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1. KRONECKER’S THEOREM, REVISITED

Recall Kronecker’s Theorem:

Theorem 1 (Kronecker, 1882). Given f ∈ K[t] a non-constant polynomial, where K is a field. Then there
exists L/K in which f has a root.

This is all well and good, but why does this theorem matter? Sure, [t] ∈ L = K[t]/(f) is always a root of f ,
but this doesn’t really tell us anything about the root of f – it’s just formalism!

To explain this, we return to the familiar example of f(x) = x2 + 1. When considered over R, we’re
comfortable with the solution: we “zoom out” to C, where we have the root i. But what does this symbol tell
you about the solution? Absolutely nothing – we just invented a new notation. But this simple new symbol
allows us to reduce many other equations to this one, and has led to numerous breakthroughs in mathematics
and physics.

Similarly, Kronecker’s theorem allows us to introduce and study new numbers in less familiar settings. For
example, consider f as a polynomial in F3. It’s easy to verify that we cannot find a root of f in F3, so we would
need to zoom out to do so. The most natural guess of where to zoom out to is C, since we know that i ∈ C is a
root of f ... but this doesn’t work, because the characteristics of F3 and C don’t match up. Kronecker’s theorem
tells us where to zoom out to: the field F3[t]/(t

2 +1) = {[at+ b] : a, b ∈ F3}. Note that this field has precisely
nine elements. These elements look like polynomials, but I urge you to think of them as numbers – just as in C,
numbers have the form a+ bi, which would look like linear polynomials to anyone unfamiliar with the concept
of i. From Kronecker’s proof we know that one of these nine numbers (the one called [t]) is a root of f .

The question arose of what would happen if f were reducible. We will explore this in an upcoming lecture,
but the short answer is that we can write f as a product of irreducibles and then repeatedly mod out by them
one at a time.

2. FLIPPING KRONECKER’S THEOREM

When working with Kronecker’s theorem, we are given a field K and a polynomial f ∈ K[t]. Then, we
construct an extension K[t]/(f) and a number α ∈ K[t]/(f) such that f(α) = 0. Let’s flip this idea on its
head: starting with a field extension L/K and some α ∈ L, can we find some polynomial f ∈ K[t] such that
K[t]/(f) ' K(α)? In other words, we know that α lives in some extension of K, and we want to find the
smallest such extension; is it true that this smallest extension is of the form K[t]/(f) for some f ∈ K[t]?

We first looked at an example. Consider C/Q, and α =
√
2. Can we find some polynomial f such that

Q(
√
2) ' Q[t]/(f)? Sure, no problem: f(t) = t2 − 2. We know by Kronecker that Q[

√
2] ' Q[t]/(t2 − 2),

and then we proved that Q[
√
2] = Q(

√
2). Note that in this case we were lucky, in that we had a major clue

about how to choose the polynomial f . What about in a more general setting? How do we find an f ∈ K[t]
such that K[t]/(f) ' K(α)?

In practice, we’ve observed that usually this breaks down into two stages: first we prove that K[t]/(f) '
K[α], and then give a separate argument showing that K[α] = K(α). So let’s focus on the less ambitious goal
of finding an f such that

K[t]/(f) ' K[α].
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Right away we noticed something nice: this looks a lot like the First Isomorphism Theorem for rings! Let’s
recall what this says:

Theorem 2 (1st isomorphism theorem). For any ring R and any ring homomorphism φ : R→ S,

R/ker φ ' im φ.

(As a side note, this theorem is meant to be intuitive. Modding R by ker φ squashes everything in ker φ into 0.
Similarly, φ sends everything in ker φ to 0, and sends all the elements in translations of ker φ to translations of
0.)

Having observed the strong resemblance, we try to apply the First Isomorphism Theorem to our situation.
For this to work, we need to set

R := K[t] and im φ := K[α].

Thus, we may as well choose S to be K[α]. We are thus led to trying to construct some ring homomorphism
φ : K[t] → K[α]. Where do we send f ∈ K[t]? There’s only one possible place: we send f to f(α). This is
called the evaluation map. Formally, we’ve defined φ by

φ(f) := f(α).

Note that im φ = K[α], since any polynomial in α is the image of the same polynomial with all the α’s replaced
by t. Thus, by the 1st isomorphism theorem, we have

K[t]/ker φ ' K[α].

Note that the kernel is the set of all polynomials in K[t] that have α as a root:

ker φ = {f ∈ K[t] : f(α) = 0}.
What else can we say about the kernel?

Recall that ker φ is an ideal of K[t]. Moreover, K[t] is a principal ideal domain, so ker φ is generated by a
single polynomial; let’s call this polynomial mα. In other words, ker φ = (mα) and K[t]/(mα) ' K[α]. We’re
now very close to what we want – what we’d really like is for K[α] to be a field. How can we prove this? Well,
we know that if (mα) is a maximal ideal – in other words, if mα is irreducible over K – then K[t]/(mα) is a
field. It therefore suffices to show that mα is irreducible, and we’ll be done!

Suppose that mα = gh for some g, h ∈ K[t]. Since mα(α) = 0, either g(α) = 0 or h(α) = 0. Without loss
of generality, assume that g(α) = 0. Recall that (mα) = ker φ, which is the set of polynomials in K[t] which
have α as a root. In particular, we must have g ∈ (mα), or in other words, mα | g. But we also have g | mα!
This gives degmα ≤ deg g ≤ degmα, whence degmα = deg g. This proves that h is a unit, so we conclude
that mα is indeed irreducible. We summarize our results:

Thrilling Theorem 1. Given α ∈ L/K, there exists an mα ∈ K[t] such that mα is irreducible over K,
mα(α) = 0, and K[t]/(mα) ' K(α).

Proof. From above we have K[t]/(mα) ' K[α]. Thus, it suffices to show that K[α] = K(α). To this end,
note that K[α] ⊆ K(α). Furthermore, by definition, K(α) is the smallest field containing K and α. But from
Kronecker’s theorem, we know that K[α] is a field containing K and the element α, so it must also contain
K(α)! Thus, K[α] = K(α). �

We quickly realized, however, that something is amiss: Ian noted that π isn’t the root of any polynomial in
Q[t]. (This is not at all obvious – there’s a proof in the textbook.) Something in our proof must be wrong! But
what?

Recall that we asserted that ker φ must be principal, and therefore can be written in the form (mα). The rest
of the proof is fine if mα is nonzero, but we neglected the possibility that mα = 0. Note that this really is a
polynomial with α as a root.

So, our Thrilling Theorem above isn’t quite right; it handles the case when α is the root of some polynomial
inK[t], but ignores the possibility that no such polynomial exists. To make this easier to discuss, we label these
scenarios:



Definition. If α ∈ L/K doesn’t satisfy any equation of the form f(α) = 0 with f ∈ K[t], we say α is
transcendental over K. Otherwise, we say that α is algebraic over K.

For example,
√
2 is algebraic over Q, as it is the root if t2 − 2. It is also algebraic over R, as it is the root of

t−
√
2. By contrast, π is transcendental over Q (a fact that is difficult to prove!) but algebraic over R (it is the

root of t − π). Note that numbers are transcendental or algebraic over particular fields, and the same number
can be transcendental over one field and algebraic over another.

Now that we have distinguished between algebraic and transcendental numbers, we can state the reverse of
Kronecker’s theorem correctly.

Thrilling Theorem 2 (Legit version). Given α ∈ L/K.
(1) If α is algebraic over K, then there exists some mα ∈ K[t] irreducible such that mα(α) = 0,

K[t]/(mα) ' K(α), and K[α] = K(α).
(2) If α is transcendental over K, then K[t] ' K[α].

Note that there are multiple choices of mα, since we can multiply by a unit to get a different choice. We call
the choice of mα which is monic the minimal polynomial of α over K.

We observed that this theorem proves some known results quickly, e.g. Q(i) = Q[i] and Q( 3
√
2) = Q[ 3

√
2].

3. THE DEGREE OF A FIELD EXTENSION

We finished the lecture by considering two familiar field extensions: Q(i) and Q( 3
√
2). Which is bigger?

This is a silly question, of course: from the point of view of cardinality, they have the same size (they’re both
countable). But observe that Q(i) = Q[i] = {a+ bi : a, b ∈ Q} and Q( 3

√
2) = Q[ 3

√
2] = {a+ b 3

√
2 + c( 3

√
2)2 :

a, b, c,∈ Q}. The latter feels like a larger extension of Q, since we’re taking linear combinations of more
things. This reminds us of an approach to measuring size from linear algebra: dimension. In fact, these two
field extensions are vector spaces over Q, with bases {1, i} and {a, 3

√
2, ( 3
√
2)2}, respectively. This leads to

another definition:

Definition. The degree of a field extension L/K, denoted [L : K], is the dimension of L when viewed as a
vector space over K.

So, for the two previous examples, we have [Q(i) : Q] = 2 and [Q( 3
√
2) : Q] = 3. We will discuss the notion

of degree more next lecture.
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