
GALOIS THEORY: LECTURE 18

LEO GOLDMAKHER

1. PROOF OF THE FUNDAMENTAL THEOREM OF GALOIS THEORY

Last time we demonstrated the power of the FTGT by using it to give a short proof of the Fundamental
Theorem of Algebra. Today we prove (most of) the FTGT itself. The main tools we use come from Geck’s
proof that |Aut(L/K)| ≤ [L : K], with equality iff L/K is Galois. We recall a few particularly useful
consequences of his proof:

Proposition 1.1. Given a finite Galois extension L/K, there exists some α ∈ L such that
1. L = K(α),
2. the Galois conjugates of α are all distinct, and
3. the minimal polynomial of α is given by mα(x) =

∏
σ∈Aut(L/K)

(
x− σ(α)

)
.

With these results in hand, we’re ready to prove the FTGT. Recall (from Lecture 15) that the statement consists
of five related results; we prove them in the same order we originally listed. Throughout, we assume L/K is a
given finite Galois extension, and that G := Aut(L/K) is the Galois group of this extension.

(1) The Galois Correspondence. The following two maps give bijections between the set of intermediate
fields F lying between K and L and the set of subgroups H of G:

F 7−→ Aut(L/F ) LH 7−→H.
Moreover, these maps are inverses of one another.

Proof. The plan of the proof is to reduce the problem to a simpler one, and then to apply a familiar trick in-
volving minimal polynomials.

STEP 1. First reduction: it suffices to prove the maps are inverses.
Recall (problem 8.3) that G is finite; it follows that there are only finitely many subgroups.
Next, it’s a general fact (see problem 10.1) that given any two functions f : A → B and
g : B → A which are inverses of one, then A and B have the same cardinality and f and g
must be bijections. Thus, if we prove that the two maps given in the statement of the theorem
are inverses of one another, it will immediately follow that the set of intermediate fields must
be finite, and that each of the maps is a bijection. We have thus reduced the claim to proving

LAut(L/F ) = F and Aut(L/LH) = H.

STEP 2. Second reduction: it suffices to prove |Aut(L/LH)| ≤ |H|.
Recall (from Lecture 15) that L/F must be Galois. This implies (property (C) in the definition
of being Galois) that the fixed field of Aut(L/F ) is precisely F , i.e. LAut(L/F ) = F . It therefore
suffices to prove Aut(L/LH) = H .

Observe that H ≤ Aut(L/LH), since any σ ∈ H fixes everything in LH by definition. Thus,
it suffices to prove Aut(L/LH) ≤ H . In fact, since we know H is a finite subset of the auto-
morphism group, it’s enough to prove |Aut(L/LH)| ≤ |H|.
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STEP 3. Compute the degree of the extension L/LH .

As in Step 2, we know that L/LH must be Galois, whence Aut(L/LH) = [L : LH ]. Thus our
goal becomes to bound the degree of the extension L/LH by the order of H . Proposition 1.1
gives us a more concrete way to think about this extension: since it’s Galois, we deduce that
L = LH(α) for some α, and that the minimal polynomial of α over LH is given by

mα(x) =
∏

σ∈Aut(L/LH)

(
x− σ(α)

)
∈ LH [x].

Since we’re trying to prove that Aut(L/LH) = H , we’re led to consider the polynomial

fα(x) :=
∏
σ∈H

(
x− σ(α)

)
.

We claim that fα ∈ LH [x], i.e. that its coefficients are fixed by every automorphism in H .
Indeed, applying any element τ ∈ H to the set of roots {σ(α) : σ ∈ H} simply permutes the
roots of fα, hence leaves the coefficients of fα unaffected (since they are symmetric polynomials
in the roots).1 SinceH ≤ Aut(L/LH), we deduce that fα | mα. On the other hand, we knowmα

divides every polynomial in LH [x] with α as a root, whence mα | fα. Since both polynomials
are monic, we deduce that fα = mα. In particular,

|Aut(L/LH)| = [L : LH ] = degmα = deg fα = |H|.

Since we know from step 2 that H ≤ Aut(L/LH), we conclude that H = Aut(L/LH). �

It turns out this is by far the hardest part of the Fundamental Theorem to prove.

(2) The Galois correspondence is inclusion-reversing. Given F ←→ H and F ′ ←→ H ′ under the Galois
correspondence, F ⊆ F ′ if and only if H ⊇ H ′.

Proof. Suppose F ⊆ F ′. Then any automorphisms that fix F ′ must also fix F , whence

H ′ = Aut(L/F ′) ⊆ Aut(L/F ) = H.

Conversely, suppose H ′ ⊆ H . Then the elements of L that are fixed by all of H must be also be fixed by H ′,
whence

F = LH ⊆ LH
′
= F ′. �

(3) Degrees are preserved under the Galois correspondence.
L G

F H

K {e}

a b

b a

Given that F ←→ H under the Galois cor-
respondence. Then

[L : F ] = |H| and [F : K] = |G/H|.

Proof. Recall that if L/K is Galois, then L/F is Galois, which implies that [L : F ] = |Aut(L/F )| = |H|.
Moreover, since L/K is Galois, we know that [L : K] = |G|. The Tower Law implies [L : K] = [L : F ][F : K]
whence |G| = |H|[F : K]. The claim immediately follows. �

1This is similar in spirit to the trick we used in Lecture 16 to prove (C) =⇒ (B).



2. MOTIVATION FOR THE NEXT STEPS

Given L/K Galois, G = Gal(L/K), and suppose F ←→ H under the Galois correspondence.

Question 1. How can you form another intermediate field?

(1) Alex: Adjoin an element of F to K.
(2) Eli: Adjoin an element of L \ F to K or F.
(3) Ben: Pick any element σ ∈ G, and look at σ(F ).

Question 2. How can you form another subgroup of G?

(1) Michael: Form another field by an above method, and associate a group.
(2) Michael: Form a cyclic subgroup from an element of G.
(3) Isaac and Michael: We can form the conjugate of H: for any σ ∈ G, we have σHσ−1 ≤ G.

Next time we’ll explore a connection between these: we’ll show that the field and group formed in (3) of each
of the above correspond under the Galois correspondence.
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