
GALOIS THEORY: LECTURE 19

LEO GOLDMAKHER

1. CREATING NEW SUBFIELDS AND SUBGROUPS

Given a finite Galois extension L/K, set G := Gal(L/K), and pick σ ∈ G. At the end of last class we
noticed that for any intermediate field F and any subgroup H ≤ G we have

• σ(F ) is also an intermediate field, and
• σHσ−1 (the conjugate of H by σ) is also a subgroup of G.

This inspires the following:

Lemma 1.1. Given L/K a finite Galois extension, an intermediate field F , and a subgroup H such that
F ←→ H under the Galois Correspondence, then for any σ ∈ G we have σ(F )←→ σHσ−1 under the Galois
correspondence.

Remark. In words, the lemma sets up a correspondence between applying an automorphism on the field side
with conjugating on the group side.

Proof. By the Galois Correspondence, F = LH . We’d like to show σ(F ) = LσHσ
−1 . Let’s follow our nose and

push some symbols around:

σ(F ) = σ(LH) = {σ(x) : x ∈ LH}
= {σ(x) : τ(x) = x for each τ ∈ H}
= {y : τ

(
σ−1(y)

)
= σ−1(y) for each τ ∈ H}

= {y : στσ−1(y) = y for each τ ∈ H}

= LσHσ
−1

.

Success! �

Remark. The lemma implies its own converse: if σ(F )←→ σHσ−1 then F ←→ H .

2. FINISHING UP THE FUNDAMENTAL THEOREM OF GALOIS THEORY

Before we pick up the proof of the Fundamental Theorem of Galois Theory where we left it, recall that for
any finite Galois extension L/K, Geck’s proof implies the existence of α ∈ L such that:

(A) L = K(α),
(B) all the Galois conjugates of α are distinct, and
(C) the minimal polynomial of α over K is

mα(x) =
∏

σ∈Gal(L/K)

(
x− σ(α)

)
.

With this and Lemma 1.1 at our disposal, we resume our proof of the FTGT. Throughout, assume L/K is finite
and Galois, and set G := Gal(L/K).

(4) Normal subgroups correspond to Galois extensions. Suppose F is an intermediate field of L/K with
F ←→ H under the Galois Correspondence. Then F/K is Galois if and only if H E G.
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Proof. Recall from group theory that H E G if and only if H = σHσ−1 for all σ ∈ G. Thus Lemma 1.1
implies H E G if and only if σ(F ) = F for all σ ∈ G. Furthermore, Daishiro observed that σ(F ) = F for all
σ ∈ G if and only if σ(F ) ⊆ F for all σ ∈ G. Our claim is therefore equivalent to proving

F/K is Galois ⇐⇒ σ(F ) ⊆ F for all σ ∈ G.
(⇒) Suppose F/K is Galois. Then F = K(α) for some α ∈ F , so it suffices to prove that σ(α) ∈ F for all

σ ∈ G. Jonah pointed out that

mα(x) =
∏

σ∈Gal(F/K)

(
x− σ(α)

)
∈ K[x],

so certainly σ(α) ∈ F for all σ ∈ Gal(F/K). But what about all σ ∈ G? Andrew pointed out that
since mα ∈ K[x] we know that σ(α) must be a root of mα for all σ ∈ G. But we already know all of
the roots of mα! In particular, we know they all live in F . Therefore σ(α) ∈ F for all σ ∈ G. ♣

(⇐) Given that σ(F ) ⊆ F for all σ ∈ G, we want to show that F/K is Galois. Our strategy for the proof
is to construct a separable polynomial in K[x] with splitting field F . To do this, we employ a trick we
used when proving the three definitions of a Galois extension to be equivalent. Since we know F/K is
finite, we can write F = K(α1, . . . , αn). Beatrix pointed out that {αi} should be a minimal set, in that
none of the αi can be removed without changing the field formed by adjoining the αi. Now we form
the polynomial

f(x) :=
∏
α∈A

(x− α),

where
A := {σ(αi) : σ ∈ G, 1 ≤ i ≤ n}.

This definition of A forces f to be separable. We claim that f ∈ K[x]. Indeed, we know that all the
coefficients of f are fixed by all σ ∈ G since the set A is G-invariant. Thus f ∈ LG[x], and since
L/K is Galois, we know that LG = K. Since A ⊆ F by hypothesis, f splits over F ; moreover, F is a
splitting field of f over K, since all the αi are roots of f . Thus we conclude that F is the splitting field
of a separable polynomial over K, whence F/K is Galois. �

Our original statement of part 4 of the Fundamental Theorem of Galois Theory (in lecture 15) contained an
additional assertion about the extension F/K. We prove this now:

Corollary 2.1. If F/K is Galois, then Gal(F/K) ' G/H .

Remark. Note that in all the other parts of the Fundamental Theorem of Galois Theory, we assert that sub-
groups of G are equal to the corresponding automorphism groups of L/F for intermediate fields F , not just
isomorphic. So in a sense this is slightly weaker than the other parts of the FTGT. This is because we lose
some information when taking quotients in a group: G/H does not contain K-automorphisms, but equivalence
classes of K-automorphisms.

We’re trying to prove that a given group is isomorphic to a quotient. This smacks of our old friend, the first
isomorphism theorem:

Theorem 2.2 (First Isomorphism Theorem). If ϕ : G → G′ is a group homomorphism, then ker ϕ E G and
G/ker ϕ ' im ϕ. (See picture below.)
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We now have everything we need to prove Corollary 2.1.

Proof. We want to construct a homomorphism ϕ : G→ Aut(F/K) with ker ϕ = H = Aut(L/F ). So given a
K-automorphism of L, we need to construct a K-automorphism of F . Emily suggested the map

σ 7−→ σ|F ,
where the output is the restriction of σ to F . Note this restriction is well-defined, since σ(F ) = F by the
proof of part 4 of the FTGT. Additionally, we know that multiplication and addition are preserved since σ is an
automorphism, so ϕ is a homomorphism. Finally we see that

ker ϕ = {σ ∈ G : ϕ(σ) = idF}
= {σ ∈ G : σ(x) = x for all x ∈ F}
= Aut(L/F ).

The result follows by the First Isomorphism Theorem. �

Remark. Daishiro pointed out that to use the First Isomorphism Theorem, we need to show that ϕ is surjective.
This is problem 10.4 on the problem set.

We only have one more part of the Fundamental Theorem of Galois Theory remaining:

(5) Conjugation yields field isomorphisms. Given intermediate fields F, F ′ and subgroups H,H ′ such that
F ←→ H and F ′ ←→ H ′ under the Galois Correspondence, then F 'K F ′ iff H and H ′ are conjugate
subgroups.

Proof sketch. SubgroupsH andH ′ are conjugate if and only if there exists some σ ∈ G such thatH = σH ′σ−1.
Therefore, by Lemma 1.1 it suffices to show that F 'K F ′ if and only if σ(F ) = F ′. The (⇐) direction is
straightforward, since σ is a K-isomorphism. To prove the (⇒) direction, given ϕ : F

∼−→ F ′, it suffices to
prove that ϕ can be lifted to an automorphism σ ∈ G. This is a bit tedious to carry out and is quite similar to
problem 9.6, so we omit the details here. �

3. MINIMAL POLYNOMIALS

Let L/K be a finite Galois extension. From Geck’s proof we know that this is a simple extension, and that
there exists some primitive element for this extension whose minimal polynomial we can describe explicitly in
terms of Gal(L/K).

What about for some random α ∈ L? What can we say about its Galois conjugates, or its minimal polynomial
over K? Note that the Galois conjugates of a generic α might not all be distinct. After some discussion, Ben
conjectured the following:

The Fundamental Lemma. Given any α ∈ L, its minimal polynomial mα over K is separable. Moreover, we
can describe it explicitly:

mα(x) =
∏
β∈A

(x− β)

where A := {σ(α) : σ ∈ G}.

Proof. Problem 10.3. �
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