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LEO GOLDMAKHER

1. SEPARABILITY OF POLYNOMIALS

Last time, we discovered that to determine the separability of a polynomial f ∈ R[x] one doesn’t need to
find its roots – studying the behavior of its derivative f ′ tells you all you need to know. The following result
generalizes this to polynomials over arbitrary fields:

Proposition 1.1. A polynomial f ∈ K[x] is separable if and only if f and f ′ are coprime.

Remark. We say two polynomials f, g ∈ K[x] are coprime if and only if their only common factors in K[x]
are units.

Note that the proposition doesn’t require us to find the roots of f ; in fact, we never have to leave the world of
K[x]! On the other hand, for the result to be useful we need to be able to figure out whether or not f and f ′ are
coprime. Fortunately, this turns out to be easy to determine, as the following example illustrates.

Example 1. Let f(x) = x7 + 9x+ 6 ∈ Q[x]. Is this polynomial separable?
The derivation of f is f ′(x) = 7x6 + 9. Let π ∈ Q[x] be a common factor of f and f ′, i.e.
π
∣∣f and π

∣∣f ′. Then π must also divide any multiple of f and f ′, and more generally, any linear
combination of f and f ′. We construct such a polynomial so that the leading terms of f and f ′

cancel:
π
∣∣ 7f − xf ′ = 54x+ 42 = 6(9x+ 7).

Therefore π(x) must be either a constant multiple of 9x + 7, or simply a constant. The former
cannot hold, since −7

9
is not a root of f . (There are several ways to verify this; perhaps the

simplest is to observe that f is Eisenstein at 3, hence irreducible. This suggests a result that we
will come back to later.) Thus π must be constant, which shows that f and f ′ are coprime. By
Proposition 1.1, f must be separable.

Note that we were quite lucky with this example, because we were able to get a linear polynomial using f
and f ′. What if canceling the leading terms leaves some higher order polynomial g with π

∣∣g? Then we can
iterate the process, using g and f ′ to produce another polynomial of smaller degree that is divisible by π, etc.
Note the similarity of this process with Euclid’s algorithm for the integers.

Now we will actually prove Proposition 1.1.

Proof of Prop. 1.1. As usual, we prove the two directions individually.
(⇒) Suppose f is separable. Let L be a splitting field of f , and pick any root α ∈ L/K of f . Then we can
write f(x) = (x− α)g(x); note that x− α - g (since f is separable). Product rule implies

f ′(x) = g(x) + (x− α)g′(x),
whence x − α - f ′. Since α was an arbitrary root of f , we’ve shown that any linear factor of f cannot be a
factor of f ′. Thus, f and f ′ share no nontrivial factors, hence must be coprime.
(⇐) Suppose f is inseparable. Then it has some root α such that f(x) = (x− α)2g(x). Product rule yields

f ′(x) = 2(x− α)g(x) + (x− α)2g′(x),
whence x−α

∣∣f ′(x). In other words, f and f ′ share the common factor x−α, so f and f ′ are not coprime. �
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Note that for both directions of the above proof, the key was identifying linear factors x − α. But there’s
something fishy going on here: x − α lives in a splitting field of f , but might not live in K[x]. Thus, what we
actually proved was that f is separable iff f and f ′ share no roots in a splitting field of f . It turns out, however,
that this condition is equivalent to the polynomials being coprime (see problem 9.5):

Lemma 1.2. Polynomials f, g ∈ K[x] are coprime if and only if they do not share roots in any splitting field.

Combining this with our work above completes the proof of Proposition 1.1. Now we derive some awesome
consequences.

Corollary 1.3. Suppose f ∈ K[x] is irreducible. Then f is separable if and only if f ′ 6= 0.

Proof. (⇒) Suppose f ′ = 0. Then f and f ′ are not coprime, so by Proposition 1.1, f is inseparable.
(⇐) Suppose f is not separable. Then by Proposition 1.1, there exists some π ∈ K[x] with deg π ≥ 1 such
that π

∣∣f and π
∣∣f ′. But f is irreducible, so π must be a unit multiple of f . It follows that f

∣∣f ′. Since the degree
of f ′ is strictly smaller than the degree of f , this means that we must have f ′ = 0. �

Over Q, the derivation is 0 iff the polynomial is constant. In a general field, however, the condition f ′ = 0 is
not equivalent to f being constant; for example, the derivation of xp − 2 ∈ Fp has derivation zero.

Example 2. Consider the polynomial f(x) = x3 + 2x + 2 ∈ F3[x]. In order to apply Corollary 1.3, we
must show that f is irreducible over F3. Since deg f = 3, it suffices to check that it has no roots in the
field, a straightforward verification. Thus, we can apply Corollary 1.3 to dedce that f must be separable since
f ′(x) = 2.

Example 3. As a non-example, consider the polynomial f(x) = (x − 1)2(x − 2) ∈ F3[x]. By construction,
f is reducible. To see that Corollary 1.3 fails as a result, we notice that f is not separable (x = 1 is a root of
multiplicity 2) and yet f ′ 6= 0:

f(x) = (x− 1)2(x− 2) = x3 − x2 + 2x− 2 =⇒ f ′(x) = −2x+ 2.

When char K = 0, it turns out that the situation is quite clean:

Corollary 1.4. Suppose char K = 0. Then every nonconstant irreducible f ∈ K[x] is separable.

Proof. Let f(x) = anx
n+ an−1x

n−1+ · · ·+ a1x+ a0. If f is inseparable, then by Corollary 1.3, we must have
f ′(x) = 0. Thus,

0 = f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1.

This implies
kak = 0 whenever 1 ≤ k ≤ n.

In this range of k we have k 6= 0, since char K = 0. Therefore,

ak = 0 whenever 1 ≤ k ≤ n.

It follows that f(x) = a0, a constant. �

As an immediate consequence, we see that the polynomial in Example 1 is separable.

2. FUNDAMENTAL THEOREM OF ALGEBRA

We will now switch gears and use the Fundamental Theorem of Galois Theory to prove the Fundamental
Theorem of Algebra. The statement of the theorem is probably familiar:

Fundamental Theorem of Algebra. Any f ∈ C[x] has all of its roots in C.

However, we will prove an equivalent statement that is formulated in terms of field extensions:

Fundamental Theorem of Algebra (Second version). There does not exist any finite extension of C.



Note that if a polynomial has a root outside of C, then this element gives us a finite extension of C. Con-
versely, if there exists a finite extension of C, then it must be an algebraic extension, so there is some polyno-
mial with a root lying outside of C. Thus, we see that these two formulations of the Fundamental Theorem of
Algebra are indeed equivalent.

Before diving into the proof of the theorem, we warm up by proving a simple case of the result. A field
extension of degree 2 is called a quadratic extension.

Proposition 2.1. There do not exist any quadratic extensions of C.

Proof. Suppose K/C has degree 2. Then, by Problem 5.2(c), there exists some α ∈ K \ C such that
K = C(α) and α2 ∈ C. But then we can write α2 = reiθ for some real r ≥ 0 and θ ∈ R, which implies
α = ±

√
reiθ/2 ∈ C, a contradiction. Therefore there do not exist any quadratic extensions of C. �

Remark. At the heart of the above proof is that the roots of any quadratic polynomial in C[x] can be expressed
in terms of arithmetic operations and a square root – and that none of these operations force us to leave C. For
higher degree polynomials, expressing the roots in terms of operations were familiar with (and which don’t exit
the world of C) becomes more challenging. Fortunately, the Fundamental Theorem of Galois Theory allows us
to bypass this difficulty.

For the proof of the full version, we require the following two tools. The first tool appears in the same 1872
paper as its more famous cousins, the 1st, 2nd, and 3rd Sylow theorems.

Theorem 2.2 (Sylow, 1872). If G is a finite group and pn
∣∣|G|, then there exists a subgroup H ≤ G of order

pn. (As usual, p denotes a prime.)

The second tool allows us to enlarge a field extension to a Galois extension.

Proposition 2.3. Let K be a field with char K = 0. Given any finite F/K, there exists a finite extension L/F
such that L/K is Galois.

Remark. See Problem 9.4 for a proof of this result. It turns out that this proposition is also true when K is a
finite field, but we don’t need this for the proof of the FTA.

And with that, we’re ready to prove the Fundamental Theorem of Algebra!

Proof of FTA. Suppose K is a finite extension of C; our goal is to show that K = C. We will accomplish this
by using the Fundamental Theorem of Galois Theory as a dictionary between field theory and group theory,
applying tools on each side (the tower law, Sylow’s theorem) and translating back and forth to obtain more and
more information about each. In other words, it’s a proof by pong!

Step 1. Enlarge our extension to a Galois extension L/R of even degree.
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First, observe that K/R is a field extension of even degree, by the tower law. Next, enlarge
K/R to a Galois extension L/R; it still has even degree.



Step 2. Use the FTGT dictionary and group theory to prove [L : R] = 2m.
Since [L : R] is even, we can write

[L : R] = 2m`

where m ≥ 1 and ` is odd. Let G := Gal(L/R). The Fundamental Theorem of Galois Theory
gives us the following picture:
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By Sylow’s theorem, there must exist a subgroup H ≤ G of order 2m. The Galois correspon-
dence yields a mirror image on the field side:
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In particular, we have [LH : R] = `, an odd integer. I claim this implies that LH = R. Why?
Pick α ∈ LH , and let mα ∈ R[x] denote its minimal polynomial over R. By Tower Law,
degmα = [R(α) : R] must be odd, whence the Intermediate Value Theorem implies that mα

has a root in R. Since mα is irreducible over R, it must have degree 1, so

[R(α) : R] = degmα = 1.

It follows that α ∈ R. Since α ∈ LH was arbitrary, we have shown that LH = R. In particular,
` = 1, and our picture becomes
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Step 3. Produce a forbidden quadratic extension of C.
Since C is an intermediate field of the Galois extension L/R, the Galois correspondence and
the Tower Law give
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We wish to show that m = 1. Suppose otherwise, i.e., m ≥ 2. Then, again by Sylow’s theorem,
there would exist a subgroup J ≤ Gal(L/C) of order 2m−2. The Galois correspondence would



then yield the hypothetical picture
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But this would necessitate the existence of a quadratic extension LJ/C, contradicting Propo-
sition 2.1! Thus, no such J can exist, whence m = 1. We deduce that [L : C] = 1; since
C ⊆ K ⊆ L, we conclude that K = C. The Fundamental Theorem of Algebra is proved. �
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