \mathbb{R} . What can you say about continuous functions $(\mathbb{R}, \mathcal{T}_{13}) \to \mathbb{R}_{usual}$? Try to give as simple a description of all such functions as possible (with proofs, of course!).

The only continuous functions from $(\mathbb{R}, \mathcal{T}_{13}) \to \mathbb{R}_{usual}$ are constant functions. To see this, observe that for any nonconstant function $f, \exists p \in f(\mathbb{R})$ with $13 \notin f^{-1}(p)$. Let B be an open ball around p small enough that it doesn't contain f(13). Then $f^{-1}(B)$ isn't open, hence f isn't continuous.

6.4 Recall from class that given a topological space (X, \mathcal{T}) , any subset $A \subseteq X$ inherits a natural topology, called the *subspace topology* on A:

$$\mathcal{T}_{\text{subspace}} := \{ \mathcal{O} \cap A : \mathcal{O} \in \mathcal{T} \}.$$

Show that the subspace topology A inherits from X is the coarsest topology on A such that i is continuous on A, where $i: A \to X$ is defined i(x) := x.

Let \mathcal{T}' be a topology on A such that i is continuous on A. Observe that $i^{-1}(\mathcal{O}) = \mathcal{O} \cap A$ for any $\mathcal{O} \in \mathcal{T}$, whence $\mathcal{O} \cap A \in \mathcal{T}'$. It follows that $\mathcal{T}_{\text{subspace}} \subseteq \mathcal{T}'$.

DISCUSSION. The map *i* given above is continuous on $(A, \mathcal{T}_{\text{discrete}})$ and is not continuous on $(A, \mathcal{T}_{\text{indiscrete}})$. Thus, if we start with the discrete topology on *A* and coarsen it, at some point the map *i* will cease to be continuous. This problem shows that the subspace topology is the last topology with respect to which *i* is continuous.

- **6.5** Given two continuous functions $f, g: X \to Y$ where X is a topological space and Y is a Hausdorff space.
 - (a) Suppose $A \subseteq X$ and f(a) = g(a) for all $a \in A$. Prove that f(x) = g(x) for all $x \in \overline{A}$.

Suppose $f(x) \neq g(x)$ for some $x \in \overline{A}$. Since the codomain is Hausdorff, we can find disjoint open sets $\mathcal{O}_f, \mathcal{O}_g$ containing f(x), g(x) respectively. Both $f^{-1}(\mathcal{O}_f)$ and $g^{-1}(\mathcal{O}_g)$ are open sets containing x by continuity of f and g, which implies their intersection U is also an open set containing x. Since $x \in \overline{A}$, U must also contain an $a \in A$. This implies

$$a \in f^{-1}(\mathcal{O}_f) \cap g^{-1}(\mathcal{O}_g),$$

whence $f(a) \in \mathcal{O}_f$ and $g(a) \in \mathcal{O}_g$. But f(a) = g(a), contradicting the disjointness of \mathcal{O}_f and \mathcal{O}_g .

(b) Prove that the set $\{x \in X : f(x) = g(x)\}$ is closed. Let A be the set in question. By (a) we have $\overline{A} \subset A$, whence A must be closed.

6.6 Prove that the Sorgenfrey line is a Hausdorff space.

Given $\alpha \neq \beta$; WLOG, say $\alpha < \beta$. Then $[\alpha, \beta)$ is an open set containing α , $[\beta, \beta + 1)$ is an open set containing β , and these two sets have empty intersection.

6.7 Prove that $\mathbb{Z}_{\text{furstenderg}}$ is a Hausdorff space.

Given $m \neq n$. Pick any d > |m - n|, and consider the two open sets $m + d\mathbb{Z}$ and $n + d\mathbb{Z}$. It's clear that these contain m and n, respectively. I claim they are also disjoint. Pick $x \in (m + d\mathbb{Z}) \cap (n + d\mathbb{Z})$. Then $x = m + dk = n + d\ell$ for some integers $k \neq \ell$. But this implies $|m - n| = d|\ell - k| > |m - n|$, a contradiction. **6.8** Consider \mathbb{R}^2 with respect to the Zariski topology. Prove that any two nonempty open sets intersect. (In particular, this space isn't Hausdorff!)

I claim that any two nonempty basis elements intersect. This implies that any pair of nonempty open sets intersect.

Recall that in the Zariski topology, a basis element is the support of a polynomial $f \in \mathbb{R}[x, y]$. (In other words: given any f(x, y) that's a finite sum of terms of the form cx^my^n with $c \in \mathbb{R}$ and m, n non-negative integers, we can form the set $\mathcal{B}_f := \{(x, y) \in \mathbb{R}^2 : f(x, y) \neq 0\}$. The collection of all such sets \mathcal{B}_f forms a basis of the Zariski topology.) Observe that the identically zero polynomial $f \equiv 0$ corresponds to the basis element \emptyset . Thus our goal is to prove that if both f and g have non-empty support, then there exists a point in \mathbb{R}^2 where neither f nor q vanishes. In other words:

Proposition 1. If $f, g \in \mathbb{R}[x, y]$ and $fg \equiv 0$, then either $f \equiv 0$ or $g \equiv 0$.

This looks like an obvious statement, but it's a bit tricky to prove. One approach is to use the Fundamental Theorem of Algebra: there exists a line in the plane with only finitely many zeros of f and g, which means that there are tons of points on that line at which both f and g are nonzero. To prove the Proposition without relying on the Fundamental Theorem of Algebra, we have to work a bit harder, however. We warm up with an easier version of the proposition that holds for polynomials in a single variable:

Lemma 2. If $f, g \in \mathbb{R}[x]$ and $fg \equiv 0$, then either $f \equiv 0$ or $g \equiv 0$.

Proof. Given $f \in \mathbb{R}[x]$, either $|f(x)| \to \infty$ as $x \to \infty$ or f is constant. Thus if $fg \equiv 0$, then both f and g must be constant. This immediately implies that one of f or g must be identically zero.

We now adapt this argument to prove our Proposition.

Proof of Proposition. Given any polynomial $f \in \mathbb{R}[x, y]$, write it in the form

$$f(x,y) = f_0(x) + f_1(x)y + \dots + f_m(x)y^m$$

where $f_k \in \mathbb{R}[x]$ for all k and $f_m \not\equiv 0$. Similarly, write

$$g(x,y) = g_0(x) + g_1(x)y + \dots + g_n(x)y^n$$

where $g_k \in \mathbb{R}[x]$ for all k and $g_n \neq 0$. Then $fg(x, y) = f_0(x)g_0(x) + \cdots + f_m g_n(x)y^{m+n}$. By our Lemma, $f_m g_n \neq 0$, so either there exists $a \in \mathbb{R}$ such that $|fg(a, y)| \to \infty$ as $y \to \infty$ or $fg(x, y) = f_0(x)g_0(x)$. It follows that

$$fg \equiv 0 \implies fg \in \mathbb{R}[x].$$

Thus we may apply our Lemma to fg, which concludes the proof.

DISCUSSION. We say a commutative ring has zero divisors if there exist ring elements $f, g \neq 0$ such that fg = 0. For example, the ring \mathbb{R} has no zero divisors, while the ring $\mathbb{Z}/4\mathbb{Z}$ does (since $2 \times 2 \equiv 0$). In our proof above we showed that $\mathbb{R}[x]$ has no zero divisors; this crucially relied on knowing that \mathbb{R} has no zero divisors. Then we proved that $\mathbb{R}[x, y]$ has no zero divisors, by viewing the ring in the form $(\mathbb{R}[x])[y]$ and using the non-existence of zero divisors in $\mathbb{R}[x]$. It turns out these two steps are really the same step: if \mathcal{R} is a commutative ring with no zero divisors, then $\mathcal{R}[x]$ is a commutative ring with no zero divisors.

6.9 In class we saw an example of an open map that wasn't a closed map (the projection map from \mathbb{R}^2_{usual} onto \mathbb{R}_{usual}). Can you find an example of a closed map that isn't an open map?

There are many examples. Perhaps the easiest is a constant map $\mathbb{R}_{usual} \to \mathbb{R}_{usual}$ that sends $x \mapsto 0$, say. This is clearly a closed map, since the image of *any* set is closed. It's also not an open map, since the image of any set is not open.

6.10 (Challenge problem, optional!) Construct an open map $f : \mathbb{R}_{usual} \to \mathbb{R}_{usual}$ that's not continuous at *any* point of \mathbb{R} .

I leave this to you to think about!